From Bidirectionality to Alternation

Nir Piterman* Moshe Y. Vardif
Weizmann Institute of Science Rice University

August 22, 2001

Abstract

We describe an explicit simulation of 2-way nondeterministic automata by 1-way alternating
automata with quadratic blow-up. We first describe the construction for automata on finite
words, and extend it to automata on infinite words.

1 Introduction

The theory of finite automata is one of the fundamental building blocks of theoretical computer
science. As the basic theory of finite-state systems, this theory is covered in numerous textbooks
and in any basic undergraduate curriculum in computer science. Since its introduction in the
1950’s, the theory had numerous applications in practically all branches of computer science, from
the construction of electrical circuits [Koh70], to the design of lexical analyzers [JPAR68], and to
the automated verification of hardware and software designs [VW86].

From its very inception, one fundamental theme in automata theory is the quest for under-
standing the relative power of the various constructs of the theory. Perhaps the most fundamental
result of automata theory is the robustness of the class of regular languages, the class of lan-
guages definable by means of finite automata. Rabin and Scott showed in their classical paper
that neither nondeterminism nor bidirectionality changes the expressive power of finite automata;
that is, nondeterministic 2-way automata and deterministic 1-way automata have the same expres-
sive power [RS59]. This robustness was later extended to alternating automata, which can switch
back and forth between existential and universal modes (nondeterminism is an existential mode)

[BL80, CKS81, LLS84].

In view of this robustness, the concept of relative expressive power was extended to cover
also succinctness of description. For example, it is known that nondeterministic automata and
two-way automata are exponentially more succinct than deterministic automata. The language
L, = {uv : u,v € {0,1}" and u # v} can be expressed using a 1-way nondeterministic automaton
or a 2-way deterministic automaton of size polynomial in n, but a 1-way deterministic automaton
accepting L, must be of exponential size (cf. [SS78]). Alternating automata, in turn, are doubly
exponentially more succinct than deterministic automata [BL80, CKS81].

*Department of Computer Science and Applied Mathematics, Weizmann institute, Rehovot 76100, Israel.
Email: nirp@wisdom.weizmann.ac.il

T Address: Department of Computer Science, Rice University, Houston TX 77005-1892, U.S.A.
Email: vardiQcs.rice.edu

Consequently, a major line of research in automata theory is establishing tight simulation results
between different types of automata. For example, given a 2-way automaton with n states, Shep-
herdson showed how to construct an equivalent 1-way automaton with 20(109(") states [She59).
Birget showed how to construct an equivalent 1-way automaton with 237 states [Bir93] (see also
[GHY96]). Vardi constructed the complementary automaton, an automaton accepting the words
rejected by the 2-way automaton, with 227 states [Var89]. Birget also showed, via a chain of
reductions, that a 2-way nondeterministic automaton can be converted to a 1-way alternating au-
tomaton with quadratic blow-up [Bir93]. As the converse efficient simulation is impossible [LLS84],
alternation is more powerfull than bidirectionality.

Our focus in this paper is on simulation of bidirectionality by alternation. The interest in
bidirectionality and alternation in not merely theoretical. Both constructs have been shown to be
useful in automated reasoning. For example, reasoning about modal p-calculus with past temporal
connectives requires alternation and bidirectionality [Str82, Var88, Var98]. Recently, model check-
ing of specifications in p-calculus on context-free and prefix-recognizable systems has been reduced
to questions about 2-way automata [KV00]. In a different field of research, 2-way automata were
used in query processing over semistructured data [CAGLV00].

We found Birget’s construction, simulating bidirectionality by alternation with quadratic blow-
up, unsatisfactory. As noted, his construction is indirect, using a chain of reductions. In particular,
it uses the reverse language and, consequently, can not be extended to automata on infinite words.
The theory of finite automata on infinite objects was established in the 1960s by Biichi, McNaughton
and Rabin [Biic62, McN66, Rab69]. They were motivated by decision problems in mathematical
logic. More recently, automata on infinite words have shown to be useful in computer-aided veri-
fication [Kur94, VW86]. We note that bidirectionality does not add expressive power also in the
context of automata on infinite words. Vardi has already shown that given a 2-way nondeterminis-
tic Biichi automaton with n states one can construct an equivalent 1-way nondeterministic Biichi
with 20("*) states [Varsg].

Our main result in this paper is a direct quadratic simulation of bidirectionality by alterna-
tion. Given a 2-way nondeterministic automaton with n states, we construct an equivalent 1-way
alternating automaton with O(n?) states. Unlike Birget’s construction, our construction is explicit.
This has two advantages. First, one can see exactly how alternation can efficiently simulate bidirec-
tionality. (In order to convert the nondeterministic automaton into an alternating automaton we
use the fact that the run of the 2-way nondeterministic automaton looks like a tree of “zigzags” !.
We analyze the form such a tree can take and recognize, using an alternating automaton, when
such a tree exists.) Second, the explicitness of the construction enables us to extend it to Biichi
automata. Since it is known how to simulate alternating Biichi automata by nondeterministic
Biichi automata with exponential blow-up [MH84], our construction provides another proof of the
result that a 2-way nondeterministic Biichi automaton with n states can be simulated by a 1-way
nondeterministic Biichi with 20() states [Var88].

We also show how to obtain, still with quadratic blow-up, a 1-way alternating automaton for
the complementary language. This is trivial for automata on finite words, but not for automata
on infinite words. Finally, we show how to use our construction for 2-way nondeterministic Rabin
and parity automata, avoiding an unnecessary blow up that results from first converting those into
2-way nondeterministic Bichi automata.

!The analysis of the form of the “zigzags” is similar to the analysis of runs of pushdown-automata done in

[Ruz80, Ven91].

2 Preliminaries

We consider finite or infinite sequences of symbols from some finite alphabet X. Given a word w,
an element in ¥* U X¥, we denote by w; the it" letter of the word w. The length of w is denoted
by |w| and is defined to be w for infinite words.

A 2-way nondeterministic automaton is N = (X, S, so, 6, F'), where ¥ is the finite alphabet, S is
the finite set of states, so € S is the initial state, § : S x & — 25*{=1.0.1} ig the transition function,
and F' is the acceptance set. We can run N either on finite words (2-way nondeterministic finite
automaton or 2NFA for short) or on infinite words (2-way nondeterministic Bichi automaton or
2NBW for short).

A run on a finite word w = wy, ..., w; is a finite sequence of states and locations (qo,i9), (q1,%1),
eovy (@myim) € (S x{0,...,1 +1})*. The pair (g;,;) represents the automaton is in state g; reading
letter ;. Formally, go = so, ip = 0, for all 0 < j < m, we have i; € {0,...,1}, and i, € {0,...,[+1}.
Finally, for all 0 < j < m, we have (g;j41,ij41 — i) € 6(gj,w;;). A run is accepting if i, = 141
and ¢, € F.

A run on an infinite word w = wg, w1, ... is defined similarly as an infinite sequence. The
restriction on the locations is removed (for all j, the location i; can be every number in IN). In
2NBW, a run is accepting if it visits F' x IN infinitely often. A word w is accepted by N if it has
an accepting run over w. The language of N is the set of words accepted by N, denoted by L(N).

A 2-way nondeterministic parity (Rabin) automaton (2NPW and 2NRW for short) is N =
(3, S, s0,06,) where ¥, S, so and é are like before and o = {Fi,...,F,,} is a partition of S
(o = {{(G1,B1), ..., (G, Bin)} is a subset of 25 x 2%). The indez of the automaton is the number
of sets (pairs) in its acceptance condition. A run of a 2NPW or a 2NRW is just like a run of a
2NBW. A run r of a 2NPW is accepting if the minimal index 1 < ¢ < m such that r visits F; x IN
infinitely is even. A run r of a 2NRW is accepting if there exists an ¢, 1 < 4 < m such that r visits
G; X IN infinitely often and B; X IN only finitely often.

In the finite case we are only interested in runs in which the same state in the same position
do no repeat twice during the run. In the infinite case we minimize the amount of repetition to
the unavoidable minimum. A run r = (sg,0), (s1,%1), (52,72), -+, (Sm, im) o0 a finite word is simple
if for all j and k such that j < k, either s; # s3 or i; # ix. A run r = (s0,0), (s1,%1), (s2,%2), ... on
an infinite word is simple if one of the following holds (1) For all j < k, either s; # s or i; # ix.
(2) There exists I,,m € IN such that for all h < p < [+ m, either s, # sp or i # ip, and for all
f > l, Sf=Sftm and ’if = ’if+m.

We show that there exists an accepting run iff there exists a simple accepting run.

Claim 2.1 An automaton N (either 2NFA, 2NBW , 2NPW, or 2NRW) accepts a word w iff it
accepts it with a simple run.

Proof: For all automata, a simple run is in particular a run. Given an accepting run r =
(s0,0), (s1,71),... of A on w, we construct a simple run of N on w.

e For the case that N is a 2NFA. The run r is finite and ends in some pair (Sp,%m). If 7
is not simple, there are some j and k such that j < k, s; = s; and i; = 4, consider the
sequence (80,0), ..., (85,%5), (Sk+1,1k+1)s s (Sm, im). Since (Sg11,%k+1 — i) € 6(sk,as,) and
6(sk,ai,) = 0(sj,a;;) this sequence is still a run. The last state s, is a member of F' and

im = |w| hence the run is accepting. Since the run is finite, finitely many repetitions of the
above operation result in a simple run of A on w.

e For the case the N is a 2NBW. We cannot simply remove sequences of states like we did in the
finite case, the visits to /' may be hidden in these parts of the run. If for some j < k, we have
that s; = sy, i; = i, and for all j < p < k we have s, ¢ F' (no accepting state occurring),
we can simply remove this part. We have to show that the limit of all these changes stays a
valid and accepting run.

Note that we change the run only between occurrences of states from F. So we can divide
the run into segments. In each segment the first state is from F' and no states from F' occur
elsewhere. Asstates from F occur infinitely often in the run we have infinitely many segments.
Each of these segments is changed a finite number of times, the first state of the segment
does not change nor does the last state of the segment. Gluing the segments together for a
run after performing the changes results in a valid run (the first and the last state in every
segment do not change). As every segment starts with a state from F' and there are infinitely
many segments the run is still accepting.

Now if there exists some j < k such that s; = s and i; = 4 we conclude that there is a
visit to F' between the two. We take the minimal j and k¥ and create the run (sg,0) , ...,
(sj—1,%5-1) 5 ((85,%5),.--,(Sk—1,1k—1))”. Again this is a valid run and it visits F' infinitely
often (between s; and sx_1). If no such j and £ exist the run is simple.

e The case that IV is a 2NRW is very similar to 2NBW. There is some index ¢ such that the
set G, is visited infinitely often and the set B, is visited finitely often.

Let (s4,tq4) denote the first visit to G, after which there are no visits to B.. For all j < k < d
such that s; = s and i; = 4, we remove the segment of the run between s; and s;_;. The
run clearly stays valid and accepting (finite number of changes). Now just like for Biichi
automata, we identify all locations j < k for which s; = s; and i; = 44 and for all j <p <k
we have s, ¢ G.. These run segments are removed from the run. As before, the run obtained
in the limit stays valid and accepting.

Finally, if there exists some j < k such that s; = s; and ¢; = 9 we conclude that there is
a visit to G between the two. Clearly B, cannot occur between s; and s; and the segment
can be converted into an accepting loop.

The case that n is a 2NPW is treated similarly. The set F,. takes the role of G, and U, .. Ft
takes the role of B..

O

Given a set S we first define the set BT (S) as the set of all positive formulas over the set S
with true and false (i.e., for all s € S, s is a formula and if f; and fy are formulas, so are f; A fy
and f1 V f2). We say that a subset S’ C S satisfies a formula ¢ € BT(S) (denoted S’ |= ¢) if by
assigning true to all members of S’ and false to all members of S\ S’ the formula ¢ evaluates to
true. Clearly true is satisfied by the empty set and false cannot be satisfied. Given a formula
f € B*Y(S), we dualize f by replacing A by V, true by false and vice versa. The dual of f is

denoted f.

A treeis a set T C IN * such that if z-c € T where x € IN * and ¢ € IN , then also € T. The
elements of T" are called nodes, and the empty word € is the oot of T'. For every x € T, the nodes

z - c where ¢ € IN are the successors of z. A node is a leaf if it has no successors. A path 7 of a
tree T is a set m C T such that € € m and for every x € 7, either z is a leaf or there exists a unique
¢ € IN such that z-c € w. Given an alphabet 3, a ¥-labeled tree is a pair (T, V) where T is a tree
and V : T — Y maps each node of T to a letter in X.

A 1-way alternating automaton is A = (X, Q, so,n, F') where 3, Q, qo, and F are like in nonde-
terministic automata and 7 : S X ¥ — BT(Q) is the transition function. Again we may run A on
finite words (1-way alternating automata on finite words or 1AFA for short) or on infinite words
(1-way alternating Biichi (co-Biichi) automata or IABW (1ACW) for short).

A run of A on a finite word w = wy...w; is a labeled tree (T, r) where r : T — Q. The maximal
depth in the tree is [+ 1. A node z labeled by s describes a copy of the automaton in state s
reading letter w,. The labels of a node and its successors have to satisfy the transition function
7. Formally, 7(¢) = so and for all nodes = with r(z) = s and 7(s,w),) = ¢ there is a (possibly
empty) set {s1,..., sn} = ¢ such that there are n successors to z, {x-0,...,z-(n—1)} and z-c is
labeled by sq11 for 0 < ¢ < n. The run is accepting if all the leaves in depth [+ 1 are labeled by
states from F'.

A run of A on an infinite word w = wowy... is defined similarly as a (possibly) infinite labeled
tree. A run of a 1ABW is accepting if every infinite path visits the accepting set infinitely often. A
run of a 1ACW is accepting if every infinite path visits the accepting set finitely often. As before, a
word w is accepted by A if it has an accepting run over the word. We similarly define the language
of A, L(A).

Given an 1AFA A = (2, S, 50,7, F), the dual of A is the 1AFA A = (3,5, 50,7, 5 \ F) where
7i(s,a) is the dual of 5(s, a). The automata A and A accept complementary languages [CKS81], i.e.
L(A) = £*\L(A). The dualization includes replacing the acceptance condition F by its complement
S\ F. Similarly, given an 1ABW the dualization of the acceptance condition amounts to changing
the acceptance mode from Biichi to co-Biichi. Thus, given an 1ABW A = (3, S, 59,7, F'), the dual of
A is the IACW A = (%, S, 80,7, F). Again the automata A and A accept complementary languages
[MS87], i.e. L(A) = £\ L(A). Note that dualizing an 1AFA results in an 1AFA and dualizing
an 1ABW results in an 1ACW. Thus, finding the 1AFA complement of an 1AFA is quite simple,

while finding the 1ABW complement of an 1ABW involves a quadratic construction [KV97]2.

We also consider weak alternating automata. A weak alternating automaton (1IAWW) is a
1ABW where the set of states S is partitioned into disjoint sets, S;, such that for each set S;,
either S; C F, in which case S; is an accepting set, or S; N F = (), in which case S; is a rejecting
set. In addition there exists a partial order < on the collection of the S;’s such that for every
g € S; and s’ € S; for which s’ occurs in 6(g,a), for some a € ¥, we have S; < S;. Thus,
transitions from a state in S; lead to states in either the same S; or a lower one. It follows that
every infinite path of a run of a 1IAWW ultimately gets “trapped” within some set S;. The path
then satisfies the acceptance condition F' if and only if S; is an accepting set. Thus, we can view
1AWW with acceptance condition F' as both a IABW with acceptance condition ¥, and a 1ACW
with acceptance condition S\ F.

?Kupferman and Vardi also prove that this construction can not be improved to linear [KVIT7].

3 Automata on Finite Words

We start by transforming 2NFA to 1AFA. We analyze the possible form of an accepting run of a
2NFA and using a 1AFA check when such a run exists over a word.

The construction consists of two stages, in the first stage we restrict the automaton so that it
can move either forward or backward (and not stay in the same place). In the second stage we
convert this ‘always moving’ automaton into an alternating automaton.

Theorem 3.1 For every 2NFA N = (X, S, s, 6, F) with n states, there exist IAFA A and A" with
O(n?) states such that L(A) = L(N) and L(A') = ¥* \ L(N).

Note that if we further convert the 1AFAs into 1INFAs we get automata with 20(n*) gtates. The
constructions of Vardi and Birget [Var89, Bir93] produce smaller automata.

3.1 Removing e-moves

An e-move in a run of a 2NFA is when two adjacent states in the run read the same letter. Formally,
in the run (sg,%0), (51,%1), -, (Sm,%m), step j > 0 is an e-move if 4; = i,_;.

Our first conversion is from N = (X, S, 59,6, F) with § : § x & — 25*{=1.0:1} to an equivalent
N' = (%, 8, 50,6, F) with & : 8" x & — 25*{-1L1} such that L(N) = L(N’). There are no e-moves
in the runs of N'.

We start by defining for each state s and alphabet letter a, the set C; of all states reachable
from s by a sequence of e-moves reading letter a and one last forward/backward move.

3k > 1 I(sg, ..., %) € {s} - S*
s.t. so = s, s, =1,

VO <j <k, (5j41,0) € 6(sj,a)
and (s, A) € 6(sg—1,a)

Cs =L (t,A) € S x {-1,1}

Define §'(s,a) = C5.
Claim 3.2 L(N) = L(N')

Proof: Suppose N accepts w. Let r = (s9,0), ..., (Sm,%m) be an accepting run of N on w. We
turn 7 into a run r’ of N’ on w by pruning e-moves: if i; = i;_; simply remove (s;,%;) from the
run. It is easy to see that r’ is an accepting run of N’ on w.

Suppose N’ accepts w. Let ' = (s0,0), ..., (Sm,%m) be an accepting run of N’ on w. We append
the e-moves from the the appropriate sets C? to complete a run of NV on w. U

3.2 Two-way runs

From this point on we consider only 2NFAs with no e-moves. Given a 2NFA N = (3, S, s¢, 6, F),
let A=(%,Q,s0,n,F) denote its equivalent 1AFA. Note that A uses the same acceptance set and
initial state as IV.

S0

S1
S92
53
Sa
S5
Qg a1 a2 as

Figure 1: (a) A zigzag run (b) The transition at the singleton state ¢

Recall that a run of N is a sequence 7 = (s0,0),(s1,%1), (52,92), .., (Sm, im) Of pairs of states
and locations, where s; is the state and 4; is the location of the automaton in the word w. We refer
to each state as a forward or backward state according to its predecessor in the run. If it resulted
from a backward movement it is a backward state and if from a forward movement it is a forward
state. Formally, (s;,;) is a forward state if i; = i;_; + 1 and backward state if i; =4;_1 — 1. The
first state (sg,0) is defined to be a forward state.

Given the 2NFA N our goal is to construct the 1AFA A recognizing the same language. In
Figure 1a we see that a run of N takes the form of a tree of ‘zigzags’. Our one-way automaton
reads words moving forward and accepts if such a tree exists. In Figure 1a we see that there are two
transitions using a;. The first (s9,1) € 6(s1,a1) and the second (s4,1) € 6(s3,a1). In the one-way
sweep we would like to make sure that s3 indeed resulted from s9 and that the run continuing from
s3 to s4 and further is accepting. Hence when in state s; reading letter a; we guess that there is a
part of the run coming from the future and spawn two processes. The first checks that s; indeed
results in s3 and the second ensures that the part ss, $4,... of the run is accepting.

Hence the state set of the alternating automaton is Q@ = SU (S x S). A singleton state s € Q
represents a part of the run that is only looking forward (s4 in Figure 1a). In fact, we use singleton
states to represent only the last forward state in the run of A that visits a letter. A pair state
(s1,83) € @ represents a part of the run that consists of a forward moving state and a backward
moving state (s; and s3 in Figure la). Such a pair ensures that there is a run segment linking
the forward state to the backward state. We introduce one modification, since s3 is a backward
state (i.e. (s3,—1) € 6(s9,a2)) it makes sense to associate it with as and not with a;. As the
alternating automaton reads a; (when in state s1), it guesses that s3 comes from the future and
changes direction. The alternating automaton then spawns two processes: the first, s4 and the
second, (s2,s3), and both read ag. Then it is easier to check that (s3,—1) € 6(s2, az).

3.3 The Construction
3.3.1 The transition at a singleton state

We define the transitions of A in two stages. First we define transitions from a singleton state.
When in a singleton state ¢t € Q reading letter a; (See Figure 1b) the alternating automaton guesses

that there are going to be k more visits to letter a; in the rest of the run (as the run is simple,
k is bounded by the number of states of the 2NFA N). We refer to the states reading letter a;
according to the order they appear in the run as si,...,s;. We assume that all states that read
letters prior to a; have already been taken care of, hence s1, ..., s themselves are backward states
(i.e. (si,—1) € 6(pi,aj+1) for some p;). They read the letter a; and move forward (there exists
some t; such that (¢;,1) € 6(s;,a;)). Denote the successors of s1, ..., sp by t1,...,tx. The alternating
automaton verifies that there is a run segment connecting the successor of ¢ (denoted tg) to s;
(by induction, all states reading letters before a; have been taken care of, this run segment should
not go back to letters before a;). Similarly the alternating automaton verifies that a run segment
connects t; to s, etc. In general the alternating automaton checks that there is a part of the run
connecting t; to s;y1. Finally, from #; the run has to read the rest of the word and reach location
|w| in an accepting state.

Given a state ¢t and an alphabet letter a, consider the set R’ of all possible sequences of states
of length at most 2n — 1 where no two states in an even place (forward states) are equal and no
two states in an odd place (backward states) are equal. We further demand that the first state
in the sequence be a successor of ¢ ((tg,1) € 6(¢,a)) and similarly that ¢; be a successor of s;
((ti,1) € 6(s4,a)). Formally

0<k<n

(t07 1) € (S(t,CL)

Vi < 7, Si#Sj andti;«étj
Vi, (1i,1) € 6(s4,0)

RZ = <t0)317t17"'73k7tk)

The transition of A chooses one of these sequences and ensures that all promises are kept, i.e.
there exists a run segment connecting ¢;_1 to s;.

77(75, a) = V (t(), 81) A (tl, 82) VARAY (tk—b Sk) N
(to,-,tx)ERY

3.3.2 The transition at a pair state

When the alternating automaton is in a pair state (¢,s) reading letter a; it tries to find a run
segment connecting ¢ to s using only the suffix a;...a,|_1. We view ¢ as a forward state reading a;
and s as a backward state reading aj_; (Again (s,—1) € 6(p,a;)). As shown in Figure 2a, the run
segment connecting ¢ to s might visit letter a; but should not visit a;_;.

Figure 2b provides a detailed example. The automaton in state (¢,s) guesses that the run
segment linking ¢ to s visits as twice and that the states reading letter ay are s; and s9. The
automaton further guesses that the predecessor of s is s3 ((s, —1) € 6(s3,a2)) and that the successors
of t, s1 and sy are ty, t1 and ¢y respectively. The alternating automaton spawns three processes:
(to,s1),(t1,82) and (t2,s3) all reading letter aj;1. Each of these pair states has to find a run
segment connecting the two states.

We now define the transition from a state in S x S. Given a state (¢,s) and an alphabet

letter a, we define the set R,(lt’s) of all possible sequences of states of length at most 2n where no
two states in an even position (forward states) are equal and no two states in an odd position
(backward states) are equal. We further demand that the first state in the sequence be a successor

The run

The word

s ap a1 a2 as

Figure 2: (a) Different connecting segments (b) The transition at the pair state (¢, s)

of t ((tg,1) € 6(t,a)), that the last state in the sequence be a predecessor of s ((s,—1) € 6(sk+1,a))
and similarly that ¢; be a successor of s; ((t;,1) € 6(si,a)).

0<k<n
(to,1) € 6(t,a)
R = & (to, 81, b1, ooy Sks thy k1) | (8, —1) € 8(sp41, @)
Vi < j, si# sj and t; # t;
Vi, (ti,1) € (s,)

The transition of A chooses one sequence and ensures that all pairs meet:

true If (s,—1) € 6(t,a)

" _

77((78)7 a) \V (t(), 51) A (t1, 82) A A (tk, 5k+1) Otherwise
(to,..,sk41)ERE)

3.4 Proof of correctness

To conclude, the complete description of A is (X, @, so,n, F) where the initial state and the set of
accepting states is equal to that of N and 7 is as defined. All the pair-labeled paths in a run of A
have to terminate “before falling of the edge of the tape” and the singleton-labeled path must “fall
off” with an accepting state.

Claim 3.3 L(A) = L(N)

Proof: Given an accepting simple run of N on a word w of the form (sg,0), (s1,%1), - -+, (Sm), tm),
we annotate each pair by the place it took in the run of N. Thus the run takes the form (sg,0,0),
(s1,%1,1)y - .., (Smyim,m). We build a run tree (T, r') of A by induction. In addition to the labeling
r": T — SU(S x S), we attach a single tag to a singleton state and a pair of tags to a pair state.
The tags are triplets from the annotated run of N. For example the root of the run tree of A is
labeled by s¢ and tagged by (sg,0,0). The labeling and the tagging conform to the following:

e Given a node z labeled by state s tagged by (s',4,j) from the run of N we build the tree so
that s = s’, ¢ = |z| and furthermore all triplets in the run of N whose third element is larger
than j have their second element at least .

e Given a node z labeled by state (t,s) tagged by (t',41,51) and (s',49,j2) from the run of N
we build the tree so that t =t', s =/, i1 =42+ 1 = |z|, j1 < j2 and that all triplets in the
run of N whose third element is between j; and jo have their second element be at least ;.

We start with the root labeling it by s and tagging it by (s, 0,0). Obviously this conforms to our
demands.

Given a node z labeled by ¢, tagged by (¢,4,7), and adhering to our demands (see state ¢ in
Figure 1b). If (¢,4,) has no successor in the run of N, it must be the case that ¢ = |w| and that
t € F. Otherwise we denote the triplets in the run of N whose third element is larger than j and
whose second element is 7 by (s1,4,71), .-, (Sk,%, jx)- By assumption there is no point in the run of
N beyond j visiting a letter before 7. Since the run is simple, k& < n. Denote by (tg,7 + 1,5 + 1)
the successor of (t,4,j) and by (¢t1,4+ 1,751 + 1), ..., (tk,% + 1, jx + 1) the successors of s1, ..., sp. We
add k + 1 successors to z, label them (tg, s1), (t1, $2), ---, (tk—1, Sk), tk, to a successor of = labeled by
(ti—1,s1) we add the tags (t;—1,7+1,5;—1 + 1) and (s;,4,7;), and to the successor of x labeled by
we add the tag (tg,i+ 1,75k + 1).

We now show that the new nodes added to the tree conform to our demands. By assumption
there are no visits beyond the j* step in the run of N to letters before a; and si, ..., s are all the
visits to a; after the j** step of N.

Let y be the successor of z labeled ¢ (tagged (tx,i + 1,7k + 1)). Since |z| = i, we conclude
ly| =i+ 1. All the triplets in the run of N appearing after (¢x,7 + 1,jx + 1) do not visit letters
before a;11 (We collected all visits to a;).

Let y be a successor of labeled by (t,s;41) (tagged (1,7 + 1,5 + 1) and (s341,4,7141))- We
know that ¢ = |z| hence i +1 = |y|, j; + 1 < j;41 and between the j; + 1 element in the run of N
and the ;11 element letters before a;11 are not visited.

We turn to continuing the tree below a node labeled by a pair state. Given a node z labeled
by (t,s) tagged (t,%,j) and (s,7 — 1,k). By assumption there are no visits to a;—1 in the run of
N between the j*triplet and k** triplet. If k = j + 1 then we are done and we leave this node as
a leaf. Otherwise we denote the triplets in the run of N whose third element is between j and k
and whose second element is ¢ by (s1,%,51), ..., (Sm, %, Jm) (see Figure 2b). Denote by (¢1,7 + 1,51 +
1), ey (b, i+ 1, jm + 1) their successors, by (tg,i+ 1,7 + 1) the successor of ¢ and by (sm41,%,k—1)
the predecessor of s. We add m + 1 successors to = and label them (g, 1), (1, 52), -y (tm, Sm+1)-
To a successor of x labeled by (¢;_1, s;) we add the tags (t;—1,¢ + 1,5;—1 + 1) and (s;,4,5;). Asin
the previous case when we combine the assumption with the way we chose ty, ...t,, and s, ..., Spm41,
we conclude that the new nodes conform to the demands.

Clearly, all pair-labeled paths terminate with true before reading the whole word w and the
path labeled by singleton states reaches the end of w with an accepting state.

In the other direction we stretch the tree run of A into a linear run of N. Let (T,r’) be an
accepting run of A on a word w. We assume ordering on the successors of each node according to
the appearance of their labels in the transition of A. The recursive algorithm in Figure 3 constructs
an accepting run of N. When first reaching a node z labeled by pair state (¢,s), we add ¢ to the
run of N. Then we handle recursively the children of z. When we return to z we add s to the run

10

of N. When reaching a node z labeled by a singleton state s we simply add s to the run of N and
handle the sons of x recursively.

build_run (z,7'(z) = s,1) build_run (z,7'(z) = (¢, 5),1)
ri=1-(8,1); ri=r7-(t1);
for all sons z-a of for all sons z - a of
build_run (z - a,7'(z - a),i + 1) build run (z - a,7'(z - a),i + 1)
End (for loop) End (for loop)

ri=r-(s,i—1);

Figure 3: Converting a run of A into a run of N

Starting from the root e labeled (sg,0), we add to the run of N the element (sg,0). We
now handle the successors of the root according to their order. Going up to the first successor c
labeled (t,s) we add (¢,1) to the run of N. Obviously from the definition of RS we know that
(t,1) € 6(so,ap). We handle the successors of ¢ in recursion. When we return to ¢ we add (s,0) to
the run of NV (to be justified later). We return now to € and handle the next successor d. The node
d is either labeled by (p, ¢) or by p. In both cases the definition of R;9 ensures that (p,1) € 6(s, ao)-
When we return to e after scanning the whole tree the run of IV is complete.

Getting to a node z labeled (t, s) we add (¢, |z|) to the run of . Adding (¢,|z|) itself and passing
to the successors of x and between them was justified when handling the root. When the recursion
finished handling the last successor of z we add (s,|z| — 1) to the run of N. Suppose the last
successor of z was labeled (p, ¢) then from the definition of R((,tl’:l) we know that (s, —1) € (g, a4)
hence this transition is justified.

Getting to a node z labeled s is not different from handling the root. Instead of using the
locations 0 and 1 in the run, we use locations |z| and |z| + 1.

We have to show that the run is valid and accepting. Satisfying the transition was shown. In
the tree run of A there is a single path labeled solely by singleton states. The last element in the
run of NV is the same state and reading the same letter as the last in this path. Since the path
is accepting the last state there has to be from F' and reading letter |w| (which does not exists,

W = ag...a|y|—1). All other states in the run of N read letters in the range {0, ..., |w|—1}. Otherwise
there is some node z in the run of A such that |z| > |w| (other than the previously designated
node). This is impossible since the run of A is accepting. L

As mentioned in Section 2 complementing an 1AFA is simple. The complement of A is A=

4 Automata on infinite words

We may try to run the 1AFA from Section 3 on infinite words. We demand that pair-labeled paths
be finite and that the infinite singleton-labeled path visit F' infinitely often. Although an accepting
run of N visited F' infinitely often we cannot ensure infinitely many visits to F' on the infinite path.
The visits may be reflected in the run of A in the pair-labeled paths. Another problem is when the
run ends in a loop.

11

Theorem 4.1 For every 2NBW N = (X%, S, 50,0, F) with n states, there exist IABWs A and A’
with O(n?) states such that L(A) = L(N) and L(A") = ¥ \ L(N).

4.1 Removing e-moves

Like in the finite case we first reduce the problem to automata without e-moves. Given an automa-
ton N = (%, 5, 59,6, F) where § : Sx¥ — 25%{=1L01} we would like to remove all the e-moves. There
are two potential problems, visits to F' in an e-move and a loop of e-moves that visits F'. We double
the number of states and add an accepting sink state N’ = (X, (S x{L, T})U{Acc}, (so, L), &, (S x
{T}) U{Acc}). A sequence like ..., ((s, L),i),((s’, T),i +1),... in the run means that in the run of
N between the appearance of (s,4) and (s’,i + 1) there was an e-move that visited F. Similarly L
means that e-moves (if occured) have not visited F' (in [Wil99, HK96] similar problems are solved
in a similar way).

Given a state s and an alphabet letter a, we define NC? the set of all states reachable from
state s by a sequence of e-moves reading letter a and one last forward/backward step. All states
avoid the acceptance set F.

3k > 1 3(sq, ..., 5%) € {s}-(S\ F)*
s.t. so =358, s =1,

V0 <j <k, (Sj_H,O) S 6(sj,a)
and (sg,A) € 6(sg—1,a)

NC, = (1, 1),A) € (§ x {1}) x {-1,1})

In addition we define AC; the set of all states reachable from state s by a sequence of e-moves
reading letter ¢ and one last forward/backward step. One of the states in the sequence is an
accepting state.

3k > 1 3(sg, ..., 5%) € {s} - S* s.t.
s0 =35, sp=t, 35 > 0 s.t. s; € F,
V0 <j <k, (sj41,0) € 6(sj,a)
and (sg,A) € 6(sg—1,a)

AC; = S (1, 1), A) € (5 x {T}) x {-1,1})

We also have to take care of situations where there is a loop of e-moves that visits . The boolean
variable ACCEPT is set to 1 if such a sequence exists and to 0 otherwise. Formally, the variable
ACCEPT} is set to 1 iff there exists a sequence (sg,...,5x) € {s} - S¥, where 1 < k and all the
following conditions hold.

® 50 =Ss.
e There exist j and [such that 0 < j <[<k, s =s; and 5; € F.
e For all j where 0 < j < k, we have (s,41,0) € 6(sj,a)

We use the two e-closures and the variable defined above in the definition of the transition
function of the INFA N'.

Ace, 1 ACCEPT; =1
§((s, 1),) = 8((5, T),0) = { (ee D) A0oPPT =1
8'(Ace,a) = {(Ace, 1)}

Apparently, N’ is e-move free.

12

Claim 4.2 L(N’)=L(N)

Proof: Suppose N accepts w. There exists an accepting run 7 of N on w. If a finite sequence
of e-moves appears in r we simply prune it. If that sequence contained a visit to /' add T to the
forward/backward move at the end of the sequence. If r ends in an infinite sequence of e-moves,
this sequence has a finite prefix (s;,1), (si11,1), ..., (Si4p,) such that s; = s;4, and, as r is accepting,
there is a visit to F' in this prefix. We take the prefix of the run (sg,0), ..., (s;,) and add to it the
infinite suffix (Acc,l +1), (Ace, 1+ 2), Finally, we add labels L to all unlabeled states. It is easy
to see that the resulting run is a valid run of N’. It is also an accepting run. If the run ends in a
suffix Acc” then it is clearly accepting. Otherwise, removing sequences of e-moves replaces a finite
number of visits to F' by a state labeled by T. As the original run visited F' infinitely often, so
does the run of N'.

Suppose N’ accepts w. We append e-moves as promised from the definition of NC and AC.
If the run ends with an infinite sequence of Acc we can add a loop visiting F'. Infinitely many
occurrences of T ensure infinitely many visits to F.]

4.2 The Construction

We have to record hidden visits to F'. This is done by doubling the set of states. While in the
finite case the state set is S U (S x S), this time we also annotate the states by L and T. Hence
Q= (SU(SxS)) x{L, T} A pair state labeled by T is a promise to visit the acceptance set.
The state (s,¢, T) means that in the run segment linking s to ¢ there has to appear a state from F.
A state (s, T) is displaying a visit to F' in the zigzags connecting s to the previous singleton state.
The initial state is s = (sg, L).

With the same notation we solve the problem of a loop. We allow a transition from a singleton

state to a sequence of pair states. One of the pairs promises a visit to F. The acceptance set is
F'=(Sx{T})U(F x {L}) and the transition function 7 is defined as follows.

4.2.1 The transition at a singleton state

Just like in the finite case we consider all possible sequences of states of length at most 2n — 1 with

same demands.
0<k<mn

(t07 1) € 6(t7 CL)
Vi < 7, Si#Sj andti;«étj
Vi, (tz’ 1) € 6(52',&)

RZ, = <t0=313t17"'=3k5tk>

Recall that a sequence (g, s1), (t1, $2), ---, (tk—1, Sk), tx checks that there is a zigzag run segment
linking %y to tx. We mentioned that ¢ is annotated with T in case this run segment has a visit to F'.
If t is annotated with T, at least one of the pairs has to be annotated with T. Although more than
one pair might visit F' we annotate all other pairs by L. Hence for a sequence (tg, s1,t1, ..., Sk, k)
we consider the sequences of | and T of length k& + 1 in which if the last is T so is another one.
Otherwise all are L.

Ifa,=Tthen3Ilist. 0<i<kando; =T
R __ k+1 k > %
olt = {(ao,...,ak) e{Ll,T} oap=1 thenVO<i<k aj= L }

13

This is, however, not enough. We have to consider also the case of a loop. The automaton has
to guess that the run terminates with a loop when it reads the first letter of w that is read inside
the loop. The only states reading this letter inside the loop are backward states. We consider pairs
of sequences of at most 2n states, where the last state in the two sequences is equal. This repetition
closes the loop. In both sequences no two states in an even/odd position are equal. For example,
in Figure 4, we see that in state ¢ reading letter a1, the alternating automaton guesses the sequence
(to,s1), (t1,52) and the sequence (9, s3), (t3, s2). The last state in both sequences is ss.

t

— .

ag al az as

Figure 4: A loop

More formally, we demand that the first state in the first sequence be a successor of ¢ ((t3,1) €
6(t,a)), that the first state in the second sequence be a successor of the last state in the first
sequence ((t§,1) € 6(s},q,a)), that & be a successor of s¥ for p € {1,2} ((¢f,1) € 6(s?,a)) and that
the last state in the first sequence be equal to the last state in the second sequence (3,194_1 = 512+1).

(0<k<n 0<Il<n)
(t(l)a 1) € 6(t7 a)a (t(z)a 1) € 6(8,1%;-1—17@)
(t0s ST>tTs oer Sp by Sh41) Vi < j, st # s} and t} # t;-
(13,8212, ...,s?,t?,sle) Vi < j, s # s? and t? # t?
Vi, Vp, (t£,1) € 6(sf, a)
1 _ .2
\ Sk+1 = Si41 J

Lt

It is obvious that a visit to F' has to occur within the loop. Hence we have to make sure that
the run segment connecting one of the pairs in the second sequence visits . Hence we annotate
one of the pairs (¢3,s1),..., (¢},s7,,) with T. One visit to F is enough hence all other pairs are
annotated by L.

of = {{ag,.oq) € {L, T | Fist. oy =T}

The transition of A chooses a sequence in R U L! and a sequence of 1 and T.

V (to,s1,00) Ao A (tk—1, Sky @k—1) A (tk, 0x)
Rz,akR
n((t, L),a) =n((t,T),a) = \/
Y (tgs 1> L) A e A (E, 8541, LA
Lt O‘IL (t(2)7 3%7 aO) A A (tlZa 512_|_17 Oél)

)

14

4.2.2 The transition at a pair state

In this case the only difference is the addition of L and T. The set Rg”s) is equal to the finite case.

0<k<n
(t07 1) € 6(t= a)
R = (0, 81,1, ey Sk by Skg1) | (8, —1) € 8(8k41,0)
Vi < 7, Si#Sj andtiyétj
Vi, (tz; 1) € 5(81',@)

In the transition of ‘top’ states we have to make sure that a visit to F' indeed occurs. If the visit
occured in this stage the promise (T) can be removed (L). Otherwise the promise must be passed
to one of the successors.

i o
af,t,k = {(C\{o, o) € {1, T}k—H Ifs¢ Fandt ¢ F then 3list. =T }

Otherwise V0 <i <k, a; =1

The transition of A chooses a sequence of states and a sequence of 1 and T.

true If (s,—1) € 6(t,a)
n((t,s,1),a) = V (to,s1, L) Ao A (tg, Skt1, L) Otherwise

R‘(lt,s)

true If (s,—1) € 6(t,a) and

(seForteF)
(to, s1,@0) A o A (ty Skt1, @) Otherwise

n((t;s,T),a) = v

(t.s) R
R‘l 7as,t,k

4.3 Proof of correctness

The proof is just an elaboration on the proof of the finite case. In both directions we use the similar
constructions. We only have to give special attention to visits to the accepting set. As the proofs
are almost identical we just hilight the points of difference.

Claim 4.3 L(N)=L(A)

Proof: Given an accepting simple run of N on a word w of the form (sg,0), (s1,%1), ... we annotate
each pair by the place it took in the run of N. Thus, the run takes the form (sg,0,0), (s1,i1,1),
If the run does not end in a loop the construction in the finite case works. We have to add the
symbols L and T.

When dealing with a node z in the run tree of A labeled by (s, @) tagged by (s,,7). In the proof
of the finite case we identified the triplets (s1,4%,j1), .-, (Sk, %, jr) and (to,i+1,7+1), ..., (tg,i+1, jx+1)
and labeled the successors of = with (¢, $1), ..., (tk—1, Sk), tx. If there is no visit to F between j + 1
and jr + 1 we add to these states L. Otherwise the visit was between j; +1 and j;;; for some [
(consider j = jg), in this case we add T both to #; and to the pair (¢;, s;41), to all other pairs we
add L.

When dealing with a node z in the run tree of A labeled by (¢, s, «) tagged (¢,4,5) and (s,i—1, k).
We identified the set of pairs (tg, $1), ..., (tx, Sk+1). In case a = L we continue just like in the finite

15

case. In case @ = T we put it there because there was a visit to F' between j and k. This visit
to F' has to occur between ¢; and s;11 for some [and we pass the obligation to this pair. At some
point we reach a visit to F' and then the promise is removed.

We have now an infinite run tree of A. All pair-labeled paths are still finite and there is one
infinite path labeled by singleton states. Since every occurrence of T on this path covers a finite
number of visits to ' we are ensured that T appears infinitely often along this path.

If the run ends in a loop we have to identify the first letter of w read in this loop. Suppose this
letter is 2. We build the run tree of A as before until reaching the node z in level i labeled by a
singleton state (s,) tagged by (s,4,j0). As letter i is visited in the loop there are infinitely many
visits to it. Denote these visits by (sg,%,j0), ($1,%, 1), (82,14, 52), ..., all backward states.

Let s’ be the first state in the sequence above that appears infinitely often. Denote by
(88,4,48),- -+, (sk.,4,7L) the prefix of the sequence until the first occurrence of s’. As the run is sim-
ple, there is no other state repeating twice in this prefix. Similarly denote by (s3,4,73),. .- (s2,%,42)
the sequence of states from the first occurrence of s’ (excluding the occurrence) to the second oc-

currence of s'. Again, as the run is simple there has to be a visit to F between locations j§ and j;g

in the run of N and p < n. Now denote #},...t.,_; the successors of s{,...,sL |, t2 the successor
of sl and #2,...,t2 | the successors of s2,... 812,,1. We add m + p successors to z and label them
(t5,51)5--- (b1, 8p) and (t5,57),...,(t3_1,s2). Obviously, all the conditions required in L} are

fulfilled by this pair of sequences. There exists some j,% for which there is a visit to F' between
locations j7 and j#,, in the run of N. We annotate the pair (¢%,s7 ;) by T and all other pairs by
L. We tag a pair (3, sg, ;) by (t3,4,j3 +1) and (s§,4,55,1)-

In the other direction we apply the same recursive algorithm. If the accepting run tree of A is
infinite then we never return to € but the run created is an accepting run of V.

If the accepting run tree of A is finite we have to identify the point in the tree x labeled by a
singleton state (s, @) under which there are no successors labeled by singleton states. In this point
we identify the loop. There are two pair states below x labeled by (¢1, s, L) and (e, s, 3). We start
handling the successors of until we finish handling the successor labeled (t1,s, L). Then, we put
aside the run of N built so far and call it . Now we build a new run 7’ starting from the point we
stopped. Since the run of A is finite the recursion ends and the run 7’ is finite. As a final step we
present 7 - (r')“ as the new run of N. 0

Both in the finite and the infinite case we separated the construction into two stages. Namely
removing the zero steps and then transforming automata that take no e-moves. In the finite case
the first stage did not increase the number of states. In the infinite case the first stage doubled
the number of states and then squaring we get approximately 8n% + 12n states. We could actually
unite the two stages of the construction into one stage. Such a construction includes the e-moves
in the definition of the sets R, and L,. We believe our construction is easier to understand, while
improving our construction to include the modification is not so difficult. Transforming the 2NBW
into a 1ABW in one stage results in an automaton with approximately 2n? + 2n states.

Remark: In both the finite and the infinite cases, we get a 1-way alternating automaton with
O(n?) states and transitions of exponential size. Birget’s construction also results in exponential-
sized transitions [Bir93]. Globerman and Harel use e-moves in order to reduce the transition to
polynomial size [GH96]. Their construction uses the reverse language and can not be applied to
infinite words. In Appendices B and C, we use e-moves to change our construction so that it uses
only polynomial-sized transitions. We note that the transition size does not effect the conversion

16

from 1ABW to INBW. In the case of unitary alphabet, our construction, with e-moves, gives a
polynomial time algorithm for checking the emptiness of 2NBW. For 2NFA a log space algorithm
exists [Var90].

4.4 Complementing the alternating automaton

Complementing an 1ABW is not as easy as complementing an 1AFA. In the finite case dualizing
the transition function and the acceptance set is enough. In the infinite case we can dualize the
transition but instead of Biichi acceptance we have to use co-Biichi acceptance. That is, states
from the acceptance set have to appear only finitely often along every infinite path [MS87].

Kupferman and Vardi [KV97] showed how to complement alternating automata using weak
alternating automata. Given a 2NBW N with n states, we constructed a 1ABW A with O(n?)
states. If we implement the quadratic construction from [KV97] on A we get A’, a 1ABW with
O(n*) states accepting the complementary language of N. We show how to construct an TABW
with O(n?) states whose language is the complement of N’s language. We recall the proof in [KV97]
and show how to avoid the quadratic price in our case. The following observations about runs of
1ACW are taken from [KV97] with minor adjustments.

Definition 4.4 [KV97] A tree run (T,r) is memoryless if for all 1,29 € T such that |x1| = |z2]
and r(z1) = r(x2), we have that for ally € IN *, r(z1 - y) = r(z2 - y).

Theorem 4.5 [EJI1] If a co-Biichi automaton accepts a word w, then there exists a memoryless
accepting Tun on w.

We can restrict our attention to memoryless run trees. Hence, the run tree (7,7) can be
represented in the form of a directed acyclic graph G = (V,E) where V C @ x IN and E C
UZo(Q x {i}) x (@ x {i +1}):

V=A{(V(z),|z|) | = € T}
E ={((V(z),|z|), (V(y),|y]) | z,y € T and y successor of z in T'}

Given a (possibly finite) DAG G’ C G. We define a vertex (s,1) as eventually safe in G’ iff only
finitely many vertices in G’ are reachable from (s,i). We define a vertex (s,%) as currently safe in
G' iff all the vertices in G’ reachable from (s,4) are not members of F' x IN .

Now define the inductive sequence:

e Gy =G

o Goiy1 = Gai \ {(s,7) | (s,1) is eventually safe in Go;}

o Goiyo = Gaip1 \ {(s,1) | (s,1) is currently safe in Ga;11}
Definition 4.6 Border, Ultimate Width

1. Given a graph G; and a number 0 < p < n the border of p in G; is the level |l € IN such that
for all l' > 1 there are at most p vertices of the form (s,1) in G;. If no such number exists
then we define the border of p in G; to be infinity.

17

2. Given a graph G; the ultimate width of G; is the minimal number w < n such that the border
of w in G; is finite. We denote the ultimate width of G; by w(G;).

Lemma 4.7 [KV97]| For every i > 0, either w(Ga;) =0 or w(Gait2) < w(Ga;).

In our case, we have the 1ABW A. Its complement, the IACW A has the same state set
(SU(S x 8)) x {L, T}. The state set of A can be partitioned into two sets, S x {L, T} and
S x S x {L,T}. The transition of states of the form (s,¢,«) includes only states from the same
set. This set and the acceptance set do not intersect, hence in the graph G all the states of this
form are ‘currently safe’ and all of them are missing from G3. We can conclude that w(Gj) < 2|S]|.
Therefore, if we denote 2|S| by n the graph Gap42 is finite and hence Gap43 is empty.

Index the vertices in G in the following way:

e 2i, if the vertex is eventually safe in Go;

e 2¢+ 1 if the vertex is currently safe in Gg;41

All indices are in the range [2n + 2].

So we have our co-Biichi automaton A = (%, Q, (so, L), 7, F) where Q = (SU(S x S)) x {1, T}.
Kupferman and Vardi show how to construct a weak alternating automaton with state set @ x
{0, ...,2n + 2} that accepts the same language (that is the language of ﬁ, the complement language
of A).

We can further reduce the number of states. Recall that only pair-states are reachable from
pair-states and no pair-state is in the acceptance set. Hence we can define G to be G\ (S x S X
{1, T} xIN) ie. remove from G all the pair labeled states (which are currently safe in G). This
way all indices are in the range [2n|. Furthermore there is no need to multiply all the states in @
by [2n]. It is enough to multiply S x {L, T} by [2n] and consider (S x S x {1, T} as the minimal
set of the weak alternating automaton.

To conclude we give the final weak alternating automaton accepting the language of A (the
complement of A). Given A = (%, Q, (so, L), n, F) where Q@ = (SU (S x 5)) x {L, T} we define
A= (%,Q,sy,7,F') where Q' = (S x {L, T} x [20]) U (S x S x {L,T}) where n = 2|S|. We
follow the notation from [KV97] and define release : BY(Q) x [2n] — BT(Q'). Given a formula
¢ € BT(Q), and a rank i € [2n], the formula release(p,i) is obtained from ¢ by replacing every
atom of the form (s,a) from S x {L, T} by V,<;(s,,1). Let 7 be the dualization of 7 then:

_ . | release(i((s,a),a),i) if (s,a) ¢ F or i is even
n((s, @), 0) = { false if (s,a) € F and i is odd

(8,1, @), a) = 7((s,t, @), a)

Finally sj = (s0,L,2n) and F' = {(s,a,7)]i isodd} U (S x S x {L, T}).

4.5 Parity and Rabin acceptance conditions

Our method works also for 2-way nondeterministic Rabin automata and 2-way nondeterministic
Parity automata.

18

Theorem 4.8 For every 2-way nondeterministic Rabin (parity) automaton N = (X, S, s, 6, a)
with n states and index m, there exists a 1ABW A with O(n? - m) states such that L(A) = L(N).

Given a 2NRW N = (3,5, s0,0,a) where a = {(G1,B1),..-, (Gm, Bm)} with n states it is
straightforward to construct an equal 2NBW N’ with O(n - m) states. The construction is not
different from the conversion of 1-way nondeterministic Rabin automata to 1-way nondeterministic
Biichi automata [Cho74]. Converting the 2NBW N’ to a 1ABW A, results in a 1ABW with
O(n? - m?) states.

This construction can be improved as follows. Build a 1ABW A for N (without constructing
N first). Multiply the state set of A by the index (and one extra copy) m + 1. The i** copy of the
automaton avoids all the states in B;. The alternating automaton starts running in copy 0. The
transition at a singleton state in copy 0 includes also a guess whether to stay in copy 0 or guess
that states from B; are not visited again during the run and then move to copy 7. We should allow
also moving into copy ¢ in the second sequence in the transition of a loop. In this case only the
part of the loop itself should avoid B; and should include a demand for visiting G;. The transition
at a state from the i"® copy includes only states of the same copy. Reference to the accepting set
should be made only outside of copy 0 and in this case G; serves as F'.

For 2NPW the changes to the construction are very similar to the ones described above.

5 Conclusions

We have shown two constructions. Both show how to construct a 1-way alternating automaton
that accepts the same language as a 2-way nondeterministic automaton. The first construction for
automata that work on finite words and the second for automata that work on infinite words.

In the finite case complementation of alternating automata is very easy. Hence we can easily
get the automaton recognizing the complementary language. This automaton can be envisioned as
searching for errors in all the possible zigzagging run.

The number of states of the 1AFA is quadratic in the number of states of the 2NFA and the
size of the transition is exponential in the size of the original transition. If we further convert
our 1AFA into a nondeterministic automaton we get an automaton with 20(n*) states. Birget and
Vardi [Bir93, Var89] showed that given a 2NFA, it is possible to construct INFA recognizing the
same language and the complementary language with 20(") states. Given a 2NFA automaton and
seeking a 1INFA one should obviously choose their constructions.

In the infinite case we get similar results. Given a 2NBW with n states we get an 1ABW
with O(n?) states. If we use the construction in [MHS84], we get a INBW with 2°(") states.
As mentioned Vardi has already solved this problem [Var88]. He shows, given a 2NBW, how to
construct two INBW, one accepting the same language and one the complementary language, both
with 20"") states.

6 Acknowledgments

We would like to thank Orna Kupferman for her remarks on the manuscript and an anonymous
referee for pointing out the works of Ruzzo and Venkateswaran.

19

References

[Bir93]

[BLS0)

[Biic62]

[CAGLV00]

[ChoT4]

[CKS81]

[EJ91]

[GHO6]

[HK96]

[JPARG68]

[Koh70]

[Kur94]

[KV97]

[KVO00]

[LLS84]

J.C. Birget. State-complexity of finite-state devices, state compressibility and incom-
pressibility. Mathematical Systems Theory, 26(3):237-269, 1993.

J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. Theoretical
Computer Science, 10:19-35, 1980.

J.R. Bichi. On a decision method in restricted second order arithmetic. In Proc.
Internat. Congr. Logic, Method. and Philos. Sci. 1960, pages 1-12, Stanford, 1962.
Stanford University Press.

D. Calvanese, G. de Giacomo, M. Lenzerini, and M.Y. Vardi. View-based query process-
ing for regular path queries with inverse. In Proc. ACM 19th Symposium on Principles
of Database Systems, pages 58—66, 2000.

Y. Choueka. Theories of automata on w-tapes: A simplified approach. Journal of
Computer and System Sciences, 8:117-141, 1974.

A K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Associ-
ation for Computing Machinery, 28(1):114-133, January 1981.

E.A. Emerson and C. Jutla. Tree automata, u-calculus and determinacy. In Proc. 32nd
IEEE Symp. on Foundations of Computer Science, pages 368-377, San Juan, October
1991.

N. Globerman and D. Harel. Complexity results for two-way and multi-pebble au-
tomata and their logics. Theoretical Computer Science, 143:161-184, 1996.

G. Holzmann and O. Kupferman. Not checking for closure under stuttering. In The
Spin Verification System, pages 17-22. American Mathematical Society, 1996. Proc.
2nd International SPIN Workshop.

W.L. Johnson, J.H. Porter, S.I. Ackley, and D.T. Ross. Automatic generatin of ef-
ficient lexical processors using finite state techniques. Communications of the ACM,
11(12):805-813, 1968.

Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New York, 1970.

R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ.
Press, 1994.

O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In
Proc. 5th Israeli Symp. on Theory of Computing and Systems, pages 147-158. IEEE
Computer Society Press, 1997.

O. Kupferman and M.Y. Vardi. Synthesis with incomplete informatio. In Advances in
Temporal Logic, pages 109-127. Kluwer Academic Publishers, January 2000.

R.E. Ladner, R.J. Lipton, and L.J. Stockmeyer. Alternating pushdown and stack
automata. SIAM Journal on Computing, 13(1):135-155, February 1984.

20

[McN66]

[MHS84]

[MS87]

[Rab69]

[RS59]

[Ruz80]

[She59]

[SS78]

[Str82]

[Var8sg]

[Varg89]

[Var90]

[Var9g]

[Ven9l|

[VWs6]

[Wil99)]

R. McNaughton. Testing and generating infinite sequences by a finite automaton.
Information and Control, 9:521-530, 1966.

S. Miyano and T. Hayashi. Alternating finite automata on w-words. Theoretical Com-
puter Science, 32:321-330, 1984.

D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical
Computer Science, 54:267-276, 1987.

M.O. Rabin. Decidability of second order theories and automata on infinite trees.
Transaction of the AMS, 141:1-35, 1969.

M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:115-125, 1959.

W. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences,
21:218-235, 1980.

J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3:198-200, 1959.

W.J. Sakoda and M. Sipser. Nondeterminism and the size of two way finite automata.
In 10th ACM Symposium on Theory of Computing, pages 275-286, San Diego, Cali-
fornia, May 1978.

R.S. Streett. Propositional dynamic logic of looping and converse. Information and
Control, 54:121-141, 1982.

M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th ACM Symp. on Principles of
Programmang Languages, pages 250-259, San Diego, January 1988.

M.Y. Vardi. A note on the reduction of two-way automata to one-way automata.
Information Processing Letters, 30(5):261-264, 1989.

M.Y. Vardi. Endmarkers can make a difference. Information Processing Letters,
35(3):145-148, July 1990.

M.Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th Interna-
tional Coll. on Automata, Languages, and Programming, volume 1443 of Lecture Notes
in Computer Science, pages 628—641. Springer-Verlag, Berlin, July 1998.

H. Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and
System Sciences, 43(2):380-404, 1991.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program ver-
ification. In Proc. 1st Symp. on Logic in Computer Science, pages 332-344, Cambridge,
June 1986.

T. Wilke. CTL™T is exponentially more succinct than CTL. In C. Pandu Ragan,
V. Raman, and R. Ramanujam, editors, Proc. 19th conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 1738 of Lecture Notes in
Computer Science, pages 110-121. Springer-Verlag, 1999.

21

A Alternating Automata with e-moves

An alternating automaton with e-moves A = (%, S, 59,7, F) is very similar to the alternating
automata defined in Section 2. The only difference is that it can pose demands also on the same
location in the word and not only on the next location. Formally, the transition functionn : Sx¥ —
B*({0,1} x S) has every state labeled by the direction 0 or 1. The run of such an automaton is
still a labeled tree (T,7). The depth in the tree no longer corresponds to the location in the word.
Thus,the labeling r associates with every node z € T a pair (s,7) € S x IN where s is the state
and ¢ is the location in w.

A run of such an automaton on a finite word w = wy, ..., wmnm_1 is accepting if all the labels
are in S x {0...m} and all the nodes labeled by location m are accepting states. A run of such an
automaton on an infinite word is accepting if all infinite paths visit F' X IN infinitely often.

B 2NFA to 1AFA with e-moves

As one may expect, the construction with e-moves is very similar to the previous construction.
Instead of guessing in one step all the visits to the next letter, we guess whether there exists
another visit to this letter. In such a case, the automaton spawns two states, a singleton state that
is responsible for the rest of the run and a pair-state that is responsible for the connection between
the current state and the next visit to the same letter. The run segment connecting the two may
not visit letters before the current letter.

Spawning states that can read the same letter has two advantages. We do not have to use the
notion of forward states and backward states. A state reading letter ¢ in the run of the 2NFA reads
letter ¢ in the run of the 1AFA (unlike before where we have backward states reading letter j — 1
in the run of the 2NFA associated with letter j in the run of the 1AFA). We can also treat e-moves
of the 2NFA very easily, by having e-moves of the 1AFA.

On the other hand, we have a problem checking backward moves. When the 1AFA follows a
backward move it does not know the letter the move depends on. In order to solve this problem
we introduce states of the form s — ¢ for s and ¢ states of the 2NFA. Such a state means that we

can get from state s to state ¢ by a sequence of e-moves followed by one backward move?.

Given a 2NFA N = (%, S, 59, 6, F') we construct an 1AFA with e-moves A = (2, Q, so, 7, F') such
that L(A) = L(NN). Our 1AFA uses the initial state and the acceptance set of the 2NFA. The set
of states is Q = (SU(S x S))U{s = t | s,t € S}, and the transition function 7 is defined for every
state in Q@ and letter in X as follows.

(V. (50)
(s,0)€8(t0)

n(t,a) :\/< \% ((t,S),O)/\(S,O)

seS

(s,1)
\ (571)66(t7‘1)

3Notice that if |B| < |S|? it makes more sense to guess the next letter, check that using the guessed letter we can
get from s to t using e-moves and one backward move. Finally, make sure that the next letter is indeed equal to the
guessed letter. In particular for 1-letter alphabet, there is no need for adding extra states.

22

(V ((t17 5)5 O)
(t1,0)€8(t,a)

n((t,s),a) =\/{ V ((t,51),0) A ((s1,5),0)

s1ES

V ((t1;31)> 1) A (81 - 8, 1)
\ (t1,1)€8(t,a) s1€S

true (s,—1) € 6(s1,0)

n(s1 — s,a) =
, (32 - S, 0)
(5210)66(3150‘)
In state ¢ reading letter ¢ the 1IAFA can (a) move using an e-move of N, (b) guess that there is
some other visit to letter 4 in state s and spawn two states (¢, s) and s both reading letter i, or (c)
guess that there is no other visit to letter ¢ and use a forward transition of V.

In state (¢, s) reading letter ¢ the 1AFA can (a) move from ¢ using an e-move of N, (b) guess
that there is some visit to letter ¢ between ¢ and s in state s; and spawn two states (¢,s1) and
(s1,) both reading letter i, or (c) guess that there is no other visit to letter ¢ between ¢ and s and
use a forward transition of NV from state ¢ and guess that there is a backward transition moving to
state s. From state s; — s the automaton either takes an e-move from s; or a backward step from
s1 to s, using the next letter. Finally, we replace every occurrence of (¢,t) in 5 by true.

The proof that L(A) = L(N) is very similar to the previous proof. Notice that a state appearing
in the run of NV only once, may appear many times in the run of A. When converting a run of A
into a run of N such states should be added only once.

Finally, denote |S| = n and |§| = m. We have, |Q| = O(n?) and |n| = O(m - n?).

C 2NBW to 2ABW with e-moves

We enhance the construction in Appendix B to work for 2NBW. Again we annotate each state
by L and T. A singleton state annotated by T signifies a visit to the acceptance set in the run
segment connecting it to the previous singleton state. A pair-state annotated by T is a promise to
visit the acceptance set in the run segment connecting the two states.

In the set {1, T} consider L+ 1 =1, 14+T=T+L=T,and T+ T as undefined.

Given a 2NBW N = (X, S, 50,6, F) we construct an 1ABW with e-moves A = (%, Q, q0,7, F")
such that L(A) = L(N). Where Q@ = (SU(S x S)) x{L, THU{s =t |s,t €S}, g = (so,L),
F'=F x{L}US x {T} and 7 is defined for every state in @ and letter in ¥ as follows. First we
define two functions f, : S xS — {1, T} where e € {L, T}.

fJ_(sat) =1

1l seForteF
fris,t) = { T Otherwise

23

(V. ((5,1),0)

(s,0)€6(¢,a)

’I’]((t, a),a) = \/ < V V ((ta 85 fﬂ(t, S)),O) N ((37 ﬁ),())

o seS pe{l,T}
((s,1),1)
\ (s,1)€é(t,a)

(V ((tl;safa(tlas))70)

(t1,0)€6(t,a)

n((t,s7a),a) :\/< V V ((t>317fﬂ1(t731))70)/\((Slasafﬂz(slas))ao)

51€S f1+P2=a

V ((t1, 51, fa(ti,51)),1) A (s1 — s,1)
\ (t1,1)€6(t,a) s1€S

true (s,—1) € 6(s1,0a)
ms1 — s,a) =
() (32 - S, 0)
(s52,0)€8(s1,a)
Finally, we replace in 7 every occurrence of (¢,¢, T) and (f, f, L) where f € F by true.
Again the proof that L(A) = L(N) is not very different from previous proofs. If we denote
|S| = n and |6| = m, we have, |Q| = O(n?) and |n| = O(m - n?).
The construction of the weak automaton that complements A is not modified by the presence
of e-moves. Formally, A = (%, Q’, ¢4, 7, F') where

Q =(SxSx{L,THU(Sx{L, T} x[2n])U{s—t}
qo = (307J-=2n)
F'=(Sx{L,T}x[2n)]*)U(S xS x{L, THU{s—t}
1((t, a,1),a) = release(((t,), a),i)
ﬁ((t,s,a),a) = ﬁ((t,s,a),a)

The partition includes S x S x {L, T} and s — ¢ as the minimal sets.

The size analysis does not change and we still have |Q'| = O(n?) and 7| = O(m - n?).

24

