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Abstract

We define the class of micro-macro stack graphs, a new
class of graphs modeling infinite-state sequential systems
with a decidable model-checking problem. Micro-macro
stack graphs are the configuration graphs of stack automata
whose states are partitioned into micro and macro states.
Nodes of the graph are configurations of the stack automa-
ton where the state is a macro state. Edges of the graph
correspond to the sequence of micro steps that the automa-
ton makes between macro states. We prove that this class
strictly contains the class of prefix-recognizable graphs. We
give a direct automata-theoretic algorithm for model check-
ing � -calculus formulas over micro-macro stack graphs.

1 Introduction

One of the most significant developments in the area of
formal design verification is the discovery of algorithmic
methods for verifying on-going behaviors of reactive sys-
tems [18, 40, 37, 19, 45]. In model-checking, we verify
the correctness of a system with respect to a desired be-
havior by checking whether a mathematical model of the
system satisfies a formal specification of this behavior (for
a survey, see [20]). Traditionally, model checking is ap-
plied to finite-state systems, typically modeled by labeled
state-transition graphs, and to behaviors that are formally
specified as temporal-logic formulas or automata on infinite
objects. Symbolic methods that enable model-checking of
very large state spaces, and the great ease of use of fully
algorithmic methods, led to industrial acceptance of model-
checking [2, 21].
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In recent years, researchers extended the applicability of
model-checking to infinite-state systems. An active field of
research is model-checking of infinite-state sequential sys-
tems. These are systems in which each state carries a finite,
but unbounded, amount of information, e.g., a pushdown
store. This research origins in The origin of this research is
the result of Müller and Schupp that the monadic second-
order theory of context-free graphs is decidable [39]. As
the complexity involved in that decidability result is nonele-
mentary, researchers sought decidability results of elemen-
tary complexity. At the same time, researchers sought de-
cidability results for larger classes of systems. Algorithms
for simpler logics and more general systems have been pro-
posed. The most powerful results are an exponential-time
algorithm by Burkart for model checking the � -calculus
with respect to prefix-recognizable graphs [8] and decidabil-
ity of monadic second-order theory of high order pushdown
graphs [31]. See also [12, 15, 47, 10, 11, 4, 7, 25, 13, 9, 34]

The class of high order pushdown graphs strictly con-
tains the class of prefix-recognizable graphs [31], and the
class of prefix-recognizable graphs strictly contains the
class of pushdown graphs [15], which in turn strictly con-
tains the class of context-free graphs [17]. These classes are
defined in terms of certain rewrite rules. More powerful no-
tion of rewrite rules yield even larger classes of graphs. The
class of synchronized rational graphs strictly contains the
class of high order pushdown graphs and in turn is strictly
contained in the class of rational graphs. Only the first-
order theory of synchronized rational graphs is, however,
decidable (cf. [6, 43]). It is undecidable even to deter-
mine if some vertex is reachable from another vertex (cf.
[43]). For rational graphs even first-order theory is undecid-
able [38]. To the best of our knowledge the class of prefix-
recognizable graphs is the largest class of graphs modeling
sequential systems for which there is an elementary model
checking algorithm of � -calculus.

In this paper we present the class of micro-macro
stack graphs, which strictly contains the class of prefix-
recognizable graphs and for which model checking � -



calculus formulas is decidable in elementary time. Ev-
ery graph in our class has a simple finite representation in
terms of natural rewrite rules. The extension from prefix-
recognizable graphs to micro-macro stack graphs is anal-
ogous to the extension from pushdown graphs to prefix-
recognizable graphs, as we now explain.

The nodes of a pushdown graph are words over some
finite alphabet. Such a word represents the store content
and the internal state of a pushdown automaton. A tran-
sition corresponds to the move of a pushdown automaton
when reading some input letter (i.e. popping the top of the
store and pushing a finite sequence). The nodes of prefix-
recognizable graphs are again words representing the inter-
nal state with the content of the pushdown store. Every
transition is a triplet of regular languages. Application of
the rewrite rule ���������	��
 on a node � consists of finding a
partition 
�
�� of � such that 
 is in the regular language �
and 
 � is in the regular language � , and then replacing the
prefix 
 by some prefix � in the regular language � , reach-
ing node ��
 � . Prefix-recognizable graphs correspond to the
configuration graphs of pushdown automata when the � -
transitions are factored out [41, 3]. Indeed, a pushdown au-
tomaton can do a series of � -transitions that remove 
 from
the pushdown store while checking that 
 is in the language
� . Making sure that the suffix 
 � is in the language � can be
done by adding information to the store. Finally, another se-
quence of � -transitions adds � to the store. We can think of
the � -transitions as micro steps that are not exhibited in the
prefix-recognizable graph. Then, advancing transitions of
the pushdown automaton are macro steps that are exhibited
in the prefix-recognizable graph.

There is another way to let the pushdown automaton
check that the suffix 
 � is in the language � . This is by al-
lowing the automaton to read the entire contents of the store.
This is the type of behavior of stack automata [27, 26, 29].
Just like pushdown automata, stack automata have a finite
but unbounded store, they can change only the top of the
store by either removing the letter on top of the store or by
adding a finite sequence of letters on top of the store. Un-
like pushdown automata, stack automata can read the entire
contents of their store. A stack automaton can navigate on
its store, checking its entire contents. It can change the con-
tents of the store only when it visits the top of the store.
Thus a prefix-recognizable graph can be viewed also as the
pruned configuration graph of a stack automaton. The fol-
lowing sequences of micro steps are removed: (a) removing
the prefix of the pushdown store while checking that it is in
the regular language � , (b) going to the bottom of the store
and checking that the remaining suffix is in the language � ,
and (c) adding a sequence of letters from the regular lan-
guage � to the store.

In our framework we offer a more flexible partition into
micro and macro states. We let the automaton itself desig-

nate which states should be left unnoticed and which states
correspond to a change in the graph. We refer to such
stack automata whose state set is partitioned into micro and
macro states as micro-macro stack automata. The nodes of a
micro-macro stack graph correspond to configurations of a
micro-macro stack automaton whose state is a macro state.
Edges of the graph correspond to the change performed via
a sequence of micro states.

We show that micro-macro stack graphs strictly contains
the class of prefix-recognizable graphs. We give two ex-
amples of micro-macro stack graphs that are not prefix-
recognizable. First, as mentioned, prefix-recognizable
graphs are the configuration graphs of pushdown automata.
Thus, the prefix-recognizable graphs, when considered as
acceptors of languages, recognize the context-free lan-
guages [41]. We give a micro-macro stack system whose
graph accepts a language that is not context free. Second,
under some conditions on prefix-recognizable graphs, Blu-
mensath gives information on the size of the encoding of
the nodes of a prefix-recognizable graph [3]. We give a
micro-macro stack system whose graph does not meet Blu-
mensath’ characterization. The class of micro-macro stack
graphs is (strictly) contained in the class of synchronized
rational graphs. Indeed, we show that model checking the

� -calculus over micro-macro stack graphs is decidable in
elementary time. Thus, micro-macro stack graphs consti-
tute a new frontier of elementary decidability for sequential
systems. of decidability for sequential systems.

Our model checking algorithms are automata based. The
automata-theoretic approach to verification uses the the-
ory of automata as a unifying paradigm for program spec-
ification, verification, and synthesis [46, 36, 35]. Au-
tomata enables the separation of the logical and the algo-
rithmic aspects of reasoning about systems, yielding clean
and in many cases asymptotically optimal algorithms. The
automata-theoretic framework for reasoning about finite-
state systems has proven to be very versatile. Recently,
the automata-theoretic approach to verification has been ex-
tended to infinite-state sequential systems [34, 32]. Our
model-checking algorithms for micro-macro stack graphs
extend the algorithms in [34, 32]. In general, the automata-
theoretic approach to branching-time model checking uses
a reduction to the emptiness problem of alternating tree au-
tomata. In the following we show that for micro-macro
stack graphs, the model checking of branching-time spec-
ifications can be reduced to the emptiness problem of alter-
nating stack tree automata.

The class of micro-macro stack graphs is contained in
the class of high order pushdown graphs. In order to check
the contents of the stack a high order pushdown puts a fresh
copy of the first order pushdown on the second order push-
down and removes the top of the first order pushdown. The
information is not lost, it is stored in the old copy in the sec-



ond order pushdown. It follows that the monadic second-
order theory of micro-macro stack graphs is decidable.

2 Transition Graphs and Rewrite Systems

A labeled transition graph is � � ��� ��� ��� �	� ��

� 
 ,
where � is a finite set of labels, � is a (possibly infi-
nite) set of states, ������� � is a labeling function,
��������� is a transition relation, and 

����� is an ini-
tial state. When ����
 ��
 ��� , we say that 
 � is a successor of

 , and 
 is a predecessor of 
 � . For a state 
 �!� , we
denote by �#"$� �%� ��� ��� ��� ��
 
 , the graph � with 
 as
its initial state. An 
 -computation is an infinite sequence

 � ��
'& �)(*()(+�,�.- such that 
 � �/
 and for all 02143 , we
have ����

5 ��

5�6 & � . An 
 -computation 

� ��
 & �)(*(*( induces the

 -trace �7��
)� �98 �7��
 & �:8*8*8 . The set ; " is the set of all 
 -traces
and ;=<>�?; "A@ is the set of all initialized traces in � .

A rewrite system is B � �%� ��C���D ��� �	E ��F*� ��G �IH 
 , where
� is a finite set of labels, C is a finite alphabet, D is a finite
set of states, �J�KD��LC 6 �M� is a labeling function, E is a
finite set of rewrite rules, to be defined below, F)�N�OD is an
initial state, GP�QC is a store-top symbol, and HR�QC is a
store-bottom symbol. We assume that the store-top symbol
is moved whenever the store is extended. We assume that
both store-bottom and store-top cannot be removed from
nor added to the store and that the system does not try to
go below the store-bottom or above the store-top. The set
of configurations of the system is a subset of DS�TC 6 . In-
tuitively, the system has finitely many control states and an
unbounded store. Thus, in a configuration �UF ��� � �VDW�XC 6
we refer to F as the control state and to � as the store.

We consider here the well known prefix-recognizable
systems and introduce micro-macro stack systems.
In a prefix-recognizable system, each rewrite rule is
�UF � �������	� ��F � 
J�YDZ� reg ��C � � reg ��C � � reg ��C � �JD ,
where reg ��C � is the set of regular expressions over C .
Thus, E[�!D!� reg ��C � � reg ��C � � reg ��C � �\D . For a
word ]^�PC`_ and a regular expression a$� reg ��C � we
write ]b�!a to denote that ] is in the language of the
regular expression a . We note that the standard definition
of prefix-recognizable systems does not include control
states [15]. Indeed, a prefix-recognizable system without
states can simulate a prefix-recognizable system with states
by having the state as the first letter of the unbounded store.
We use prefix-recognizable systems with control states for
the sake of uniform notation.

In a micro-macro stack system (or mMs system for
short), the set C contains a special symbol c , the set of
states D is partitioned into the set d of micro states and
the set e of macro states, and every configuration contains
exactly one occurrence of the symbol c . More formally, de-
note C � �WCWf+g
c �IG ��Hih then the set of possible store con-
tents is �.E7jkBkli�\�,g'Gih 8 ��C �m� _ 8 g)cnh 8 ��C �m� _ 8 goHihqpTg)c

h 8 g'Gih 8 ��C �m� _ 8 goHih (recall that H and G cannot be re-
moved from nor added to the store). Each rewrite rule of an
mMs system is �UF ��r ��sutIv ��F � 
w�VDW�2��C�fxg)c=h � �Nr7yzE��XD
where r7yzE��?g�{9|�{ ��d2} �	d2~ ��
�{�h9p#g�{9~�
�����
 ��� 
X�>��C �m� h .
Here, d2} , d�~ , and 
�{ stand for move down, move up, and
stay put, respectively and we demand that the set rzyzE is
finite. A configuration in d��L�.E7jkBkli� is a micro config-
uration and a configuration in e����.E7jkBkli� is a macro
configuration. The labeling function � associates with ev-
ery configuration of a rewrite system a label. The labeling
depends only on one letter of the store � , as we explain be-
low. Thus, we may write �W��D,��C���� . When a rewrite
system B is in configuration �UF ��� � such that �+��F ��� � �!s
for some sL�T� we say that B signals s .

A rewrite system B induces a labeled transition graph
���[� ��� ��DZ��C 6 ��� � �	�u� �)��F � ��� � � 
 . A labeled transi-
tion graph that is induced by a prefix-recognizable sys-
tem is called a prefix-recognizable graph. A labeled tran-
sition graph that is induced by an mMs system is called a
micro-macro stack graph (or mMs graph for short). For a
prefix-recognizable system the states of �#� are the config-
urations of B , the initial store content is ������G�H , and
�	��F � 
 � �)��F � � 
 �m� 
V��� � if there is a rewrite rule in E lead-
ing from configuration �UF � 
 � to configuration �UF � � 
 ��� . For
an mMs system the states of � � are the macro configu-
rations of B , the initial store content is ������G�c�H ,
and �	�UF � 
 � �)��F � � 
 ��� 
N��� � if there is a sequence of rewrite
rules in E leading from configuration �UF � 
 � to configuration
�UF � � 
�� � by a series of micro configurations. Formally, if B is
a prefix-recognizable system, then �������UF � � 8 � � �)�UF � ��� ��8 � �	�
if there are regular languages � , � , and � such that �\� � ,
�Z� � , � � � � , and ��F � ����� ��� ��F � 
$��E . The label-
ing of a state �UF ��r 
 � is �7�UF ��r � . In order to consider the
case of an mMs system we need a few definitions. Let� ��]��Oc 
K] & H � � 
 , where 
?��C ,

� �UcJG7]zH � ��G ,
and
� ��]�cVH � �SH . This describes the letter in the store

read by the mMs system. In order to define the effect of
applying a rewrite rule on a configuration we define the par-
tial function �����.EzjkBzlN���OrzyzES���.E7jkBkli� . This
function gives the new content of the store and is defined
below. We assume that the system never moves up when it
is at the top of the store nor down when it is at the bottom
of the store.

� �k��ciG 
�]kH �U{9|�{ � �7c#G7]kH .

� �k��ciG7]zH �U{9~�
�����
 �	� �7ciG 
�]kH .

� �k��] � c 
�]+&�H ��d2} � �W] � 
kc�]+&*H .

� �k��]�� 
kc�] & H ��d�~ � �J]���c 
K] & H .

� �k��
 ��
�{ � ��
 .
A sequence of micro steps from a macro configuration

�UF � 
 � to macro configuration ��F � � 
 ��� is a sequence ��F & � 
 & � ,



�UF*� � 
�� � , (*(*( , �UF�� � 
�� � such that �UF � 
 � �S��F & � 
 & � , �UF � � 
 �m� �
�UF�� � 
�� � , forall

��� 0 ���
we have F)5���d , and forall

��	
0 �
�

there exists a rewrite rule �UF 5 � � ��
 5 � ��sutIv ��F 5�6 & 
k��E
and �k��
 5 ��sutIv � � 
 5�6 & . Finally, for a pair of macro con-
figurations we have �	�UF � 
 � �)��F � � 
 � � 
X�J�u� if there exists a
sequence of micro steps from �UF � 
 � to �UF � � 
 ��� . Note that the
mMs system collects information on the content of the stack
and stores it in its control state. In particular, when standing
on top of the store the mMs system always reads the sym-
bol G and relies solely on the control state to choose its next
action. The labeling of a state ��F � 
 � is �+��F � � � 
 ��� .1 We de-
mand that the initial state of an mMs system be a macro
state. This way we are ensured that the induced mMs graph
has a single initial state. The work in this paper can be eas-
ily generalized for the case that there are many initial states.

Example 2.1 Consider the following mMs B � �
g
s ��� ��t ��}nh , g
r ��G �IHih , D , � , E , F � , G , H 
 where D��
g
F � ��F�
 ��F�����F�� ��F�� ��F���h , the state F�
 is the only micro state,
�+�UF�� ��r � ���+�UF�� �IG � ���7�UF�� ��H � � � for �Q��g
s ��� ��t ��}nh
and �+��F�� ��r � ���+�UF*� �IH � ��} . Finally, E includes the fol-
lowing transitions.

� �UF*� ��H ��d�~ ��F 
 
 - signal } (state F*� ) and move to a
guessing state.

� �UF�
��IG �U{9~�
����Ur � ��F�
 
 - guess a number of r and put it
on the store.

� �UF�
��IG �	d } ��F�� 
 - nondeterministically decide to start
signaling s .
� �UF � ��r ��d2} ��F � 
 - go down the store while reading r

and signaling s .
� �UF � ��H �	d2~ ��F � 
 - when reaching the bottom of the store

start signaling � .
� �UF � ��r �	d2~ ��F � 
 - go up the store while reading r and

signaling � .
� �UF � �IG �	d } ��F � 
 - when reaching the top of the store

start signaling t .
� �UF�� ��r ��d2} ��F�� 
 - go down the store while reading r

and signaling t .
� �UF�� �IH ��
�{ ��F�� 
 - when reaching the bottom of the store

start signaling } .
� �UF � �IH ��
�{ ��F � 
 - signal } indefinitely.

1The choice to set the labeling according to ������� is the most general.
We can emulate labeling according to the top of the store by remembering
the top of the store as part of the control. Similarly, regular labeling, that
depends on the membership of the entire store content in some regular
language can be emulated by remembering the state of a deterministic finite
automaton for the regular language on the store.

This system produces a ‘star’ of infinite degree. The center
of this star is the initial state and each ‘ray’ is a sequence
}Ks � � � t � }�- for some

�
. It does so by guessing some number

of r and put them on the store. Then it moves up and down
the store while signaling s , � , and t .

Example 2.2 Consider the mMs system B^� �Tg
s ����h ,
g'G �IH ��r�h , g
F*� �	a ���	��{�h , � , E , F*� , G , H 
 where d �Pg
aKh ,
e � g
F*� �����U{ h . The labeling function � associates with
state � the symbol s and with states F)� and { the symbol � .
The set of rewrite rules E contains the following rules.

� �UF*� �IH ��
�{ ��a 
 - move to micro state a .
� ��a �IH �	d2~ ��� 
 - bottom of the store, switch to state � .
� ������G ��
	{ �U{ 
 - top of the store, switch to state ‘push’.

� ������r �	d2~ ��� 
 - move up the store.

� � { ��G ��{n~:

���Ur � ��a 
 - extend the store, switch to state a .
� ��a �IG �	d } ��a 
 � �Ua ��r �	d } ��a 
 - move down.

This system is in fact a unary counter. It ‘outputs’ 1, then
2, then 3, and so on ad-infinitum. It does so by going to the
bottom of the store, then while it goes to the top of the store
it signals s with every move. When reaching the top of the
store it extends the store with one symbol and signals one � .
Thus, the first two � symbols are separated by one s . Then
before the third � symbol there are 2 s s, and generally the
0 th � is separated from the next � by the sequence s 5 .

It is quite easy to see that given a prefix-recognizable
system B we can construct an mMs system B � such that �#�
and ����� are isomorphic. The set of macro states of B � cor-
respond to the set of states of B and the set of micro states
of B � correspond to the states of automata that recognize the
regular languages in the transitions of B . The mMs system
B � mimics a transition �UF � �������	� ��F � 
 of B by removing a
sequence of letters from the store while simulating a run of
the automaton for the regular language � on the removed
sequence. Then the mMs system goes to the bottom of the
stack and checks that what is left on the stack is a word in
the regular language � . Finally, the mMs system guesses a
word in � (letter by letter) and adds it to the store2. In the
sequel we show that the opposite is not true. There are mMs
graphs with no isomorphic prefix-recognizable graph. The
fact that an mMs system remembers in addition to the stack
contents a location in the stack is enough to give it extra
power over prefix-recognizable systems.

2A similar construction appears in Section 3.1.



3 Non prefix-recognizable mMs graphs

We give two examples of mMs graphs for which there
exist no isomorphic prefix-recognizable graphs3. We use
two methods to prove that these graphs are not prefix-
recognizable. First, we use simple language considera-
tions. We show that our graph, if represented by a prefix-
recognizable system, induces a pushdown automaton over
finite words that accepts a language that is not context-free.
Second, we use a characterization of prefix-recognizable
graphs by Blumensath [3]. We give another graph and prove
that it does not satisfy the requirements of Blumensath. As
not many proof techniques for proving that systems are not
prefix-recognizable are known we include both proofs.

We define isomorphism with respect to two graphs ���
��� ��� ��� ��� ��
 � 
 and � � � ��� ��� � ��� � �	� � ��
 �� 
 , with the same
alphabet. A bijection �J� ����� � is an isomorphism be-
tween � and � � iff forall 
 �	vw��� we have �+��
 � �?�+���9��
 �	�
and ����
 ��v � iff � � ���9��
 � ������v ��� .
3.1 An mMs graph recognizing a non context free

language

We use the well known non context-free language
g
s � � � t � � � ����h to prove that a graph is not prefix-
recognizable. In fact, for many languages, if � is not con-
text free but it can be recognized by a finite stack automaton,
we can construct an mMs graph ��� whose ‘language’ is � .
The graph � � should be another example of an mMs graph
that has no isomorphic prefix-recognizable graph.

We first need some definitions. A pushdown automa-
ton over finite words (or PD-NFW for short) is � �
��� ������D ��� ��F�� �IH ��	 
 where � is a finite input alphabet, �
is a finite pushdown alphabet, D is a finite set of states,
F��>��D is an initial state, HM�
� is a store-bottom sym-
bol, and 	R�$D is a set of accepting states. The transition
function �V�=D��\����pOg �)h � ���\�
��������� associates with
every state Fi��D , input letter �T�>�%�#pkg �)h � , and pushdown
letter r ��� a finite set of possible transitions ����F ��� ��r � .

A configuration of a PD-NFW is a pair ��F �	] � � D���� _
where F is the state of the automaton and ] is the content of
the pushdown store. A run of a PD-NFW over a finite word
]R����_ is a sequence of configurations and locations a��
��D���� _:�7g�3 �)(*(*( � � ] ��� � h � _ such that a)�z� ���UF�����H � ��3�
 and
for every 3 	 0 � � a � we have a
5q� �	��F ��r 8 � � ����
 , a)5�6 & �
�	�UF � � � 8 � � ��� ��� 
 and either ��F � ��� 
w� ����F �	] � ��r � and � ��
, or ��F � ��� 
�������F � � ��r � and � �[3 . A transition from
�	�UF � � � �!� 
 to �	��F � � � � � ��� 
 is called an � -transition. Otherwise
it is an advancing transition. A run is accepting if a#" $%" �
��& ��� � � ] �'� � 
 for some state &\�(	 and forall � � � a � we
have that a � � ��
 ��� �*) 
 such that ) 	 � ] � . A word ] is

3In fact, for our graph there does not exist a bisimilar prefix-
recognizable graph. Our proof can be extended for the case of bisimilarity.

accepted by � if there exists an accepting run of � on ] .
The language +7��� � of � is the set of words accepted by � .

An automaton is an NFW if ���,g'Hih and the transition
function is restricted to �L�KDQ�k�V�#goHih��,�-���/.1032 . In this
case we write 4M� �%� ��D ��� ��F � ��	 
 and �V�nD��O�?�5� � .
In case that for every letter ���O� and state FX��D we have
� ���UF �1� �*� � �

we say that 4 is deterministic (DFW).
Consider the mMs system B�� ��g
s ��� ��t ��}=h , g
r �IG ��Hih ,

D , � , E , F*� , G , H 
 from Example 2.1.

Claim 3.1 There is no prefix-recognizable system � such
that �76 is isomorphic to � � .

Proof: Given a PD-NFW �Z� �%� ������D ��� ��F*� �IH ��	 
 we
construct the graph �78 where the set of vertices is the set
of configurations of � from which there exists an advanc-
ing transition. An edge connects �UF �	] � to ��F � ��] ��� if there
exists an advancing transition followed by a sequence of �
transition leading from �UF ��] � to �UF � ��] � � . Finally, we label
a configuration ��F ��r ] � by the set of letters �S��� such
that ���UF �1� ��r �:9�<; . Formally, let � 8 � ����= ��� ��� �	� 8 ��
)� 

where ��� g ��F ��r 8 ] � �VD��>� 6 �@? ���V� s.t. ���UF ��� ��r �A9�;uh , 
*�,����F�����H � , and �7�UF ��r ] � � gB� � ���UF ��� ��r �C9�;uh . We have ���UF ��r+] � �
�UF � �	] � ��� �Z� 8 if there exists a
run �UF ��r ] ��3 � �
�UF & ��] & � � � �)(*()( �)��F�� �	] � � � � �)�UF � �	] � � � � on a
word �W�Q�+��F ��r ] � (note that � � � � �

and that this run is
not necessarily accepting).

It is known that the graph of a prefix-recognizable
system is isomorphic to the configuration graph of a
PD-NFW [41, 3]. We extend this result by show-
ing that given a prefix-recognizable system BED $ �
���FD $ ��C�D $ ��DED $ ���GD $ ��E/D $ ��F D $� �IG ��H 
 we can construct a PD-
NFW ��� ��� �1� ��D D�� �	� ��F D��� �IH ��	 
 such that every state 

of � 8 has � �+��
 �)� � �

and if we restrict our attention to
states reachable from �UF D��� ��H � in �H8 and from �UF D $� ��G�H �
in ���JI�K the two are isomorphic.

We first need a few definitions Consider the prefix-
recognizable system BLD $ � �#�FD $ , C#D $ , DED $ , �GD $ , EMD $ ,
F D $� , G , H 
 . For a rewrite rule v 5 � �#F , � 5 , � 5 , � 5 ,
F � 
���E D $ , let N O � ��C D $ ��D7O �QP-O ��F �O ��	GO�
 , for R��
g � 5	� �95 �	��5Ah , be the NFW for the language of the regular
expression R . We assume that all initial states have no in-
coming edges and that all accepting states have no outgo-
ing edges. We collect all the states of all the automata
for � , � , and � regular expressions. Formally, D�S[�TVUXW�Y�Z D7S W , D>[Y� TVUXW�Y�Z DA[ W , and D � � T�UXW�Y�Z D � W .
Let g � & �*()(*( ��� ��h be the set of regular expressions ��5 such
that there is a rewrite rule �UF � � 5 ��� 5 �	� 5 ��F � 
W�!E/D $ . Let\ [ W � ��C#D $ �1] [ W �QP [ W ��F �[ W ��	 [ W 
 be the deterministic au-
tomaton for the reverse language of � 5 . For a word �V�VC`_D $ ,
we denote by P [ W � � � the unique state that

\ [ W reaches af-
ter reading the word � . Let ^R�RC_D $ �a`z&cb 5 b � ] [ W . For
a letter d��e^ , let dGf 0!g , for 0 �Sg
3 �*(*()( � h , denote the 0 -
th element in d (that is, d3f 3'g���C D $ and dGf 0�g��e]�[ W for



0��$3 ). Let P��,� �!^��TC � � ^ denote the effect of read-
ing a letter C on the states of the automata

\ [ W . Formally,P � � d ��r � � ��r �QP [�� �XdGf � g ��r � �)(*()( �QP [�� �XdGf � g ��r � 
 . We use
H � ��H ��F [ �� �)(*(*( ��F [ �� 
 as store-bottom symbol of the PD-
NFW. Given a word ]?�W] ���*()(*( ��]��,��Ci_D $ 8 H we denote
by a [

W
��] � ��a �[ W �)(*()( �	a �[ W the unique run of

\ [ W on the re-
verse of ] . We denote by ]��Va [	� �U] � � 8)8*8 �Va [�� �U] � the
word d�� ��d & �*()(*( ��d
� such that forall 3 	 � � d we haved � f 3'gi�Y] � and d���f 3'g#�/H and forall 3 	 � 	 d and� 	 0 	 �

we have d �-f 0!g���a �
�_�[ W .

Consider the PD-NFW � � �%� D $ �*^ ��D D $ p$��E D $ �
��D7S2p\D � �	� ��� ��F D $� ��H �*; 
 where the transition function is
defined as follows. For a state FW��D D $ and d���^ we
have ����F ��� ��d � �Pg�����v ��
 � �Qd 
 � v7� ��F � ����� ��� ��F � 
 and 
 �
F �S h for �[���GD $ �UF �QdGf 3'g � and ���UF �1� �Qd � � ; for � 9�
�GD $ �UF ��d3f 3'g � . For a state �Uv ��
 � �PEMD $ �JD S where v��
�UF � �������	� ��F � 
 we have ���	�Uv ��
 � � � ��d � �Yg�����v ��
 � � � � 
 � 
 � �P S ��
 ��d3f 3'g � h7pQg �	��v ��
 ��� �Qd 
 � 
T� 	 S ��
 � � 	 � � and dGf 0�gk�	 [ h and ������v ��
 � ��� ��d � � ; for �M�M�FD $ . For a state
��v ��
 � ��E D $ ��D � where v�� �UF � ��� � �	� ��F � 
 we have
������v ��
 � � � �Qd � � g�����v ��
 �m� ��d � d 
 � 
 �(P � ��
 � ��d � f 3'g � and d � �P��7� d ��d � f 3'g � h+p>g �UF � �Qd 
 � 
2�RF �� h and ���	��v ��
 � ��� ��d � � ;
for �>�O� D $ . We show that the subgraphs of � 8 and � � I�K
that are reachable from the respective initial states are iso-
morphic. Consider the function � �KD D $ � C _ � D D�� � ^ _
where �9��F ��� � ����F �����2a [	� ��� � � 8*8)8 �2a [�� � � �	� .

For every state F��PD D $ the only letter ���R� D $ for
which ���UF �1� �Qd � is defined is �+��F �QdGf 3 g � , hence � D $ ��F �	] � �
� <��x� ���UF �	] �	� . For every state ��v ��F � ��E D $ ����DVS pOD � �
we have ����F ��� �Qd � � ; for � 9� � . By definition it is clear
that � is an injection. We show that � is a surjection. No-
tice that, the only way to extend the store is by a transition
�	��v ��
 ��� �Qd � d 
 . However, we demand that d � � P � �Xd �Qd � f 3'g � .
Hence, the only states reachable from �UF D��� ��H � are states
in the range of � . We show by induction on the distance
from ��F D��� ��H � that every configuration ��F �	] �m� of � is in
the range of � . For ��F D��� ��H � the proof is immediate. As-
sume that all configurations whose distance is ) are in the
range of � . Consider a state ��F �	] � of � 8 of distance ) � �
from �UF D��� �IH � . By induction there exists a reachable state
�UF � �	] � � of � � I�K such that � ���UF � ��] � � �
�UF �	] �	� �,� 8 . De-
note 
�� ���UF � ��] � � and 
 � � �UF ��] � . Then there is a
sequence 
 , �	��v ��F �S � �	] � 
 , �	�Uv ��F &S � ��] & 
 , ()(*( , ����v ��F �S � �	]�� 
 ,
�	��v ��F � �� � � ��� � 
 , (*()( , �	�Uv ��F �� � ���9� 
 ��
 � such that ] � is the store
content of 
 , �9�`��] is the store content of 
 � , ]���� ��� �
is a common suffix of ] � and � � such that ] � � � (note
that

\ [ runs from the end of ] � to the start of ] � and
recognizes words whose reverse is in � ). and the runs
F �S �)(*()( ��F �S and F �� �)(*(*( ��F � �� are witnesses that the prefixes
of ] � and � � are in � and � respectively. We conclude that
the state ��F � �	]Vf 3'g � is reachable in � � I�K and ���UF � ��]Vf 3 g � �

 � . In a similar manner we show that ��
 ��
 �m� � �

Z I�K iff

� ����
 � �1�9��
 �m��� �2� 8 .
Assume by contradiction that there exists a prefix-

recognizable system whose graph is isomorphic to � � .
Let B D $ � � g
s ��� ��t ��}=h���C���D ��� �	E ��F�� �IG ��H 
 be the prefix-
recognizable system that produces this graph. Let ���
�Ag�s � � ��t ��}nh �*^ ��D � ��� ��F �� �IH �1; 
 be the PD-NFW such that
� 8 is isomorphic to � � I�K . Consider the PD-NFW � � �
�Ag�s � � ��t ��}nh �*^ ��D � p g
sut�t'h �	� � ��F �� ��H ��g�s t*t�h 
 , where for ev-
ery state F �>D � and letter rS� ^ we define � � �UF ��} ��r � �
����F ��} ��r � p?g��Usut�t ��r 
Ih and � � ��F �	� ��r � �^���UF �	� ��r � for
� 9��} . Thus, whenever � � reads the letter } it can enter an
accepting state. Is is simple to see that the language of � � is
g
}nh 8 g
s � � � t � � � 1 � h 8 g
}nh 6 . However, g�s � � � t � � � � ��h
is not a context-free language [29]. contradiction.

3.2 An mMs graph violating prefix-recognizable
representation characterization

We give another example of an mMs graph that is not
prefix-recognizable. This time, we use characterization of
prefix-recognizable graphs by Blumensath [3] to show that
the graph is not prefix-recognizable.

We first need some definitions. Let ; � ��g
3 � � h'_ de-
note the full binary tree and let 
)~�t�t � � � � � � and 
*~�t�t
&'� � ��� �
denote the successor relations (that is, for � ��� ��g�3 � � h�_
we have 
)~�t�t��K� � ��� � true iff �?� � 8 3 , and similarly for

)~�t�t & ). We define Monadic Second Order Logic (MSOL)
over �U;=� ��
*~�t�tI� ��
)~�t*t & 
 as follows. Let � � � �*(*()( denote state
variables and � �����*()(*( denote set variables. Atomic formu-
las are �V��� and 
)~�t*t�5�� � ��� � for 0 � 3 � � . MSOL formulas
are the formulas obtained from atomic formulas by closing
them under Boolean connectives and existential quantifica-
tion over vertex or set variables. For a full exposition of
MSOL we refer the reader to [42].

A graph �4� ��� ��� ��� �	� ��
)� 
 is MSOL interpretable in
the structure �U;=� ��
)~�t*tI� ��
*~�t�t & 
 if there exist MSOL formu-
las ���u� � � � � , � " @ , and for every �Y�!� we have ���:��� �
such that the graph � � defined below is isomorphic to
� . Let � � � �%� ��� � ��� � ��� � ��
 �� 
 such that � � ��g
v��
;�� �M? � ( ������v ��� ��� ���u� � �	v � h , �����Mg)v ��;�� � � "A@ �Uv � h is
a singleton ��� �Rg'
 �� h , �O�Rg ��� � � �)� ���u� � ��� � h and finally,
for every state 
N�O� � we have �	��
 � ��g%� � � � ��
 � h is a sin-
gleton and ����
 � � g
�7��
 � h . We overload notation and refer
to ��� � � � " @ �)��� � � �

Y
= 
 both as the interpretation in ; � and

the graph that it induces.

Theorem 3.2 [1, 3] A graph � is prefix-recognizable iff it
is MSOL interpretable in �U; � ��
)~�t�t � ��
*~�t�t)& 
 .

Consider a prefix-recognizable graph ��� ��� , � , � ,
� , 
 � 
 and a state 
�� � . Let �ka�!�_���
 � denote the
set of states from which 
 is reachable. Formally, for
� � � � we define �ka�!��K��� �m� � � � , �ka�!�5�6 & ��� �m� �



g)v � ? v � � �ka�!�5���� ��� and ��v ��v �m� �!�nh , and �ka�!o_���� �m� �T
5��9� �ka�!�5���� �m� . If � � � g'
oh is a singleton we write�ka�!o_���
 � . We define a relation on the states of � , forall

 ��v we have 
 	 v iff 
#���ka�!o_K��v � . Let ��� � ��� " @ �
� � � � �

Y
= 


be some interpretation of � in ; � and let � �K�>�[; � be the
bijection associating � and ��� � ��� " @ �
� � � � �

Y
= 
 . For a state


��V� , let � ����
 �*� denote the length of �9��
 � � ; � .
Lemma 3.3 [3] Let � be a prefix-recognizable graph. If
the relation 
 	 v is a well order on the states of � , then
for every interpretation of � in ;n� with bijection � we have
� ���Us � �*� ���`� � � where s � is the

�
th element in the ordering.

Consider the mMs system B�� �Lg
s ���
h , goG ��H ��r#h ,
g
F�� �	a �����U{ h , � , E , F�� , G , H 
 from Example 2.2.

Theorem 3.4 The system B above is not a prefix-
recognizable system.

Proof: Lemma 3.3 gives information on the size of the en-
coding of states of a well ordered prefix-recognizable graph.
The graph above is clearly well ordered. We show a sub-
graph that is also well ordered. Both the graph and its sub-
graph are embedded in ; � and share the same encoding of
the states. In each graph we get information on the size of
the encoding and this information is contradictory.

Suppose by contradiction that there exists a prefix-
recognizable system inducing a graph isomorphic to � � .
Let � � ��� ��� ��� ��� ��
)� 
 be the graph of this prefix-
recognizable system and let � ��� � � " @ ��� � � � � 
 be some in-
terpretation of � in ;�� . Let �2���Q��;�� denote the isomor-
phism associating the two. As mentioned the system above
produces an infinite path of nodes. Let �*5 denote the state �
such that � �ka�!o_�� � ��� g � � �+��� � � �
h � ��0 .

Denote by � � � �Ag �
h ��� � ��� � �	� � ��
 � 
 the graph con-
sisting of the states � � ��g�� 5 � 0W1 � h and the edges
� � � g � � 5 ��� 5�6 & � � 0O1 � h . For every state � 5 �P� � we
have � � � � 5 � ��� and as 
 � ���*& we use the same initial state
in � � . We show that this graph is also interpretable in ; � .
Hence, it is also a prefix-recognizable graph and Lemma 3.3
applies for it. Consider the MSOL formulas in Figure 1. For
states � � ��� � we have B � � � � � ��� ��� true iff � � is reachable from
� � along a path that visits only states labeled s . For states
� ��� we have B � � � � ��� ��� � true iff both � and � are � states
and either � is a successor of � or � is reachable from �
along a path that visits only states labeled s .

Consider the structure �UB � � � � ��� "A@ ���	��

� 
 . It is isomor-
phic to the graph � � . Let � � ��� � �^; � denote the isomor-
phism between � � and �UB�� � � � ��� " @ ���	��

��
 (actually, � � is �
restricted to � � ). From Theorem 3.2 it follows that � � is a
prefix-recognizable graph. It is also the case that � � is well
ordered. According to Lemma 3.3 we have � ��� � 5 �)� ���`��0 � .

As mentioned the graph � consists of a single path.
Hence, the relation

	
is a well order on the states of � .

The state �I5 is the
5���5�6 &��� state in this order. According to

Lemma 3.3 we have � �9� ��5 �)� ���`��0 � � . Contradiction.

4 Model checking over mMs systems

We use the automata-theoretic approach to model check-
ing. In the branching time framework, the automata-
theoretic approach reduces the model checking problem to
the emptiness problem of an alternating tree automaton over
1-letter alphabet. The alternating tree automaton is the com-
bination of the system and the specification [35]. In the
linear time framework, the automata theoretic approach re-
duces the model checking problem into the emptiness prob-
lem of a nondeterministic word automaton. The nondeter-
ministic word automaton is the combination of the system
and the negation of the specification [45]. Similarly, for
mMs systems we solve model checking by a reduction to
the respective emptiness problem. As our systems have a
stack we use stack automata. Due to lack of space we in-
clude only an algorithm for branching time model checking.

In order to give the most general algorithm we assume
that the specification is given as an automaton. In the
branching time framework the specification is given as
an alternating graph automaton (that accepts all possible
graphs that satisfy the specification, see below). Algorithms
for converting � -calculus, CTL, CTL _ , and LTL and � � �
to automata can be found in the literature [5, 46, 30, 44, 35].

4.1 Definitions

Graph Automata. Given a finite set ^ of directions, an ^ -
tree is a set EP�C^�_ such that if d 8 �J�\E , where dJ� ^
and ����^�_ , then also ���2E . The elements of E are called
nodes, and the empty word � is the root of E . For everyd���^ and ���2E , the node � is the parent of d 8 � and d 8 �
is a child of � . If 
i� � 8 � � E then 
 is a descendant of � .
There is a natural partial order induced on the nodes of the
tree, � 	 � iff � is a descendant of � . An ^ -tree E is a full
infinite tree if E���^�_ . A path � of a tree E is an infinite
set �Q�WE such that � ��� and for every �O��� there exists
a unique d�� ^ such that d 8 �J��� . Our definitions here
reverse the standard definitions (e.g., when ^��$g
3 � � h , the
successors of 3 are 3�3 and

� 3 , rather than 3K3 and 3 � ).
Given two finite sets ^ and � , a � -labeled ^ -tree is a

pair ��E ��� 
 where E is an ^ -tree and � ��E?�M� maps each
node of E to a letter in � . When ^ and � are not important
or clear from the context, we call ��E ��� 
 a labeled tree.

For a finite set � , let � 6 � � � be the set of positive
Boolean formulas over � (i.e., Boolean formulas built from
elements in � using � and � ), where we also allow the for-
mulas �	��

� and ����� �!� , and, as usual, � has precedence over
� . For a set ��� � and a formula "X�2� 6 � � � , we say that



B�� � � � � � � � � ��� � ��� ��� 
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 � � � � � ��
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B � � � � � � � � � � � � � � � � � � ��� � � f ��� ��� � � � � ? � � ��� � ��B � ��� � ��� � � � � �u��� ��� � � � � �u��� � ��� ��� g
Figure 1. Interpretation in ; �

� satisfies " iff assigning �	��

� to elements in � and assign-
ing � � ��� � to elements in �Pf � makes " true.

An alternating automaton on labeled transition graphs
(graph automaton, for short) [49] is a tuple 
 �
��� ��D �QP ��F � � � 
 , where � , D , F � are as in PD-NFW, �
specifies the acceptance condition, and P/��D[� �b�
� 6 �Ag!����� ��
 h �\D � is the transition function. Intuitively,
when 
 is in state F and it reads a state 
 of � , fulfilling an
atom ��� �U{ 
 (or � { , for short) requires 
 to send a copy in
state { to some successor of 
 . Similarly, fulfilling an atom
 { requires 
 to send copies in state { to all the successors
of 
 . The atom �����U{ 
 (or { , for short) requires 
 to send
a copy in state { to the node 
 itself. Thus, like symmetric
automata [22, 49], graph automata cannot distinguish be-
tween the various successors of a state and treat them in an
existential or universal way.

A run of a graph automaton 
 on a labeled transition
graph �S� ��� ��� ��� �	� ��
 � 
 is a labeled tree in which every
node is labeled by an element of �?�\D . A node labeled
by ��
 ��F � , describes a copy of the automaton that is in the
state F of 
 and reads the state 
 of � . Formally, a run is a
� $ -labeled � -tree ��E $ �	a 
 , where � is some set of directions,
� $ ����� D , and ��E $ �	a 
 satisfies the following:

1. �i� E $ and a�� � � ����
)����F�� � .
2. Consider �T�TE $ with au��� � ����
 ��F � and ����F ���+��
 �	� �

" . Then there is a (possibly empty) set � �
�Ag!� ��� ��
 hL�\D � , such that � satisfies " , and for all
�Ut ��F � 
w� � , the following hold:

� If t+� � , then there is �O��� such that � 8 ��� E $
and a�� � 8 � � �$��
 ��F � � .
� If t ��
 , then for every successor 
 � of 
 , there is
�T��� such that � 8 � �2E $ and a�� � 8 � � �,��
 � ��F �m� .
� If t���� , then there is a successor 
 � of 
 and
�T��� such that � 8 � �2E $ and a�� � 8 � � �,��
 � ��F �m� .

A run ��E $ ��a 
 is accepting if all its infinite paths satisfy the
acceptance condition. We consider here parity acceptance
conditions [23]. A parity condition �Q��g%	 & �1	 � �*()(*( �1	 � h
is a partition of D . The number d of sets is called the index
of 
 . Given a run �UE $ �	a 
 and an infinite path �4�[E $ ,
let �����.��� � � D be such that F�������� ��� � if and only if
there are infinitely many �V��� for which a�� � � ������g
F h .
That is, ����� ��� � contains exactly all the states that appear

infinitely often in � . A path � satisfies the condition 	 if
the minimal 0 such that ����� ��� � � 	 5 9� ; is even. A run
��E $ ��a 
 is accepting if all paths � in E $ are accepting. The
graph � is accepted by 
 if there is an accepting run on it.
We denote by +z��
 � the set of all graphs that 
 accepts.

We use graph automata as our branching-time specifica-
tion language. We say that a labeled transition graph � sat-
isfies a graph automaton 
 , denoted � � ��
 , if 
 accepts
� . Graph automata are as expressive as � -calculus [30, 49].
In particular, we have the following.

Theorem 4.1 Given a � -calculus formula � , of length
�

and alternation depth ) , we can construct a graph parity
automaton 
�� such that +7��
�� � is exactly the set of graphs
satisfying � . The automaton 
�� has

�
states and index ) .

Stack Automata. A stack alternating automaton on ^ -
trees (or ST-APT) is e � �%� ��C���D � � ��F*� �IG ��H � � 
 where
� , D , F�� , and � are as in graph automata, C is the stack
alphabet, and G and H are the store-top and store-bottom
symbols (that cannot be removed from nor added to the
stack). The transition function is �R�2D[�����?C �� 6 ��D/��rzyzE�� ^ � where rzyzE is the set of possible
actions as defined for mMs systems. We also use the set
of stack configurations �.EzjkBzlN� , the function

�
and the

function � as defined for mMs systems.
A run of e on a � -labeled ^ -tree �!^#_ ��� 
 is a ^�_ �

D ���.E7jkBkli� -labeled � -tree �UE �	a 
 where � is some set
of directions and ��E ��a 
 satisfies the following.

� �N�2E and a�� � � ����� ��F*� �IG�cNH � .
� Consider � � E with a�� � � � � � ��F � 
 � and

���UF ����� � � � � ��
 �	� � " . Then there exists (a possibly
empty) set ���UF & ��sutIv & � � & � �)(*()( �)��F � ��sutIv � � � � �	� � � "
and � has } successors � & �*(*()(�� � such that au���_� � �
� � � � ��Fc� �	�k��
 ��sutIv!� �	� .

A run is accepting if every infinite path in ��E ��a 
 satisfies the
parity acceptance condition. We are interested in alternating
stack automata with 1-letter input alphabet.

An alternating stack automaton with 1-letter input alpha-
bet, the location on the input tree and the structure of the
input tree are not important. Hence, we can consider au-
tomata reading infinite words and we can write �i�KD�� C$�� 6 ��D���rzyzE � . Accordingly, runs of such automata are



D��T�.E7jkBkli� -labeled trees. We denote alternating stack
parity automata with 1-letter input alphabet as ST-APW & .

Harel and Raz show that the emptiness problem of non-
deterministic stack automata on infinite trees is decidable in
quintuply exponential time [28]. Their methods can be eas-
ily extended to ST-APW & . A combination of [28] and [33]
gives a double exponential algorithm for the emptiness of
ST-APW & .
Theorem 4.2 The emptiness of an ST-APW & 4 can be de-
termined in time double exponential in the size of 4 .

4.2 Branching time model checking

We use the automata-theoretic approach to branching
time model checking [35]. Given an mMs system B and
a graph automaton 
 , we construct an ST-APW & 4 such
that +z� 4 �>9� ; iff � � � � 
 .

The idea behind the construction is that the stack au-
tomaton 4 holds the control structure of 
 and the control
structure of B within its finite control. When B is in a mi-
cro state, our stack automaton mimics B without changing
the control state of 
 . When the control of B is in a macro
state, our stack automaton mimics a transition of 
 reading
the new macro state. Formally we have the following.

Let 
 � ��� ��D �QP ��F � � � 
 be a graph automaton, B��
��� ��C���� ��� ��E ��
)� �IG ��H 
 be an mMs system where �>��d>p
e , and ]Y� g	����� � 
 h . We construct the ST-APW & 4 �
�Ag
s9h���C���D � ��� ��F �� �IG ��H � � 
 where D � � ��]Y��D ��� � , the
initial state F �� �R� ����F�� ��
)� � and if ���SgB	 & �*(�(�( �1	 � h (wlog) is odd) then � � �$g%]��>	 & �#e �*()(*( �1]$�H	 � �#e �*g 
 hq�
DS��d ��g �`hi��DS��dOh . We shorten notations by writing
����F ��
 � instead of ��� ��F ��
 � and similarly � 
wF ��
 � and �UF ��
 � .
The transition function � is defined for every state �Ut ��F ��
 � �]R�VD�� � and letter r � C as follows.

� For tz��g�� � 
+h , the transition function is in Figure 2.

� For t2� � , then 
���e is a macro state and we ob-
tain �����Ut ��F ��
 � ��r � from P:�UF ���7��
 ��r �	� by replacing ev-
ery atom ��F � in P:�UF ���+��
 ��r ��� by �	���#F � ��
 � ��
	{ 
 , ev-
ery atom 
wF � by �	� 
qF � ��
 � ��
�{ 
 , and every atom F � by
�	��F � ��
 � ��
�{ 
 .

Note that by including g 
+hi��D�� d as the maximal even
set in � � and g��Xh`��D �Od as the maximal odd set in � �
we ensure that when quantifying universally over succes-
sors, our ST-APW & does not care about infinite sequences
of micro states and when quantifying existentially over suc-
cessors, our ST-APW & does not allow to follow an infinite
sequence of micro states. In the full version, we show that+7� 4 � 9� ; iff ��� � � 
 by translating a run tree of 4 on
the word s - to a run tree of 
 on �#� and vice versa.

Claim 4.3 +7� 4 �A9� ; iff � � � � 
 .

Corollary 4.4 The model checking problem of an mMs sys-
tem and a graph automaton can be solved in time double
exponential in both the size of the system and the size of the
automaton.

5 Emptiness of stack automata

The emptiness problem of an automaton is to determine
whether it accepts some input. In this section we solve
the emptiness problem for ST-APW & by a reduction to the
emptiness of PD-APW & . Our reduction enhances the reduc-
tion of ST-NPT to PD-NPT given in [28]. An algorithm for
checking the emptiness of PD-APW & is given in [33].

Given a ST-APW & we construct a PD-APW & that records
extra information on the pushdown store. This information
is the summary of the stack automaton’s actions when it
reads the stack’s contents. We want to know which parity
sets are visited by the stack automaton and in what state
does it ‘get out’ from the stack. As the stack automaton is
alternating, when reading the stack’s contents it may spawn
new copies of the automaton. Hence, for every state we
record the possible sets of states with which the stack au-
tomaton can surface after reading the contents of the stack.
We note that the top-of-store symbol is a buffer between the
possibility to change the contents of the stack and the mean-
ingful information in the stack. Our pushdown automaton
uses basically the same states as the stack automaton. How-
ever, it duplicates the set of states. One copy mimics the
behavior of the stack automaton when reading the top-of-
store symbol. The other copy mimics the behavior of the
stack automaton when standing just before the top of the
store and reading the last meaningful letter on the stack. We
start with the simpler problem of solving the emptiness of
ST-NBW and then extend it to the emptiness of ST-APW & .

We reduce the emptiness of an ST-NBW to the
emptiness of PD-NBW. Consider an ST-NBW � �
��� ��C ��D ��� ��F � �IG ��H � � 
 where �Q�JD and �N�KD��+�L� C,�� � � ���

Z
. It is easy to see that the emptiness problem of

an ST-NBW can be reduced to that of an ST-NBW with
one letter input alphabet. We assume that � � � � �

and ig-
nore this component. We construct a PD-NBW � such that
�+��� � � ; iff �7��� � � ; . The pushdown alphabet of � is
C �a� where ���e�����M. ��� & 2B� � � � . ��� � 2 � . Thus, every letter
in � is a g�3 � � h labeled graph � on the set of vertices D .
For a state FN��D the set of nodes that are neighbors of F in
� are the nodes reachable from F after a finite detour in the
store. An infinite detour into the store is either accepting,
in which case we add sut�t to the options of F or rejecting in
which case we ignore it. Whenever state 
 chooses to enter
the store in state F we choose one of the neighbours of F in
� and move to it. Visits to the acceptance set are monitored
using the label on the edges. Label 3 indicates that the path
does not visit � and label

�
indicates that the path does visit
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Figure 2. Transition of micro state

� . More formally, we have the following.
Let �S� ��� ��C ��� ��D � � � � ��F �� �)�%H �1; � � � � 
 where the set

of states is D � �$�Ag
0 � ��| � hx��DQ�Ng
3 � � h � p#g
sut�t�h , the initial
state is F �� �M��0 � ��F*� ��3 � , and the set of accepting states is
� � �,�Ag
0 � ��| � hk�2D$�Tg � h � p g
sut�t'h . The states marked by
0 � serve as states that stand just before the top of the stack,
the states marked by | � serve as states that read the top-
of-store symbol. In order to define the transition function
� � we define a function &R�zCY� ����C � � that tells
us how to extend the pushdown store. In case that on top
of the pushdown store stands the pair ��� ��� � and we want to
emulate the extension of the stack with � � then we add to the
pushdown store the pair ��� � �1&.��� �	� �	� �m�	� . Let &.��� ��� �
� ��� �
� � �,D��>g�3 � � hN�Q��D?p�g�sut�t�h � such that �Uv �	0 �	v � � � � � if
there exists a sequence a � �P��� & ��
 & � �
���
� ��

� � �*(*()( such that
all the following hold.
� ��
'& ��d2} � � ����v �
� � � and �'&+� �

iff 
'&7� � .

� For every
� 	 d � � a �A� either ��
 �w6 & ��
�{ � � ����
 � �	� �

and � � 6 & � �
iff 
 �w6 & � � or ��
 � �!� ��
 � 6 & � � � and� �w6 & � � .

� If a � is finite then either �Uv � �	d2~ � � ����
-" $ � " �
� � or 
 " $ � " �
sut�t and v � �?sut�t .
� If a � is infinite then there are infinitely many d such

that � � � �
and v � �?sut�t .

� If there is some d such that � � � �
then 0w� �

. Oth-
erwise 0.�W3 .

The transition function � � � D � � C � � �� � � �/.�" D � D���D � D�
 "�� ��� ��� � Y�� ��� 2 is defined as follows. For
every ����C and �b� � we have � � �Usut�t �)��� �	� �	� �
g �Usut�t ��
�{ � h . For ��| � ��F ��0 � ��D � , � ��C and ��� � we
have
� If �UF � ��
	{ � � ����F ��G � then ���U| � ��F � ��0 ��� ��
�{ � �

� � ���U| � ��F �	0 � �
��� �	� �	� and 0 � � �
iff F � � � .

� If �UF � ��{9|�{ � � ����F ��G � then ���U| � ��F � �	0 ��� �U{�|�{ � �
� � ���U| � ��F �	0 � �
��� �	� �	� and 0 � � �

iff F � � � .

� If �UF � ��{n~:

����� ����� � ����F ��G � then
�	��| � ��F � �	0 ��� �U{9~�
������ � �*&.��� �	� �	� �����	� �
� � ���U| � ��F �	0 � �
��� �	� �	� and 0 � � �

iff F � � � .

� If �UF � �	d } � � ���UF �IG � then �	�U0 � ��F � �	0 �m� ��
�{ � �
���	��| � ��F ��0 � �)��� ��� ��� and 0 � � �

iff F � � � .

For ��0 � ��F ��0 � ��D � , �L��C , and ����� we have

� If �UF � ��
	{ � � ����F �	� � then ����0 � ��F � ��0 �m� ��
�{ � �
� � �	��0 � ��F �	0 � �
��� �	� �	� and 0 � � �

iff F � � � .

� If �UF � �	d2~ � � ����F �	� � then ���U| � ��F � �	0 ��� ��
�{ � �
� � �	��0 � ��F �	0 � �
��� �	� �	� and 0 � � �

iff F � � � .

� If ��F �	0 � ��F ��� � � then

– if F � �?s t*t then ��sut�t ��
�{ � ��� � ����0 � ��F ��0 � �)��� ��� ��� .
– if F � 9� s t*t then �	�U0 � ��F � �	0 �m� ��
�{ � �

� � ����0 � ��F ��0 � �)��� ��� ��� .
Prior to showing that � is empty iff � is empty we

show that whenever the contents of the pushdown store is
]$����C$��� � _ with the letter ��� �	� � on top of the pushdown
store (the first letter of ] ) and �UF �	0 ��F ��� � � then we can
find a partial run that connects the configuration �UF ��] � � to
configuration �UF � ��] � � where ] � is the projection of ] on its
component in C (with H�c concatenated on top). Formally,
we have the following.

We extend the function & to a function &T�K�.EzjkBzlN���
��C��:� � _ . For every ]���] ���*()(*( ��]��,� � E7jkBkli� we set&.��] � as follows.

� If d���� then &.��G�cNH � � &.��cNG�H � �,��H �*; � .
� If d ��� where ]�5��7c then &.�U] � � �U] & ��� & � ,
(*()( , ��]�5 � & �	��5 � & � , ��]�5�6 & ���u5�6 & � , (*(*( , ��]�� �	� � � where
� ����; , ��5 � & � &.�U] ��6 & ������6 & �	] � � & � , and for every� 9�/0 we have �-� � & �,&.��] � ����� ��] � � & � . Note that
the top-of-store symbol H and the head indicator c are
removed.

For every ]��P�.E7jkBkli� where ]�� ] �Nc�] � � we
say that the head location in ] is � ] �%� , denoted �	�U] � . A
sequence ��F � ��] � � �
�UF�& ��] & � �)(*()( is a partial run of � if for
every 0 we have �UF 5�6 & ��sutIv � � ���UF 5 � � ��] 5 �	� and ] 5�6 &>�
�z�U] 5 ��sutIv � . We say that pair ��0 ��F �m� �Og
3 � � h��k��DXp g
sut�t�h � is
reachable from configuration �UF ��] � if there exists a partial
run a2���UF*� ��]w� � �
�UF & ��] & � �)(*(*( such that �UF*���	] � � ���UF ��] �
and all the following holds.



� For all d we have &.��] � � �<&.��] � (this means that ]
and ]�� are the same but the location of c ).
� If the run is finite then F " $ " �RF � , and 0#� �

iff there
exists some d such that F ��� � .

� If the run is infinite then it visits � infinitely often, and
F � �?s t*t .

We say that �U0 ��F � � is � -reachable from �UF �	] � if in addition
all the following hold.

� �	�U]w� � � �
� For every

� 	 d � � a � we have �	�U] 5 � � � .
� If the run is finite then ����]7" $ " � � � .

Claim 5.1 For every configuration �UF ��] � and
pair ��0 ��F ��� � g
3 � � h4�b��D p�g�sut�t�h � such that&.��] � � �U]+& ���=& � �)(*(*( �)��] � �	� � � we have ��0 ��F �m� is
�	��] � -reachable from ��F �	] � iff �UF ��0 ��F ��� � ��� ��� � .

Proof: We prove the claim by induction on d�� �	��] � .
If d � �	�U] � then it must be the case that ��F � ��
�{ � �
���UF � � ��] ��� . Suppose that d � ����] � . Let a �
�UF�� �	] � � �)��F & �	] & � �*()(*( denote the partial run. Let a �
�UF*� @ ��] � @ � �)�UFc� � �	] � � � �)(*(*( denote the subsequence of loca-
tions where �	�U] ��� � � �	�U] � � �

. For every ) either � � 6 &��� � � �
and ��F ���
	 � ��
	{ � � ���UF ��� � � ��] ��� ��� or � � 6 & � � � � �

and by induction �UF ��� ��0 ��F ���
	 � � � ��� ���
� � � . We conclude that
�UF �	0 ��F ��� � ��� ��� � .

In the other direction we prove the claim by induction on
d�� �	��] � . If d!� �	�U] � then we know that �
��� ; and the
claim follows. If d � �	��] � then we concatenate the partial
runs promised by induction on ����] � � �

to create a partial
run connecting �UF ��] � and ��0 ��F � � .

We are now ready to prove the following claim.

Claim 5.2 +7��� � � ; iff +z� � � � ; .
Proof: Suppose that +z��� � 9� ; . Then there exists an ac-
cepting run a`����F*� ��]w� � �
�UF & �	] & � �)(*(*( on the word su- . We
show that the subsequence of configurations where � stands
on top of the store or just below the top of the store is an ac-
cepting run of � on su- . If the subsequence is finite then the
run of � ends in an infinite chain of sut�t . More formally, we
have the following.

Given a run a � ��F � ��] � � �
�UF�& �	]+& � �)(*(*( let a � �
�UF 5 @ ��] 5 @ � �)��F 5 � ��] 5 � � �*()(*( denote the subsequence of config-
urations where � stands on top of the stack or one loca-
tion before the end of the stack (i.e. ] 5 ���7c�G7]zH or
] 5 ���^G�c�]zH for some ]���CN_ ). We translate this
subsequence into a run of � . Set ��5�� ��0 � if ]�5��+��G�ck]zH
for some ]Y��CN_ and � 5�� ��| � otherwise. Set �.5 @ ��3 .

Set � 5�� � �
if there exists ) such that 0!� � & � ) 	 0�� and

F � � � . Otherwise, set �.5��+�?3 . We claim that the sequence
a � � ����� 5 @ ��F 5 @ � � 5 @ � �*&.��] 5 @ � 
 � ����� 5 � ��F 5 � � � 5 � � �*&.��] 5 � � 
 �*()(*( is
a valid and accepting run of � on su- .

We first show that the transition
������� 5 � ��F 5 � � � 5 � � �*&.��] 5 � � 
 � ����� 5 � 	 � ��F 5 � 	 � � � 5 � 	 � � �1&.�U] 5 � 	 � � 
 �
is a legal transition of � . Clearly, if 0 ��6 &N��0 � � �

then it
is a legal transition. Suppose that 0���6 & ��0�� � �

. It follows
from Claim 5.1 that it is a legal transition. We show that
the run is accepting. If the run ends in an infinite sequence
of sut�t then it is clearly accepting. Otherwise, �.5�� is set to�

iff some state in F)5���6 & �*(*()( ��F*5�� 	 � is accepting. As a is
accepting so is a � .

In the other direction we extend the partial run of �
to a full run of � using the promised partial runs from
Claim 5.1.

Theorem 5.3 [24, 32] The emptiness problem of a PD-
NBW can be determined in time jX� � D � � 8 � � ��8 � C � � .
Theorem 5.4 The emptiness problem of a ST-NBW can be
determined in time jX� � D � � 8K� � �o8K� C � �.8 � � � " � " � � .
Corollary 5.5 Given an LTL formula � and a micro-macro
stack system B the model checking problem is solvable in
time � � � " � " � ��� ������� ��� � .

We advance now to the general case of ST-APW & . First
let us denote by top-configurations configurations in which
the head indicator c is either to the left or to the right of
the top-of-store symbol G (i.e. configurations �UF ��] � where
]$�,G�cN] � H or ]��7cXG7] � H for some ] � ��CN_ ). Other-
wise the configuration is denoted a middle-configuration. A
nondeterministic word automaton has a single copy reading
the input word at all times. Hence, when a nondeterministic
automaton ‘ventures’ into the stack it comes out in a single
copy (if at all). When a copy of the alternating automaton
reads the last meaningful letter in the store, the run contin-
ues to form a finite tree whose internal nodes are all middle-
configurations and whose leaves are top-configurations. On
the pushdown store, we record for each state the possible
sets of leaves of such trees (corresponding to 
�{ and d2~
actions). The trees may be infinite if some path stays in-
definitely inside the store. However we care only about the
possible sets of leaves.

Consider an ST-APW &i�P� � g
s9h ��C ��D ��� ��F � �IG ��H � � 

where �O� � 	 & �*()(*( �1	 � 
 and �i�uD �2g
s9h7� C$� � 6 ��D$�
r7yzE � . For a state FV��D let a��UF � denote the index 0 such
that FN��	 5 . We construct a PD-APW &F� such that +z� � � �; iff +7��� � � ; . The pushdown alphabet of � is CT��� where
��� � � � ����� ���� "!# �$�% I'& (*),+ � . Thus, every letter in � associates
with every state in D subsets of f ) g��VD��Tg'
	{ �	d2~ h . For a
state FL��D and �>� � , the sets

-
such that ��F � - � � � are

the possible transitions of state F . Again the automaton can



enter the stack and stay there indefinitely. We just make sure
that the set of states

-
participates in some run such that

the paths that stay indefinitely in the stack are accepting.
The minimal parity set visited is monitored via the labels
attached to the states in D . Label a indicates that the least
rank visited along the detour is a . More formally, we have
the following.

For a set
- �ZD4�Jg�
�{ ��d�~�h let au� - � denote the set

g ��a���
 � ��
 � �X� � ��
 � �X� � - h . Let �z� DS� ��� ��� �#� �/.�" D � � 
 2
denote the set g �UF ��a�� - ����� - � � ����F ��H � h of assign-
ments that satisfy the transition of states in D reading
the bottom-of-store symbol H . The symbol � is added
to the store-bottom-symbol H as the store-bottom-symbol
of the pushdown automaton. Let � � �Ag�snh���C��� ��D � ��� � ��F �� �
��H ��� � � � � 
 where the set of states is D � �
g)0 � ��| � h#��D��(f )�g , the initial state is F �� ���U0 � ��F � �	a��UF � ��� ,
and the parity acceptance condition is � � � �Ag
0 � ��| � h��
D��>g � h �)(*(*( �*g)0 � ��| � h`�ODS��g')�h 
 . The 0 � and | � states
are just as in nondeterministic automata. The definition of
the transition function and the extension of the pushdown
store is quite technical. Details follow.

In order to define the transition function � � we define a
function &��#CZ� � ��C � � that tells us how to ex-
tend the pushdown store. In case that on top of the push-
down store stands the pair ��� �	� � and we want to emu-
late the extension of the stack with � � then we add to the
pushdown store the pair ��� � �1&.��� �	� �	� �m�	� . For every state

Q��D , in order to test whether to add the pair ��
 � - � to
� � where

- � f )�g.��DS�>g'
	{ �	d2~ h we construct an APW
that moves between the letters � and � � . The transition of
states in

-
that read � � is set to �	��

� and states not in E

that read � � are set to ����� �!� . The pair ��
 � - � is added if
the APW has an accepting run4. Formally, for every state
vQ�4D and every subset

- � f )�g7��DY�?g�
�{ ��d�~�h we
define the APW r

U
� �� � � � � � � �Ag�s9h ��D � � �	� �	v � � � � 
 where the

set of states is D � � � g
v�hkp?�Ag��9h ��D4� f ) g � p?�Ag � � h2�
D � f ) g7�Wg�
�{ �	d2~ h � , the parity acceptance condition is
� � � � � g��9h#��D,��g � h �)(*()( ��g��9h#��D��Og')�h 
 , and the tran-
sition function � is as follows5.
� ���Uv ��s � is obtained from ���Uv �	� �m� by replacing
��
 �	d2~ � by ��� � ��
 ��au��
 � �	d2~ � , replacing ��
 ��
	{ � by
��� � ��
 �	a���� � ��
�{ � , and replacing ��
 �	d } � by ��� ��
 �	a���
 ��� .
� ����� � ��
 ��a � �X� � �

�!� 

� if ��a ��
 � �X� � -

����� �!� if ��a ��
 � �X�
	� -

� ����� ��
 �	a � � �
� " � ��� �

Y
�

�
� $ � � " � � � �

Y � � t $ ��a � ��
 � � �X� where

t $ �Mf ) g �VD��Tg'
	{ �	d2~ h+��D � � is

4This construction resembles the transformation of APW with � -moves
to APW without � -moves in [49].

5Note that the parity acceptance condition does not include states in
�� ����������������� �! "�
��#%$�&�')("� � . These states cannot occur more than
once on a path and adding / removing them from * � � does not matter.

t $ ��a � ��
 � � �X� �
� ��� � �	d20 � ��a �	a �m� ��
 � ��
	{ � if � �Wd2~
��� �	d20 � ��a ��a � � ��
 ��� if � ��
�{

Finally, &.��� ��� �
� ��� � � � such that for every state 
#� D and
set

- �
f ) g �iD��Xg�
�{ ��d�~�h we have ��
 � - � � � � iff r " � �� � � � � �
has some accepting run 6.

The transition function � � � D � �>CR� � � � 6 ��D � �
g�
�{ ��{9|�{ �U{n~:
�� � 
 � � 
\��C�� �xh � is defined as follows.
For every �L�VC , and �T��� we have

� � � �	�U| � ��F �	0 � �
��� �	� �	� is obtained from ���UF �	� � by
replacing ��
 ��
�{ � by ���U| � ��
 ��a���
 �	� ��
�{ � , replacing
��
 ��{n~:

����� �m�	� by �	��| � ��
 �	a���
 ��� �U{9~�
������ � �1&.��� ��� �
� �m�	��� ,
replacing ��
 �U{�|�{ � by ���U| � ��
 ��au��
 �	� ��{9|�{ � , and replac-
ing ��
 ��d2} � by ����0 � ��
 �	a���
 ��� ��
	{ � .
� � � �	��0 � ��F �	0 � �
��� �	� �	� �

�
�,+ � � �

Y
�

�
� $ � " � � �

Y � to�Ua ��
 � �X�
where tz�Mf ) g �VD��Tg'
�{ �	d2~�h ��D � is as follows.

to�Ua ��
 � �X� �
� �U0 � ��
 �	a � � �?
�{
��| � ��
 �	a � � ��d2~

Prior to showing that � is empty iff � is empty we show
that whenever the contents of the pushdown store is ]��
��C?�V� � _ with the letter ��� �	� � on top of the pushdown store
(the first letter of ] ) and ��F � - � � � then we can find a run
tree whose root is labeled by �UF �	] � � and all its leaves are
labeled by configurations ��
 �	�k��] � ��sutIv ��� for �Ua ��
 ��sutIv � � -

where ] � is the projection of ] on its component in C (with
HJc concatenated on top) and all infinite paths in the tree are
accepting according to � . Formally, we have the following.

We extend the function & to a function &T�K�.EzjkBzlN���
��C?�V� � _ just like we did for ST-NBW. and we use the head
location as defined for ST-NBW. A D��X� E7jkBkli� -labeled
tree �UE �	a 
 is a partial run of � if for every node ����E with
a�� � � �S�UF ��] � and ���UF � � ��] ��� � " there exists a (possibly
empty) set g ��F & ��sutIv & � �)(*(*( �)��F � ��sutIv � � h � � " and � has }
successors � & �)(*(*( ��� � such that a����#� � �Y�UF*���	�k��] ��s t�v!� ��� .
We say that a set

- � f )�gx�ODS�>g'
�{ �	d2~�h is � -reachable
from configuration �UF �	] � if there exists a partial run �UE �	a 

such that all the following hold.

� The root of E is labeled by a���� � �,�UF �	] � .
� For every node ���JE such that a���� � �Y��
 �	] � � then&.��] � � &.��] � � (this means that ] and ] � are the same

but for the location of the head indicator c ).
� For every node �O�VE such that a���� � ����
 �	] �m� one of

the following holds.

– � is a leaf or �V� � and �	��] � � ������] � or ����] � � �
�	��] � � �

.

6Notice that once a pair �-#�&/. � is added to 0�� then for every superset.1� such that .�23.1� we have �-#�&/.4� �65)07� . In practice, it is sufficient to
add �-#�&8. � , however this would complicate the proof beyond necessary.



– � is internal and � 9� � and �	�U] � � � ����] � .
� For every leaf ����E such that a���� � ����
 ��] � � and the

minimal rank on the path from the root to this leaf is a
we have ��
 �	a ��sutIv � � -

and ] � �J�k��] ��sutIv � .
� Every infinite path in E is accepting according to � .

Claim 5.6 For every configuration ��F �	] � and set
- �f ) g)� DO�7g�
�{ ��d�~�h we have

-
is ����] � -reachable from ��F �	] �

iff ��F � - � � ��� ��� � .

Proof: Consider a configuration �UF �	] � and a set
- �f ) g=�XDW� g�
�{ ��d�~�h . Assume that

-
is �	�U] � -reachable from

�UF �	] � . There exists a partial run ��E �	a 
 such that all the
leaves of E are labeled by states in

-
. We show by induc-

tion on d � ����] � that �UF � - � � � � ��� � . If d�� ����] � then
the transition of ��F �	] � has to be supplied by states labeled
by 
	{ and d2~ . In this case, for the set

-
of F ’s successors

we have �UF � - � � � ��� � . Suppose d � ����] � . We define
an equivalence relation on the nodes of E . Each equiva-
lence class corresponds to the partial run that shows that
some set

- � is �	�U] � � �
-reachable from some configuration

�UF � �	] � � . Then we use the induction assumption to show that
�UF � � - �m� � ��� ��� � 6 & and prove that �UF � - � � � � ��� � . Formally,
we have the following.

Let &.��] � ����] & �	� & � �*()(*( �
��]�� �	� � � . We abuse notation
and for a node � such that a�� � � ���UF � ��] � � we write ��� � �
for �	�U] � � . Recall that every node � such that �	��� � 	 �	�U] � is
either the root of E or a leaf. For every node � we add an
annotation to � another node in E . If ��� � � 	 ����] � � �

we
annotate � by itself. If ��� � � � �	�U] �F� �

then we annotate
� by the least node � � such that ��� � � � � �	�U] � � �

and there
exists no � � � � � � � � such that �	��� � �m� 	 ����] � � �

. We say
that two nodes � and � � are equivalent if the annotation of
� and � � is equal.

For a node � such that ��� � � � �	�U] ��� �
consider the

tree E � consisting of all the nodes in the equivalence class
of � and their immediate descendants. That is, E � includes
internal nodes with head location greater than ����] � � �

and
leaves with head location at most ����] ��� �

. Let a�� � � �
�UF � �	] � � and let

- � f ) g ��DY��g'
	{ �	d2~ h be a set such
that for every leaf �>��E � such that a�� � � � �UF � � �	] � � � , a is
the minimal rank on the path from the root to � , and ] � � �
�z�U] � ��sutIv � then ��F � � ��a ��sutIv � � -

. If � is a leaf in E � then
�	� � � � �	�U] ��� �

or �	��� � � ����] � . If follows that E � is a
partial run connecting ��F � �	] �m� to -

manifesting the fact that-
is ����] � � -reachable from �UF ����] � � . As ����] � � ���	�U] ��� �

we
conclude that �UF � � - � � ��� ��� � 6 & .

From above it is obvious that with every node � such
that �	��� � � �	��] � � �

we can associate a set
-
� � f ) gq�

DS�>g'
	{ �	d2~ h that ‘labels’ all the leaves of E � . For every
triplet �Ua ��
 ��sutIv � in

-
� we choose one leaf � �$ � " � ���

U
in E �

that is ‘labeled’ by this triplet. Let E � be the minimal tree
such that �Q� E � and for every node �R�SE � and every

triplet ��a ��
 ��s t�v � � -
� the leaf � �$ � " � ���

U ��E � . Let
- �f )�g ��D���g�
�{ �	d2~ h denote the set of labels of leaves in E

with the minimal ranks from the root to them. We claim
that ��E � ��a � 
 where a � is the restriction of a to E � is a run of
r + � ���� ����� � � � ����� � ��� ����� 	 � . From the explanation above it is clear

that it is a valid run of r + � ���� ����� � � � ����� � ��� ����� 	 � . We show that it
is accepting. Every infinite path in E � visits infinitely many
nodes � such that �	��� � � ����] � � �

. However, an infinite
path in E � corresponds to an infinite path in E . As the path
in E is accepting we conclude that the path in E � is also
accepting.

In the other direction, assume that ��F � - � � � � ��� � . We
prove by induction on d � �	�U] � that

-
is ����] � -reachable

from ��F �	] � . For d/� �	��] � , we know that �
�,� � and ev-
ery pair ��v � - � � � corresponds to a partial run that shows
d -reachability of

-
from �UF ��] � . Suppose d � ����] � .

We use the induction assumption to replace every transition
of r + � ���� ����� 	 � � � � ����� 	 � � ��� ����� by the partial run that is promised
from the membership of �UF � - � in � � ��� � 6 & . This is clearly a
legal partial run that connects �UF ��] � to

-
. We have to show

that the run is accepting. An infinite path that remains from
some point onwards inside some partial run is definitely ac-
cepting. An infinite path that is the result of the concatena-
tion of infinitely many partial runs is also accepting because
every node is marked by the minimal rank between the root
and the leaf.

We are now ready to prove the following claim.

Claim 5.7 +7��� � � ; iff +7��� � � ; .
Proof: From the previous claim it is clear that we can con-
vert a run of � on su- to a legal run of � . Showing that this
run is also accepting is not different from the arguments
used in Claim 5.6.

The other direction is also similar. By popping the partial
runs promised by Claim 5.6 we convert a run of � to a valid
and accepting run of � .

Theorem 5.8 [33] The emptiness problem of a PD-APW &�[� �Ag�snh���C���D � � ��F*� ��G �IH � � 
 with
�

states and index )
can be determined in time � � C � � ) � � ��� � � � � � .

Theorem 5.9 The emptinesss problem of a ST-APW &
with

�
states and index ) can be determined in time

� � � � � � � ��� � � � � � .
Corollary 5.10 The model checking problem of a graph
automaton r and a micro-macro stack system B can be de-

termined in time � ��� ��� � � � � 	 � � � � .



6 Conclusions and Future Work

We propose a class of graphs called micro-macro stack
graphs that strictly contains the class of prefix-recognizable
graphs. We give direct automata-theoretic algorithms for
model checking � -calculus over micro-macro stack graphs.
Our model checking algorithms is double exponential.

Since their introduction in [15], prefix-recognizable
graphs have been thoroughly studied. As a few examples we
mention, games on prefix-recognizable graphs [14], char-
acterization of languages accepted by prefix-recognizable
graphs [41], and prefix-recognizable structures [3]. There
are many equivalent ways to represent prefix-recognizable
graphs, using rewrite rules, as the outcome of regular re-
striction and inverse regular substitution on the infinite bi-
nary tree [15], as monadic second order logic interpretations
in the infinite binary tree [3], and as graph equations [15, 1].
All these issues need to be studied for mMs graphs.

As mentioned, the class of micro-macro stack graphs is
contained in the class of high order pushdown graphs. As
the monadic second-order theory of the latter is decidable
[31], it follows that the monadic second-order theory of
micro-macro stack graphs is decidable.
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