
Combining State-based and Scenario-based Approaches
in Modeling Biological Systems

Jasmin Fisher� �, David Harel� ��, E. Jane Albert Hubbard�, Nir Piterman� � � �,
Michael J. Stern�, and Naamah Swerdlin�

� Dept. of Computer Science and App. Math., Weizmann Institute, Rehovot 76100, Israel.
Email: firstname.lastname@weizmann.ac.il

� Dept. of Biology, New York University, New York, NY. Email: jane.hubbard@nyu.edu
� Dept. of Genetics, Yale School of Medicine, New Haven, CT. Email: michael.stern@yale.edu

Abstract. Biological systems have recently been shown to share many of the
properties of reactive systems. This observation has led to the idea of using meth-
ods devised for the construction (engineering) of complex reactive systems to the
modeling (reverse-engineering) of biological systems, in order to enhance biolog-
ical comprehension. Here we suggest to combine the two formal approaches used
in our group — the state-based formalism of statecharts and the scenario-based
formalism of live sequence charts (LSCs). We propose that biological observa-
tions are better formalized in the form of LSCs, while biological mechanistic
models would be more natural to specify using statecharts. Combining the two
approaches would enable one to verify the proposed mechanistic models against
the real data. The biological observations can be compared to the requirements
in an engineered system, and the mechanistic model would be analogous to the
implementation. While requirements are used to design an implementation, here
the observations are used to motivate the invention of the mechanistic model. In
both cases consistency of one with the other must be established, by testing or by
formal verification.

1 Introduction

Experimental biology is an interplay between collecting data in experiments (obser-
vations), followed by analysis of the data and suggestion of a mechanistic model that
would explain how the system under study works. Then, further experiments are pre-
formed to test the hypothetical mechanism. Here we propose that the dichotomy be-
tween theses two aspects of biology calls for separate formal methods.

Recently, the resemblance between reactive systems (systems that continuously in-
teract with their environment) and biological systems has been noted [Har02,KHC03].
This observation has led to the idea of using methods devised for the construction of
complex reactive systems to model biological systems. The first attempt to follow this
path was a modest model of T-cell activation [KHC03], which was followed by an ex-
tensive animated model of T-cell behavior in the thymus [EHC02,EHC03]. At present

� Supported by the Dov Biegun postdoctoral fellowship.
�� Supported in part by NIH grant F5490-01 and ISF grant 287/02.

� � � Supported by the John von-Neumann center for Verification of Reactive Systems.



there is an ongoing effort to model the vulval development in the nematode Caenorhab-
ditis elegans [KHK�03].

Two approaches are used in our group to model biological behavior: an intra-object
one based on the language of statecharts [Har87] and the Rhapsody tool [HG97,IL],
and an inter-object one that uses the more recent language of live sequence charts
(LSCs) [DH01] and the Play-Engine tool [HM03]. Both languages are visual, having
a clear (and formal) syntax and semantics, and both approaches enable the construc-
tion of a formal model and its execution. In Rhapsody, a state-based transition diagram
(statechart) of the system under study is constructed. The tool automatically generates
executable C/C++/Java code from the statecharts. In contrast, LSCs specify scenarios
of behavior between objects, with varying modalities (e.g., required, possible, and for-
bidden scenarios), and the Play-Engine executes these directly in a way that satisfies
the modalities for each.

As typical biological data is available in the form of ‘condition-result’ scenarios, we
believe that biological observations are best formalized in the form of LSCs, which take
the following general form: if � (the prechart) occurs then � (the main chart) should
too, where � and � consist of scenarios of behavior and can be simple or complex.
Indeed, in an LSC we can formalize the terms of the experiment as the conditional
prechart that enables an LSC, and we can formalize the result of the experiment as a
sequence of happenings resulting from that condition. On the other hand, since many
biological mechanistic models are ‘state-based’, we feel that in such cases it would be
more natural to specify mechanistic models using statecharts, since they specify the
behavior of the system based on its internal (stipulated) mechanism.

Here, we propose that these two approaches complete each other and should be used
together in order to model the two aspects of a common biological system simultane-
ously. By using a scenario-based approach to formalize the behaviors of the biological
system and a state-based approach to formalize the mechanism underlying these behav-
iors, one can formally verify that the mechanistic model reproduces the system’s real
behavior. In this functional sense, the biological observations can be compared to the
requirements in an engineered system, while the proposed mechanistic model would be
analogous to the system’s design and implementation. 4 To carry this analogy further,
in an engineered system the requirements are used to help in coming up with the de-
sign and implementation, and are then used a second time to build test suites for testing
the implementation against the requirements. In biological systems the observations are
used to motivate the construction of the mechanistic model (that serves as a working
hypothesis), and our approach enables them to be used also in testing and verification,
by simulation or, e.g., model-checking. These techniques may also yield interesting
predictions that should be then corroborated experimentally in the biological system.

4 In another sense it is the other way around: the biological observations are directly related to
the actual system as is the implementation of an engineered system, whereas requirements and
biological mechanistic models are both invented by humans.



2 Engineering Computerized Systems vs. Reverse-Engineering
Biological Systems

In engineering, we try to produce a design that satisfies a set of requirements. This
set of requirements is determined by our ideas about how the system should eventually
work. In biological modeling we do reverse-engineering, trying to construct a mech-
anistic model that explains how the biological system works. This model has to fit the
experimental observations.

In engineering, we formalize the requirements (emanating from the system’s con-
cept) in a formal specification language (e.g., LSCs). This formal specification not only
guides the construction of the design and implementation but is later used also to check
the design’s correctness. In formal modeling of biology, on the other hand, the situation
is different. The biological system is already ‘built’. In fact, there is a running exemplar
of the system. Unfortunately, we are restricted in the way we can analyze it (in par-
ticular, we are unable to access its ‘blueprint’). By experimenting with the biological
system (i.e., testing it under different conditions) and recording the results of these ex-
periments we can gain knowledge of its behavior. Once we formalize these observations
in the form of LSCs we get a sort of ‘requirements’ specification that can be used in
constructing of the mechanistic model. See Figure 1.

Computerized Systems Biological Systems
(Engineering) (Reverse-engineering)

Scenario-based Requirements Observations

State-based Design & Implementation Mechanistic Model

Fig. 1. Analogy between computerized systems and biological systems

The testing phases in both cases (engineering versus reverse-engineering) possesses
an interesting duality. In engineering we test the design in order to improve assurance
of its quality. In biology we probe the system, a process we can also call testing, get the
results, and rerun the results on the mechanistic model. Thus, in the reverse-engineered
process of modeling biology a test would be run twice: once on the biological system
itself and once on the mechanistic model. As a result, once we check all the tests known
at a given time-point, we get what we might call (borrowing from software engineering
terminology) a complete coverage of the desired behavior of the mechanistic model.
At that time-point, there are no more tests to preform on the system until more exper-
iments are carried out. In contrast, when engineering man-made systems the problem
of determining whether the requirements are sufficient is an interesting question in its
own right.



3 Regression Testing and Model Checking

The fact that when we come up with a mechanistic model there is at hand a fixed given
set of tests (the biological observations) suggests that we can use regression testing
to get a higher type of assurance of the model’s correctness. In engineering, regression
testing is used to compare different versions of the same design, by running the old test
suites on the new version to make sure that we haven’t inadvertently changed previously
decided-upon desired behavior. Thus, during the development of the design, we form a
collection of tests and save the results we got when running them on the present version.
Once a change is made, we run the same set of tests again and make sure that the new
design produces the same results. In the case of reverse-engineering a biological system
the comparison made by re-running the tests is not between an old and a new version of
the system, but between the real biological system and the proposed mechanistic model
thereof. Here, the collection of tests is already given, as the set of observations resulting
from the performed experiments.

Both in engineering and reverse-engineering performing additional ad-hoc tests can
produce interesting results. In the engineering world, arbitrary tests may produce behav-
iors that indicate the existence of bugs, causing the need to redo the design and imple-
mentation, whereas in reverse-engineering, ad hoc tests (such as running the formalized
models on additional inputs or in different ways) may produce interesting predictions
regarding the behavior of the biological system, or questions that need to be resolved
by further experimentation.

In engineering, we would like to use verification techniques, such as model-checking
(see, e.g., [CGP99]), in order to acquire greater confidence in the correctness of the de-
sign. Model-checking is a method to formally verify that all the possible behaviors of
the system satisfy a given requirement, and can be used with statecharts or LSCs. In
reverse-engineering of biological systems we could use model-checking to get around
the main disadvantage of model execution, which is its inability to cover all possi-
ble execution scenarios, which is particularly problematic for mechanistic models that
are non-deterministic. This would be done by model-checking the specification (LSCs)
against the mechanistic model (statecharts), and could provide a major additional boost
to the validity of the latter. One of the results of the model-checking process could be
interesting predictions regarding the behavior of the actual system.

4 Implementation

We have applied the suggestion made in this paper to the mechanistic model of [SH89]
that explains parts of the formation of the vulva in Caenorhabditis elegans. We have
formalized the mechanistic model in the form of statecharts, and the experimental ob-
servations (that led to the suggestion of this model) as existential LSCs. We then used
the Rhapsody tool [IL] and its testing component — the TestConductor [LK01]. In the
TestConductor, tests are given in the form of combinations of existential LSCs. Each
test can then be performed individually, or the tool can be asked to produce a report on
the entire behavior of the model when checked versus all the tests. Running regression
testing in different stages of the development of the statecharts model enabled us to
fine-tune the model to reproduce all the behaviors on which this model is based.



An interesting aspect of this particular work is that our mechanistic model is com-
pletely deterministic. Thus, testing a scenario using simulation is sufficient to make sure
that the mechanistic model reproduces the behavior depicted in the scenario. We thus
have full assurance that our formalization of the mechanistic model completely repro-
duces the data. This fact improves our confidence in the correctness of the proposed
mechanistic model. A detailed description of this modeling effort will be reported sep-
arately.

5 Concluding Remarks

Based on the above, we suggest that the state-based and scenario-based approaches
complete each other. We propose that biological systems should be modelled using both
approaches. Observations should be formalized by inter-object scenario-based methods
(in our case, LSCs using the Play-Engine tool), while the mechanisms should be formal-
ized by intra-object state-based methods (in our case using statecharts and the Rhapsody
tool). Once this is done we can simulate all the experiments carried out in practice and
use the state-based model to drive the simulation that the scenarios follow. Using re-
gression testing, we can ensure that the mechanistic model reproduces all the behaviors
observed in the living system.

A connection between Rhapsody and Play-Engine is currently under development,
which will enable them to work on cooperation; see [BHM04]. Such connection will
enable to verify automatically that a biological mechanistic model is consistent with
the experimental observations obtained by the system. We believe this would further
facilitate our understanding of biological systems and help simulate and analyze their
reactive nature.

References

[BHM04] D. Barak, D. Harel, and R. Marelly. Interplay: Horizontal scale-up and transition to
design in scenario-based programming. To appear, 2004.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[DH01] W Dam and D Harel. LSCs: Breathing life into message sequence charts. Formal

Methods in System Design, 19(1):45–80, 2001.
[EHC02] S. Efroni, D Harel, and I. R. Cohen. Modeling and simulation of the thymus. Multi-

disciplinary Approaches to Theory in Medicine, 2002.
[EHC03] S. Efroni, D. Harel, and I. R. Cohen. Toward rigorous comprehension of biologi-

cal complexity: modeling, execution, and visualization of thymic t-cell maturation.
Genome Res, 13(11):2485–97, 2003.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gramming, 8:231–274, 1987.

[Har02] D. Harel. A grand challenge for computing: Towards full reactive modeling of a
multi-cellular animal. Bulletin of the European Association for Theoretical Computer
Science, 81:226–235, 2002.

[HG97] D. Harel and E. Gery. Executable object modeling with statecharts. Computer,
30(7):31–42, 1997.

[HM03] D Harel and R Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer-Verlag, 2003.



[IL] I-logix,inc. http://www.ilogix.com.
[KHC03] N Kam, D Harel, and I. R. Cohen. The immune system as a reactive system: Modeling

t cell activation with statecharts. Bull. Math. Bio., 2003.
[KHK�03] N Kam, D Harel, H Kugler, R Marelly, A Pnueli, E. J. A. Hubbard, and M. J. Stern.

Formal modeling of c. elegans development: A scenario-based approach. In First
International Workshop on Computational Methods in Systems Biology, volume 2602
of Lecture Notes in Computer Science, pages 4–20, Roverto, Italy, February 2003.
Springer-Verlag.

[LK01] M. Lettrari and J. Klose. Scenario-based monitoring and testing of real-time UML
models. In 4th Int. Conf. on the Unified Modeling Language, Toronto, Canada, Octo-
ber 2001.

[SH89] P. W. Sternberg and H. R. Horvitz. The combined action of two intercellular signal-
ing pathways specifies three cell fates during vulval induction in c. elegans. Cell,
58(4):679–93, 1989.


