
From Nondeterministic Büchi and Streett Automata to Deterministic Parity
Automata

Nir Piterman
Ecole Polytechnique Fédéral de Lausanne (EPFL)

Abstract

Determinization and complementation are fundamental
notions in computer science. When considering finite au-
tomata on finite words determinization gives also a solution
to complementation. Given a nondeterministic finite au-
tomaton there exists an exponential construction that gives
a deterministic automaton for the same language. Dualiz-
ing the set of accepting states gives an automaton for the
complement language. In the theory of automata on infi-
nite words, determinization and complementation are much
more involved. Safra provides determinization construc-
tions for Büchi and Streett automata that result in deter-
ministic Rabin automata. For a Büchi automaton with n
states, Safra constructs a deterministic Rabin automaton
with nO(n) states and n pairs. For a Streett automaton with
n states and k pairs, Safra constructs a deterministic Rabin
automaton with (nk)O(nk) states and n(k + 1) pairs.

Here, we reconsider Safra’s determinization construc-
tions. We show how to construct automata with fewer states
and, most importantly, parity acceptance condition. Specif-
ically, starting from a nondeterministic Büchi automaton
with n states our construction yields a deterministic par-
ity automaton with n2n+2 states and index 2n (instead
of a Rabin automaton with (12)nn2n states and n pairs).
Starting from a nondeterministic Streett automaton with n
states and k pairs our construction yields a determinis-
tic parity automaton with nn(k+2)+2(k+1)2n(k+1) states
and index 2n(k + 1) (instead of a Rabin automaton with
(12)n(k+1)nn(k+2)(k+1)2n(k+1) states and n(k+1) pairs).
The parity condition is much simpler than the Rabin condi-
tion. In applications such as solving games and emptiness
of tree automata handling the Rabin condition involves an
additional multiplier of n2n! (or (n(k+ 1))2(n(k+ 1))! in
the case of Streett) which is saved using our construction.

1 Introduction

One of the fundamental questions in the theory of automata
is determinism vs. nondeterminism. Another related ques-
tion is the question of complementation. That is, given
some machine (in some complexity class) can we produce
a machine (in the same class) that accepts the complement
language? The problems of determinization and comple-
mentation are strongly related. Indeed, if the machine is
deterministic we just have to dualize its answer. If the ma-
chine is nondeterministic we do not have a simple solution.

In the theory of finite automata on finite words the rela-
tion between nondeterministic and deterministic automata
is well understood. We know that there exists an efficient
procedure that gets a nondeterministic automaton with n
states and constructs a deterministic automaton with 2n

states accepting the same language [24]. This construction
is also tight (cf. [8]). By dualizing the acceptance condition
of the deterministic automaton we get an automaton for the
complement language, which is again tight (cf. [8]).

In his proof that satisfiability of S1S is decidable, Büchi
introduces nondeterministic automata on infinite words [2].
Büchi takes a ‘normal’ finite automaton and runs it on in-
finite words. A run of such an automaton is an infinite se-
quence of states, instead of a finite sequence. The set of
states recurring infinitely often is used to define the accep-
tance condition. A run is accepting according to the Büchi
condition if the set of recurring states intersects the set of
accepting states.

In the case of finite automata on infinite words deter-
minization and complementation are much more involved.
Given a deterministic Büchi automaton one can easily con-
struct a nondeterministic Büchi automaton for the com-
plement language [16]. However, deterministic Büchi au-
tomata are not closed under complementation [17]. This
forced the introduction of more complex acceptance condi-
tions such as Rabin, Streett, and parity. A Rabin acceptance
condition is a set of pairs of subsets of the states. A run is
accepting according to a Rabin condition if there exists a
pair 〈E,F 〉 such that the set of recurring states does not in-
tersect E but does intersect F . The Streett condition is the

dual of Rabin. A run is accepting according to a Streett con-
dition if for every pair 〈E,F 〉 we have that if F intersects
the set of recurring states so must E. A parity condition,
is syntactically both Rabin and Streett. A parity condition
gives a priority to every state and a run is accepting if the
minimal recurring priority is even. The number of priori-
ties is the index of the parity condition. A Rabin or Streett
condition with n pairs is equivalent to a parity condition of
index 2n + 1 using a gadget with n2n! states. All three
conditions are strong enough to allow determinization [33].

In the case of automata on infinite words determinization
and complementation are no longer so strongly coupled.
Determinization can be used for complementation by dual-
izing the acceptance condition of the deterministic automa-
ton. However, there are complementation constructions that
are much simpler than determinization. Specifically, Büchi
showed that the class of languages recognized by nondeter-
ministic Büchi automata is closed under complement with-
out determinization [2]. Sistla, Vardi, and Wolper sug-
gested a single exponential complementation construction
[32], however with a quadratic exponent. This was fol-
lowed by a very elegant complementation construction of
Kupferman and Vardi [14]. This construction was recently
improved to give a complement automaton with at most
(0.96n)n states [7], which is currently the best complemen-
tation construction. See also [33].

Determinization constructions for automata on infinite
words followed a similar path1. McNaughton showed a de-
terminization construction that is doubly exponential and
results in an automaton with the Müller acceptance condi-
tion [19]. Safra gives a determinization construction which
takes a nondeterministic Büchi automaton with n states
and returns a deterministic Rabin automaton with at most
(12)nn2n states and n pairs [26]. Michel showed that this
is essentially optimal and that the best possible upper bound
for determinization and complementation is n! [20, 18].

Safra’s idea is to use a tree of subset constructions. The
root of the tree is the classical subset construction for au-
tomata on finite words. In every transition, a node with set
of states S spawns a new son that includes all the accepting
states in S. Thus, all the states in a leaf are the endpoints
of runs that agree (more or less) on the number of times
they have visited the acceptance set. In order to keep the
tree finite, we ensure that every state is followed in at most
one branch of the tree, we keep the copy that visited the ac-
ceptance set the most. Furthermore, whenever all the states
followed by some node have visited the acceptance set, the
node is marked as accepting and all its descendants are re-
moved. The Rabin acceptance condition associates a pair
with every node in the tree. There should be some node that
is erased from the tree finitely often and marked accepting

1Incidentally, both determinization constructions provided the best up-
per bound for complementation at the time of their introduction.

infinitely often for a run to be accepting.
The introduction of stronger acceptance conditions

raises the question of determinization of automata using
these conditions. Rabin and parity automata can be eas-
ily converted to Büchi automata. Given a Rabin au-
tomaton with n states and k pairs there exists an equiv-
alent nondeterministic Büchi automaton with n(k + 1)
states. Applying Safra’s determinization on top of this au-
tomaton produces a deterministic Rabin automaton with
(12)n(k+1)(n(k+1))2n(k+1) states and n(k + 1) pairs. For
Streett automata, going through nondeterministic Büchi au-
tomata is far from optimal. A nondeterministic Streett au-
tomaton with n states and k pairs can be converted to a non-
deterministic Büchi automaton with n2k states [3], which
is optimal [29]. Combining this conversion with the de-
terminization results in a doubly exponential deterministic
automaton. In order to handle Streett automata, Safra gener-
alized his determinization construction [28]. Given a Streett
automaton with n states and k pairs he constructs a Rabin
automaton with (nk)O(nk) states and O(nk) pairs. As
Streett automata are more general than Büchi automata, the
lower bound shows that this is essentially optimal.

We mentioned that the Rabin and Streett conditions are
duals; the dual of the parity condition is parity again. Some-
times, given a nondeterministic automaton, we need to
generate a deterministic automaton for the complementary
language (this is called co-determinization). While com-
plementing a deterministic automaton can be easily done
by dualizing the acceptance condition, such a dualization
results in an automaton of a different type. Thus, co-
determinization of a Büchi (or Streett) automaton results in
a deterministic Streett automaton. Translating from Streett
to Rabin or parity is exponential, we add a gadget with k2k!
states where k is the number of pairs of the Streett condition
[28]. The translation of Rabin to Streett or parity is dual
and has exactly the same complexity.

Determinization has many uses other than complemen-
tation. Indeed, Rabin uses McNaughton’s determinization
of Büchi automata to complement nondeterministic Rabin
tree automata [23].2 A node in an infinite tree belongs to
infinitely many branches. A tree automaton has to choose
states that handle all branches in a single run. In many
cases, we want all branches of the tree to belong to some
word language. If we have a deterministic automaton for
this word language, we run it in all directions simultane-
ously. This kind of reasoning enables conversion of al-
ternating tree automata to nondeterministic tree automata
and complementation of nondeterministic tree automata (cf.
[23, 33, 34]). Deterministic automata are used also for solv-

2Rabin uses this complementation in order to prove that satisfiability of
S2S is decidable [23]. This is essentially the same use that Büchi had for
the complementation of Büchi automata. In the context of tree automata
one has to use a more general acceptance condition.

2

ing games and synthesizing strategies. In the context of
games, the opponent may be able to choose between differ-
ent options. Using a deterministic automaton we can follow
the game step by step and monitor the goal of the game.
For example, in order to solve a game in which the goal is
an LTL formula, one first converts the LTL formula to a de-
terministic automaton and then solves the resulting Rabin
game [22] (cf. [13, 4]). Using Safra’s determinization, rea-
soning about tree automata reduces to reasoning about non-
deterministic Rabin tree automata and reasoning about gen-
eral games reduces to reasoning about Rabin games. Some
of these applications use co-determinization, the determin-
istic automaton for the complementary language.

In this paper we revisit Safra’s determinization construc-
tions. We show that we can further compact the tree struc-
ture used by Safra to get a smaller representation of the de-
terministic automata. By using dynamic node names in-
stead of the static names used by Safra we can construct
directly a deterministic parity automaton. Specifically,
starting from a nondeterministic Büchi automaton with n
states, we end up with a deterministic parity automaton with
n2n+2 states and index 2n (instead of Rabin automaton with
(12)nn2n states and n pairs). Starting from a Streett au-
tomaton with n states and index k, we end up with a de-
terministic parity automaton with nn(k+2)+2(k+1)2n(k+1)

states and index 2n(k+1) (instead of Rabin automaton with
(12)n(k+1)nn(k+2)(k+1)2n(k+1) states and n(k+1) pairs).
For both constructions, complementation is by considering
the same automaton with a dual parity condition.

Though dividing the number of states by 12n is not neg-
ligible, the main importance of our result is in the fact that
the resulting automaton is a parity automaton instead of Ra-
bin. Solving Rabin games (equivalently, emptiness of non-
deterministic Rabin tree automata) is NP-complete in the
number of pairs [6]. Solution of parity games is in NP∩co-
NP. The current best upper bound for solving Rabin games
is mnk+1k! where m is the number of transitions, n the
number of states, and k the number of pairs [21]. Using our
determinization construction instead of reasoning about Ra-
bin conditions we can consider parity conditions. The best
upper bound for solving parity games is mnk/2 [10] (cf.
[1, 11] for other solutions). That is, we save a multiplier of
at least kk!.

The gain by using our determinization is even greater
when we consider applications that use co-determinization.
As Streett is the dual of Rabin it follows that solving Streett
games is co-NP-complete. Even if we ignore the compu-
tational difficulty, the Rabin acceptance condition at least
allows using memoryless strategies. That is, when reason-
ing about Rabin games (or Rabin tree automata) the way
to resolve nondeterminism relies solely on the current loca-
tion. This is not the case for Streett. In order to solve Streett
games we require exponential memory [5, 9]. Applications

like nondeterminization of alternating tree automata use co-
determinization but require the result to be a Rabin or parity
automaton. Hence, the resulting deterministic Streett au-
tomaton has to be converted to a parity automaton. Again,
the price tag of this conversion is a blowup of k2k! where
k is the number of pairs. As the complexity of reasoning
about parity games is mnk/2, the extra multiplier grows to
(k2k!)k.

Recently, Kupferman and Vardi showed that they can
check the emptiness of an alternating parity tree automaton
without directly using Safra’s determinization [15]. Their
construction can be used for many game / tree automata ap-
plications that require determinization. However, Kupfer-
man and Vardi use Safra’s determinization to get a bound
on the size of the minimal model of the alternating tree au-
tomaton. Given such a bound, they can check emptiness
by restricting the search to small models. Our improved
construction implies that the complexity of their algorithm
reduces from (12)n2

n4n2+2n(n!)2n to n4n2+2n.

2 Nondeterministic Automata

Given a finite set Σ, a word over Σ is a finite or infinite
sequence of symbols from Σ. We denote by Σ∗ the set of
finite sequences over Σ and by Σω the set of infinite se-
quences over Σ. Given a word w = σ0σ1σ2 · · · ∈ Σ∗ ∪Σω,
we denote by w[i, j] the word σi · · ·σj .

A nondeterministic automaton is N = 〈Σ, S, δ, s0, F 〉,
where Σ is a finite alphabet, S is a finite set of states, δ : S×
Σ → 2S is a transition function, s0 ∈ S is an initial state,
and F is an acceptance condition to be defined below. A
run ofN on a word w = w0w1 · · · is an infinite sequence of
states s0s1 . . . ∈ Sω such that s0 ∈ S0 and forall j ≥ 0 we
have sj+1 ∈ δ(sj , wj). For a run r = s0s1 . . ., let inf(r) =
{s ∈ S | s = si for infinitely many i’s} be the set of all
states occurring infinitely often in the run. We consider four
acceptance conditions. A Rabin condition F is a set of pairs
{〈E1, F1〉, . . . , 〈Ek, Fk〉} where forall i we have Ei ⊆ S
and Fi ⊆ S. We call k the index of the Rabin condition. A
run is accepting according to the Rabin condition F if there
exists some i such that inf(r)∩Ei = ∅ and inf(r)∩Fi 6=
∅. That is, the run visits finitely often states from Ei and
infinitely often states from Fi. The Streett condition is the
dual of the Rabin condition. Formally, a Streett condition F
is also a set of pairs {〈R1, G1〉, . . . , 〈Rk, Gk〉} where forall
i we have Ri ⊆ S and Gi ⊆ S. We call k the index of
the Streett condition. A run is accepting according to the
Streett condition F if for every i either inf(r) ∩Gi = ∅ or
inf(r) ∩ Ri 6= ∅. That is, the run either visits Gi finitely
often or visits Ri infinitely often. As a convention for pairs
in a Rabin condition we use E and F and for pairs in a
Streett condition we use R and G. A parity condition F is
a partition {F0, . . . , Fk} of S. We call k the index of the

3

parity condition. A run is accepting according to the parity
condition F if for some even iwe have inf(r)∩Fi 6= ∅ and
forall i′ < i we have inf(r) ∩ Fi′ = ∅. A Büchi condition
F is a subset of S. A run is accepting according to the
Büchi condition F if inf(r)∩F 6= ∅. That is, the run visits
infinitely often states from F . A wordw is accepted byN if
there exists some accepting run of N over w. The language
of N is the set of words accepted by N . Formally, L(N) =
{w | w is accepted by N}. Two automata are equivalent if
they accept the same language.

Given a set of states S′ ⊆ S and a letter σ ∈ Σ, we
denote by δ(S′, σ) the set

⋃
s∈S′ δ(s, σ). Similarly, for

a word w ∈ Σ∗ we define δ(S′, w) in the natural way:
δ(S′, ε) = S′ and δ(S′, wσ) = δ(δ(S′, w), σ). For two
states s and t and w ∈ Σ∗, we say that t is reachable from s
reading w if t ∈ δ({s}, w).

An automaton is deterministic if for every state s ∈ S
and letter σ ∈ Σ we have |δ(s, σ)| = 1. In that case we
write δ : S × Σ → S.

We denote automata by acronyms in {N,D} ×
{R,S, P,B} × {T,W}. The first symbol stands for the
branching mode of the automaton: N for nondeterminis-
tic and D for deterministic. The second symbol stands for
the acceptance condition of the automaton: R for Rabin, S
for Streett, P for parity, and B for Büchi. The last symbol
stands for the object the automaton is reading: T for trees
and W for words. For example, a DRW is a deterministic
Rabin word automaton and a NBT is a nondeterministic
Büchi tree automaton.

3 Determinization of Büchi Automata
In this section we give a short exposition of Safra’s deter-
minization [26] and show how to improve it. We replace
the constant node names with dynamic names, which al-
low us to simulate the index appearance record construction
within the deterministic automaton. We get a determinis-
tic automaton with fewer states and in addition a parity au-
tomaton instead of Rabin.

3.1 Safra’s Construction

Here we describe Safra’s determinization construction [26,
27]. The construction takes an NBW and constructs an
equivalent DRW. Safra constructs a tree of subset construc-
tions. Every node in the tree is labeled by the states it fol-
lows. The labels of siblings are disjoint and the label of a
node is a strict superset of the labels of its descendants. The
sons are ordered according to their age. The transition of a
tree replaces the label of every node by the set of possible
successors. If the label now includes some accepting states,
we add a new son to the node with all these accepting states.
Intuitively, the states that label the sons of a node have al-
ready visited an accepting state. Thus, the states in the label

of a node that are not in the labels of its descendants are
states that still owe a visit to the acceptance set. We move
states occurring in more than one node to older siblings. If
the label of a node becomes equal to the union of labels of
its descendants then we mark this node as accepting and re-
move all its descendants. If some node remains eventually
always in the tree and is marked accepting infinitely often,
the run is accepting. Formally, we have the following.

Let N = 〈Σ, S, δ, s0,F〉 be an NBW with |S| = n. Let
V = [n]. We first define Safra trees.

A Safra tree t over S is 〈N, r, p, ψ, l, E, F 〉 where the
components of t are as follows.
• N ⊆ V is a set of nodes.
• r ∈ N is the root node.
• p : N → N is the parent function defined over N −
{r}, defining for every v ∈ N − {r} its parent p(v).

• ψ is a partial order defining “older than” on siblings
(i.e., children of the same node).

• l : N → 2S is a labeling of the nodes with subsets
of S. The label of every node is a proper superset of
the union of the labels of its sons. The labels of two
siblings are disjoint.

• E,F ⊆ V are two disjoint subsets of V . They are used
to define the Rabin acceptance condition.

The following claim is proven in [26, 27, 12, 15].

Claim 3.1 The number of nodes in a Safra tree is at most
n. The number of Safra trees over N is not more than
(12)nn2n.

Proof: As the labels of siblings are disjoint and the union
of labels of children is a proper subset of the label of the
parent it follows that every node is the minimal (according
to the subset order on the labels) to contain (at least) some
state s ∈ S. It follows that there are at most n nodes.

The number of ordered trees on n nodes is the nth Cata-
lan number. That isCat(n) = (2n)!

n!(n+1)! ≤ 4n. We represent
the naming of nodes by f : [n] → [n] that associates the ith
node with its name f(i). There are at most nn such func-
tions. The labeling function is l : S → [n] where l(s) = i
means that s belongs to the ith node and all its ancestors. Fi-
nally, we representE and F by a function a : V → {0, 1, 2}
such that a(i) = 0 means that i /∈ E ∪ F , a(i) = 1 means
that i ∈ E, and a(i) = 2 means that i ∈ F . There are at
most 3n such functions.

To summarize, the number of trees is at most 22n · 3n ·
nn · nn = (12)nn2n.

We construct the DRW D equivalent to N . Let D =
〈Σ, D, ρ, d0,F ′〉where the components ofD are as follows.
• D is the set of Safra trees over S.
• d0 is the tree with a single node 1 labeled by {s0}

where E is V − {1} and F is the empty set.

4

• The Rabin acceptance condition F ′ is
{〈E1, F1〉, . . . , 〈En, Fn〉} where Ei = {d ∈
D | i ∈ Ed} and Fi = {d ∈ D | i ∈ Fd}.

• For every tree d ∈ D and letter σ ∈ Σ the transition
d′ = ρ(d, σ) is the result of the following transforma-
tions on d. We use temporarily the set of names V ′

disjoint from V .
1. For every node v with label S′ replace S′ by
δ(S′, σ) and set E and F to the empty set.

2. For every node v with label S′ such that S′∩F 6=
∅, create a new node v′ ∈ V ′ which becomes the
youngest child of v. Set its label to be S′ ∩ F .

3. For every node v with label S′ and state s ∈ S′

such that s also belongs to the label of an older
sibling v′ of v, remove s from the label of v and
all its descendants.

4. Remove all nodes with empty labels.
5. For every node v whose label is equal to the

union of the labels of its children, remove all de-
scendants of v. Add v to F .

6. Add all unused names to E.
7. Change the nodes in V ′ to nodes in V .

Theorem 3.2 [26] L(D) = L(N).

For other expositions of this determinization we refer the
reader to [12, 18, 25].

3.2 From NBW to DPW

We now present our construction. Intuitively, we take
Safra’s construction and replace the constant node name
with a dynamic one that decreases as nodes below it get
erased from the tree (called number below). Using the new
names we can give up the sibling relation. The smaller the
name of a node, the older it is. Furthermore, the names
give a natural parity order on good and bad events. Erasing
a node is a bad event (which forces all nodes with greater
name to change their name). Finding that the label of some
name is equal to the union of labels of its descendants is a
good event. The key observation is that a node can change
its name at most a finite number of times without being
erased. It follows, that the names of all nodes that stay
eventually in the tree get constant. Thus, bad events hap-
pen eventually only to nodes that get erased from the tree.
Then we can monitor good events that happen to the nodes
with constant names and insist that they happen infinitely
often. Formally, we have the following.

Let N = 〈Σ, S, δ, s0,F〉 be an NBW with |S| = n.
For the sake of the proof we would like to treat the node as
an entity. Hence, we distinguish between the set of nodes
V = [2n] of a tree and their numbers that may change and
range over [n]. All important information (tree structure,

label) can be associated with the numbers and in practice
the names are not needed.

A compact Safra tree t over S is 〈N,M, 1, p, l, e, f〉
where the components of t are as follows.
• N ⊆ V is a set of nodes.
• M : N → [n] is the numbering function.
• 1 ∈ N such that M(1) = 1 is the root node.
• p : N → N is the parent function.
• l : N → 2S is a labeling of the nodes with subsets

of S. The label of every node is a proper superset of
the union of the labels of its sons. The labels of two
siblings are disjoint.

• e, f ∈ [n+ 1] are used to define the parity acceptance
condition. The number e is used to memorize the min-
imal node that changed its name and f the minimal
node that is equivalent to its descendants.

Notice that we give up the sibling relation and replace the
sets E and F by numbers e and f . We require that the
numbering M is a bijection from N to [|N |]. That is, the
numbers of the nodes in N are consecutive starting from
the root, which is numbered 1.

The following claim is proven much like the similar
proof for Safra trees.

Claim 3.3 The number of compact Safra trees over S is not
more than n2n+2.

Proof: Just like Safra trees there are at most n nodes. We
use only the numbers of the nodes. The parenthood relation
is represented by a function p : [n] → [n]. As in Safra trees,
every node has at least one unique state in S that belongs
to it. We add the function l : S → [n] that associates a
state with the minimal node (according to the descendant
order in the tree) to which it belongs. Finally, there are n
options for e and f each. It follows that there are at most
n · n · nn · nn = n2n+2 different compact Safra trees.3

We construct the DPW D equivalent to N . Let D =
〈Σ, D, ρ, d0,F ′〉where the components ofD are as follows.
• D is the set of compact Safra trees over S.
• d0 is the tree with a single node 1 labeled {s0} and

numbered 1 where e = 2 and f = 1.
• The parity acceptance condition F ′=〈F0, . . . , F2n−1〉

is defined as follows.
– F0 = {d ∈ D | f = 1}
– F2i+1 = {d ∈ D | e = i+ 2 and f ≥ e}
– F2i+2 = {d ∈ D | f = i+ 2 and e > f}

3We note that there is much order in the numbering of the nodes which
we have not used to reduce the number of states. We know that the numbers
respect the parenthood relation. If we add order to the sons of a node
(which practically comes for free: the number of ordered trees on n nodes
is 4n and the number of unordered trees is 3n) then the numbers respect
this order as well.

5

Note that we do not consider the case e = 1. In this
case the label of the root is empty. This is a rejecting
sink state.4

• For every tree d ∈ D and letter σ ∈ Σ the transition
d′ = ρ(d, σ) is the result of the following transforma-
tions on d.

1. For every node v with label S′ replace S′ by
δ(S′, σ).

2. For every node v with label S′ such that S′∩F 6=
∅, create a new son v′ /∈ N of v. Set its la-
bel to S′ ∩ F . Set its number to the minimal
value greater than all used numbers. We may
have to use temporarily numbers in the range
[(n+1)..(2n)].

3. For every node v with label S′ and state s ∈ S′

such that s belongs also to some sibling v′ of v
such that M(v′) < M(v), remove s from the
label of v and all its descendants.

4. For every node v whose label is equal to the
union of the labels of its children, remove all de-
scendants of v. Call such nodes green. Set f to
the minimum of n+1 and the numbers of green
nodes. Notice that all nodes in [(n+1)..(2n)]
cannot be green.

5. Remove all nodes with empty labels. Set e to the
minimum of n+1 and the numbers of removed
nodes.

6. Let Z denote the set of nodes removed during the
transformation. For every node v let empty(v)
be |{v′ ∈ Z | M(v′) < M(v)}|. That is, we
count how many nodes have empty label and
smaller number than the number of v. For every
node v such that l(v) 6= ∅ we change the number
of v toM(v)−empty(v). The resulting numbers
are consecutive again and in the range [n].

We show that the two automata are equivalent. The proof is
an adaptation of Safra’s proof [26].

Theorem 3.4 L(D) = L(N).

Proof: Consider w ∈ L(N). We have to show w ∈
L(D). Let r = s0s1 · · · be an accepting run of N on
w. Let r′ = d0d1 · · · be the run of D on w and let
di = 〈Ni,Mi, 1, pi, li, ei, fi〉. It is simple to see that forall
i ≥ 0 we have si ∈ li(1). If step 4 is applied infinitely often
to node 1 (equivalently, f = 1 infinitely often, or during the
transformation of the trees the label of 1 equals the labels of
its sons) then r′ visits F0 infinitely often.

Otherwise, from some point onwards in r′ we have step 4
is not applied to node 1. Let j1 be this point. There exists

4We note that the information contained in e, f is used solely to define
the parity condition. Thus, instead of maintaining both e and f ((n +
1)2 options) we could maintain the result of the analysis using one value
ranging between 0 and 2n−1 (2n options). This would reduce the number
of states to 2n2n+1.

a point j′ > j1 such that sj′ ∈ F . It follows that forall
j > j′ we have sj belongs to some son v1 of 1. Notice, that
just like in Safra’s case, the run r may start in some son of
1 and move to a son with a smaller number. However, this
can happen finitely often and hence we treat v1 as constant.
The number M(v1) may decrease finitely often until it is
constant. Let o1 be such that forall o > o1 we have a1 =
Mo(v1). As Mo(v1) = a1 forall o > o1 it follows that
eo > a1 forall o > o1.

Suppose that step 4 is applied to v1 infinitely often
(equivalently, f ≤ a1 infinitely often). It follows that for
every odd p < 2a1 − 2 we have Fp is visited finitely often
and either F2a1−2 is visited infinitely often or there exists
some even p′ < 2a1 − 2 such that Fp is visited infinitely
often. In this case D accepts w.

Otherwise, step 4 is applied to v1 finitely often. We con-
struct by induction a sequence v1, . . . , vk such that eventu-
ally v1, . . . , vk do not change their numbers and r belongs
to all of them. As the number of active nodes in a tree
(nodes v such that l(v) 6= ∅) is bounded by n we can re-
peat the process only finitely often. Hence, w is accepted
by D.

In the other direction, consider w ∈ L(D). Let r′ =
d0d1 · · · be the accepting run of D on w where di =
〈Ni,Mi, 1, pi, li, fi, ei〉. Let F2b be the minimal set to be
visited infinitely often. It follows that eventually always
ei > b+ 1 and infinitely often fi = b+ 1.

We first prove two claims. The first, showing that all the
states of N that appear in labels of nodes of a state of D are
reachable from the initial state of N . The second, proves
that if for some 2j the set F2j is visited in di and in di′ and
no visit to Fj′ for j′ < 2j occurs between i and i′, then there
exists a node v such that Ma(v) = j + 1 forall i ≤ a ≤ i′

and for every state s in li′(v) we find a run segment of N
that starts from some state of li(v), visits F , and ends in s.

Claim 3.5 For every i, j, and every state s ∈ li(j) we have
s is reachable from s0 reading w[0, i− 1].

Proof: We prove the claim for all j ≥ 1 by induction on
i. Clearly, it holds for i = 0. Suppose that it holds for i.
As li+1(j) ⊆ δ(li(j′), wi) for some j′ it follows that every
state in li+1(j) is reachable from s0 reading w[0, i].

Claim 3.6 Let i < i′ be two locations such that di, di′ ∈
F2j for some j and forall j′ ≤ 2j and forall i < a < i′

we have da /∈ Fj′ . Then there exists a node v such that
Ma(v) = j + 1 forall i ≤ a ≤ i′ and every state s in li′(v)
is reachable from some state in li(v) reading w[i, i′ − 1]
with a run that visits F .

Proof: There exists some node v such that Mi(v) = j+ 1
(as di ∈ F2j). By assumption, for every j′ < 2j the set
Fj′ is not visited between i and i′. Hence, for every node

6

v′ such that Mi(v) ≤ j + 1 we have that Ma(v′) = Mi(v′)
forall i ≤ a ≤ i′. That is, between i and i′ all nodes whose
number is at most j + 1 do not change their numbers. In
particular, forall i ≤ a ≤ i′ we have Ma(v) = j + 1. We
show that for every i < a < i′ and every descendant v′ of
v, every state in la(v′) is reachable from some state in li(v)
along a run visiting F . Consider some descendant v′ of v
appearing in di+1 (there is at most one, it must exist as F2j

is not visited between i and i′). As li+1(v′) ⊆ δ(li(v), wi)∩
F this is obviously true for i + 1. Suppose it is true for a
and prove for a + 1. We know that for every descendant
v′ of v either la+1(v′) ⊆ δ(la(v), wa) ∩ F or for some
descendant v′′ of v we have la+1(v′) ⊆ δ(la(v′′), wa) (v′′

may be v′). As during the transformation from di′−1 to di′

the label li′(v) equals the union of labels of sons of v the
claim follows.

We construct an infinite tree with finite branching degree.
The root of the tree corresponds to the initial state of N .
Every node in the tree is labeled by some state of N and a
time stamp i. An edge between the nodes labeled (s, i) and
(t, j) corresponds to a run starting in s, ending in t, reading
w[i, j − 1], and visiting F . From König’s lemma this tree
contains an infinite branch. The composition of all the run
segments in this infinite branch is an infinite accepting run
of N on w.

Let (s0, 0) label the root of T . Let i0 be the maximal
location such that forall j < 2b the set Fj is not visited
after i0. Let v be the node such that forall i > i0 we have
Mi(v) = b + 1. Let i1 be the minimal location such that
i1 > i0 and fi1 = b + 1 (that is step 4 was applied to v).
For every state s in li1(v) we add a node to T , label it by
(s, i1) and connect it to the root. We extend the tree by
induction. We have a tree with leafs labeled by the states in
la(v) stamped by time a, and fa = b+1 (step 4 was applied
to v). That is, for every state s in la(v) there exists a leaf
labeled (s, a). We know that F2b is visited infinitely often.
Hence, there exists a′ > a such that fa′ = k + 1 (step 4 is
applied to v). For every state s′ in la′(v) we add a node to
T and label it (s′, a′). From Claim 3.6 there exists a state s
in la(v) such that s′ is reachable from s reading w[a, a′−1]
with a run that visits F . We connect (s′, a′) to (s, a).

From Claim 3.5 it follows that every edge (s0, 0), (s′, i′)
corresponds to some run starting in s0, ending in s′, and
reading w[0, i′ − 1]. From Claim 3.6, every other edge in
the tree (s, a), (s′, a′) corresponds to some run starting in
s, ending in s′, reading w[a, a′ − 1], and visiting F . From
König’s lemma there exists an infinite branch in the tree.
This infinite branch corresponds to an accepting run of N
on w.

Theorem 3.7 For every NBW N with n states there exists
a DPW with n2n+2 states and index 2n that is equal to N .

We note that this improves Safra’s construction in two
ways. First, we reduce the number of states from (12)nn2n

to n2n+2. Second, our automaton is a parity automaton
which is amenable to simpler algorithms. Many times we
are interested in a deterministic automaton for the comple-
ment language, a process called co-determinization. The
natural complement of a DRW is a DSW. However,the
Streett acceptance condition is less convenient in many ap-
plications (due to the fact that Streett acceptance conditions
require memory). Thus, the complement automaton is usu-
ally converted to a DPW using the IAR construction [28].
In such a case, one would have to multiply the number of
states by k2k! where k is the number of Rabin pairs. A sim-
ilar effect occurs when using deterministic automata in the
context of games. Solution of Rabin games incurs an addi-
tional multiplier of k2k!. Obviously, with our construction
this penalty is avoided.

4 Determinization of Streett Automata

In this section we give a short exposition of Safra’s deter-
minization of Streett automata [28] and show how to im-
prove it. Again, we replace the constant node names with
dynamic names. We get a deterministic automaton with
fewer states and in addition a parity automaton instead of
Rabin. The intuition is similar to the construction in Sec-
tion 3. Due to space restrictions, all proofs in this section
are given in Appendix A.

4.1 Safra’s Construction

Here we describe Safra’s determinization for Streett Au-
tomata [28]. The construction takes an NSW and constructs
an equivalent DRW.

As mentioned, in the case of Streett automata, deter-
minization via conversion to Büchi automata is less than
optimal. Safra generalizes his construction to work for
Streett automata. The idea is still to use a set of subset
constructions. Let S = 〈Σ, S, δ, s0,F〉 be an NSW where
F = {〈R1, G1〉, . . . , 〈Rk, Gk〉}. We say that a run r of S
is accepting according to the witness set J ⊆ [k] if for ev-
ery j ∈ J we have inf(r) ∩ Rk 6= ∅ and for every j /∈ J
we have inf(r) ∩ Gk = ∅. It is easy to construct an NBW
whose language is all words accepted according to witness
set J . The NBW has two parts. In the first part it waits until
all visits toGj for j /∈ J have occurred. Then it moves non-
deterministically to the second part where it waits for visits
to Rj foreach j ∈ J according to their order and disallows
visits toGj for every j /∈ J . If the automaton loops through
all j ∈ J infinitely often the run is accepting. Unfortu-
nately, the number of possible witness sets is exponential.

Safra’s construction arranges all possible runs of the
NSW and all relevant witness sets in a tree structure. A

7

state is again a tree of subset constructions. Every node in
a tree represents a process that is monitoring some witness
set and checking this witness set. The node for witness set
J follows some set of states. It waits for visits to Rj for
every j ∈ J (in descending order), if this happens without
visiting Gj for j /∈ J then the node succeeds and starts all
over again.

A Streett Safra tree is a tree whose nodes are labeled by
subsets of the states in S. The labels of siblings are disjoint
and the labels of sons form a partition of the label of the
parent. In addition every node is annotated by a subset J ⊆
[k]. The annotation of a son misses at most one element
from the annotation of the parent. Every node that is not a
leaf has at least one son whose annotation is a strict subset.
In addition, children are ordered according to their age.

The root node monitors the set [k] as a possible witness
set. If some node is annotated with J and has a child anno-
tated J − {j} this means that the child has given up on the
hope that Rj will occur. If a node has given up on Rj but
visits Gj then the states visiting Gj have no place in this
node and they are moved to a new sibling. Similarly, if a
node has given up on Rj and visits Rj then the states visit-
ing Rj have no place in this node and they are moved to a
new sibling. Whenever the label of a node gets empty it is
removed from the tree. If all the states followed by a node
completed a cycle through its witness set, all the descen-
dants of this node are removed and it is marked accepting.
The Rabin condition associates a pair with every node. A
run is accepting if some node is erased finitely often and
marked accepting infinitely often. Formally, we have the
following.

Let S = 〈Σ, S, δ, s0,F〉 be an NSW where F =
{〈R1, G1〉, . . . , 〈Rk, Gk〉} and |S| = n. Let m = n(k + 1)
and V = [m]. We first define Streett Safra trees.

A Streett Safra tree t over S is 〈N, r, p, ψ, l, h, E, F 〉
where the components of t are as follows.
• N ⊆ V is the set of nodes.
• r ∈ N is the root node.
• p : N → N is the parent function defined over N −
{r}, defining for every v ∈ N − {r} its parent p(v).

• ψ is a partial order defining “older than” on siblings
(i.e., children of the same node).

• l : N → 2S is a labeling of nodes with subsets of
S. The label of every node is equal to the union of
the labels of its sons. The labels of two siblings are
disjoint.

• h : N → 2[k] annotates every node with a set of in-
dices from [k]. The root is annotated by [k]. The an-
notation of every node is contained in that of its parent
and it misses at most one element from the annotation
of the parent. Every node that is not a leaf has at least
one son with strictly smaller annotation.

• E,F ⊆ V are two disjoint subsets of V . They are used

to define the Rabin acceptance condition.
The following claim is proven in [28, 31].

Claim 4.1 The number of nodes in a Streett Safra tree is at
most n(k + 1). The number of Streett Safra trees over S is
at most (12)n(k+1)nn(k+2)(k+1)2n(k+1).

We construct the DRW D equivalent to S. Let D =
〈Σ, D, ρ, d0,F ′〉where the components ofD are as follows.
• D is the set of Streett Safra trees over S.
• d0 is the tree with a single node 1 labeled by {s0}

where E is V − {1} and F is the empty set.
• The Rabin acceptance condition F ′ is
{〈E1, F1〉 . . . , 〈Em, Fm〉} where
Ei = {d ∈ D | i ∈ Ed} and Fi = {d ∈ D | i ∈ Fd}.

• For every tree d ∈ D and letter σ ∈ Σ the transition
d′ = ρ(d, σ) is the result of the following (recursive)
transformation applied on d starting from the root. Be-
fore we start, we set E and F to the empty set and
replace the label of every node v by δ(l(v), σ). We use
temporarily the set of names V ′ disjoint from V .

1. If v is a leaf such that h(v) = ∅ stop.
2. If v is a leaf such that h(v) 6= ∅, add to v a new

youngest son v′ ∈ V ′. Set l(v′) = l(v) and
h(v′) = h(v)− {max(h(v))}.

3. Let v1, . . . , vl be the sons of v (ordered from
oldest to youngest) and let j1, . . . jl be the in-
dices such that ji ∈ h(v) − h(vi) (note that
|h(v)−h(vi)| ≤ 1; in case that h(v) = h(vi) we
have ji = 0). Apply the procedure recursively
on v1, . . . , vl (including sons created in step 2
above).
For every son vi and every state s ∈ l(vi) do the
following.
(a) If s ∈ Rji

, remove s from the label of vi and
all its descendants. Add a new youngest son
v′ ∈ V ′ to v. Set l(v′) = {s} and h(v′) =
h(v)− {max(h(v) ∩ {1, . . . , ji − 1})}.

(b) If s ∈ Gji
, remove s from the label of vi and

all its descendants. Add a new youngest son
v′ ∈ V ′ to v. Set l(v′) = {s} and h(v′) =
h(v)− {ji}.5

4. If a state s appears in l(vi) and l(vi′) and ji < ji′
then remove s from the label of vi′ and all its
descendants.

5. If a state s appears in l(vi) and l(vi′) and ji =
ji′ then remove s from the label of the younger
sibling and all its descendants.

5We note that in Safra’s original construction [28, 30] the rank of the
new node is set to h(v′) = h(v) − {max(h(v))}. In case that both
Gji and Rji are visited infinitely often this may lead to the following
situation. Suppose that the node v has a son v′ that is waiting for a visit to
Rji where ji is not the maximal in h(v). In the case that Gji is visited,
the runs are moved to new siblings that await max(h(v)) again. This way,
the run may cycle infinitely often between max(h(v)) and ji, leading to
incompleteness of the construction.

8

6. Remove sons with empty label.
7. If all sons are annotated by h(v) remove all the

sons and all their descendants. Add v to F .
Finally, we add all unused names toE, remove unused
names from F , and change the nodes in V ′ to nodes in
V .

Theorem 4.2 [28] L(D) = L(N).

For other expositions of this determinization we refer the
reader to [12, 30].

4.2 From NSW to DPW

We now present our construction. Let S = 〈Σ, S, δ, s0,F〉
be an NSW where F = {〈R1, G1〉, . . . , 〈Rk, Gk〉} and
|S| = n. Denote m = n(k + 1). For the sake of the proof,
we distinguish between the set of nodes V = [2m] of a tree
and their numbers that range over [m]. All important in-
formation (tree structure, label) can be associated with the
numbers and in practice names are not needed.

A compact Streett Safra tree t over S is
〈N,M, 1, p, l, h, e, f〉 where the components of t are
as follows.
• N ⊆ V is a set of nodes.
• M : N → [m] is the numbering function.
• 1 ∈ N such that M(1) = 1 is the root node.
• p : N → N is the parent function.
• l : N → 2S is a labeling of the nodes with subsets

of S. The label of every node is equal to the union of
the labels of its sons. The labels of two siblings are
disjoint.

• h : N → 2[k] annotates every node with a set of in-
dices from [k]. The root is annotated by [k]. The an-
notation of every node is contained in that of its parent
and it misses at most one element from the annotation
of the parent. Every node that is not a leaf has at least
one son with strictly smaller annotation.

• e, f ∈ [m+ 1] are used to define the parity acceptance
condition.

Notice that we give up the sibling relation and replace the
sets E and F by numbers e and f . The numbering M is a
bijection from N to [|N |]. That is, the numbers of nodes in
N are consecutive starting from the root, which is numbered
1.

The following claim is proven much like the similar
proof for Streett Safra trees.

Claim 4.3 The number of compact Streett Safra trees over
S is not more than nn(k+2)+2(k+1)2n(k+1).

We construct the DPW D equivalent to S. Let D =
〈Σ, D, ρ, d0,F ′〉where the components ofD are as follows.
• D is the set of compact Streett Safra trees over S.

• d0 is the tree with a single node 1 labeled {s0}, num-
bered 1, and annotated [k]. We set e = 2 and f = 1.

• The parity acceptance condition F ′=〈F0, . . . , F2m−1〉
is defined as follows.

– F0 = {d ∈ D | f = 1}
– F2i+1 = {d ∈ D | e = i+ 2 and f ≥ e}
– F2i+2 = {d ∈ D | f = i+ 2 and e > f}

As before, we do not handle the case where e = 1.
• For every tree d ∈ D and letter σ ∈ Σ the transition
d′ = ρ(d, σ) is the result of the following (recursive)
transformation applied on d starting from the root. Be-
fore we start, we set e and f to m + 1 and replace the
label of every node v by δ(l(v), σ).

1. If v is a leaf such that h(v) = ∅ stop.
2. If v is a leaf such that h(v) 6= ∅, add to v a

new son v′. Set l(v′) = l(v), h(v′) = h(v) −
{max(h(v))}, and set M(v′) to the minimal
value greater than all used numbers. We may use
temporarily numbers out of the range [m].

3. Let v1, . . . , vl be the sons of v (ordered according
to their numbers) and let j1, . . . , jl be the indices
such that ji = max((h(v)∪ {0})− h(vi)) (note
that |h(v)−h(vi)| ≤ 1; in case that h(v) = h(vi)
we have ji = 0). Apply the procedure recur-
sively on v1, . . . , vl (including sons created in
step 2 above).
For every son vi and every state s ∈ l(vi) do the
following.
(a) If s ∈ Rji , remove s from the label of vi and

all its descendants. Add a new son v′ to v.
Set l(v′) = {s}, h(v′) = h(v)−{max((J∪
{0})∩{1, . . . , ji−1})}, and setM(v′) to the
minimal value larger than all used numbers.

(b) If s ∈ Gji
, remove s from the label of vi and

all its descendants. Add a new son v′ to v.
Set l(v′) = {s}, h(v′) = h(v) − {ji}, and
set M(v′) to the minimal value larger than
all used numbers.

4. If a state s appears in l(vi) and l(vi′) and ji < ji′
then remove s from the label of vi′ and all its
descendants.

5. If a state s appears in l(vi) and l(vi′), ji = ji′ ,
and M(vi) < M(v′) then remove s from the la-
bel of v′ and all its descendants.

6. Remove sons with empty label. Set e to the mini-
mum of its previous value and the minimal num-
ber of removed descendant.

7. If all sons are annotated by h(v) remove all sons
and all their descendants. Set e to the minimum
of its previous value and the minimal number of
removed descendant. Set f to the minimum of its
previous value and the number of v.

9

Let Z denote the set of nodes removed during this re-
cursive procedure. For every node v let empty(v) be
|{v′ ∈ Z | M(v′) < M(v)}|. That is, we count how
many nodes got their label empty during the recursive
transformation and and their number is smaller than
the number of v. For every node v such that l(v) 6= ∅
we change the number of v to M(v) − empty(v).
The resulting numbers are consecutive again and in the
range [m].

We show that the two automata are equivalent. The proof is
an adaptation of Safra’s proof [28].

Theorem 4.4 L(D) = L(S).

Theorem 4.5 For every NSW S with n states and index k
there exists a DPW with nn(k+2)+2(k+1)2n(k+1) states and
index 2n(k + 1) that is equal to S.

As before, when compared to Safra’s construction, we
reduce the number of states and get a parity automaton. The
advantages are similar to those described in Section 3.

5 Acknowledgments
I thank T.A. Henzinger for fruitful discussions and O. Kupferman,
Y. Lustig, and M.Y. Vardi for comments on an earlier version.

References
[1] H. Björklund, S. Sandberg, and S. Vorobyov. A discrete

subexponential algorithm for parity games. In 20th STACS,
LNCS 2607, pp 663–674. Springer-Verlag, 2003.

[2] J. Büchi. On a decision method in restricted second or-
der arithmetic. In Proc. International Congress on Logic,
Method, and Philosophy of Science. 1960, pp 1–12, 1962.

[3] Y. Choueka. Theories of automata on ω-tapes: A simplified
approach. JCSS, 8:117–141, 1974.

[4] L. de Alfaro, T. Henzinger, and R. Majumdar. From verifica-
tion to control: dynamic programs for omega-regular objec-
tives. In 16th LICS, pp 279–290, 2001.

[5] S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How
much memory is needed to win infinite games. In 12th LICS,
pp 99–110, 1997.

[6] E. Emerson and C. Jutla. The complexity of tree automata
and logics of programs. In 29th FOCS, pp 328–337, 1988.

[7] E. Friedgut, O. Kupferman, and M. Vardi. Büchi comple-
mentation made tighter. In 2nd ATVA, LNCS 3299, pp 64–
78. Springer-Verlag, 2004.

[8] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. 2000.

[9] F. Horn. Streett games on finite graphs. In 2nd GDV, 2005.
[10] M. Jurdzinski. Small progress measures for solving parity

games. In 17th STACS, LNCS 1770, pp 290–301. Springer-
Verlag, 2000.

[11] M. Jurdziński, M. Paterson, and U. Zwick. A determinis-
tic subexponential algorithm for solving parity games. In
SODA, 2006.

[12] C. Jutla. Determinization and memoryless winning strate-
gies. IC, 133(2):117–134, 1997.

[13] O. Kupferman and M. Vardi. Freedom, weakness, and deter-
minism: from linear-time to branching-time. In 13th LICS,
pp 81–92, 1998.

[14] O. Kupferman and M. Vardi. Weak alternating automata are
not that weak. ACM TCL, 2(2):408–429, 2001.

[15] O. Kupferman and M. Vardi. Safraless decision procedures.
In 46th FOCS, 2005.

[16] R. Kurshan. Complementing deterministic Büchi automata
in polynomial time. JCSS, 35:59–71, 1987.

[17] L. Landweber. Decision problems for ω–automata. MST,
3:376–384, 1969.

[18] C. Löding. Methods for the transformation of ω-automata:
Complexity and connection to second-order logic. MSc the-
sis, Kiel, 1998.

[19] R. McNaughton. Testing and generating infinite sequences
by a finite automaton. IC, 9:521–530, 1966.

[20] M. Michel. Complementation is more difficult with automata
on infinite words. CNET, Paris, 1988.

[21] N. Piterman and A. Pnueli. Jurdzinski-ing Rabin and Streett.
2006. submitted.

[22] A. Pnueli and R. Rosner. On the synthesis of a reactive mod-
ule. In 16th POPL, pp 179–190, 1989.

[23] M. Rabin. Automata on infinite objects and Church’s prob-
lem. AMS, 1972.

[24] M. Rabin and D. Scott. Finite automata and their decision
problems. IBM JRD, 3:115–125, 1959.

[25] M. Roggenbach. Determinization of Büchi-automata. In Au-
tomata, Logics, and Infinite Games: A Guide to Current Re-
search, LNCS 2500, pp 43–60. Springer-Verlag, 2001.

[26] S. Safra. On the complexity of ω-automata. In 29th FOCS,
pp 319–327, 1988.

[27] S. Safra. Complexity of automata on infinite objects. PhD
thesis, Weizmann Institute, 1989.

[28] S. Safra. Exponential determinization for ω-automata with
strong-fairness acceptance condition. In 24th STOC, 1992.

[29] S. Safra and M. Vardi. On ω-automata and temporal logic.
In 21st STOC, pp 127–137, 1989.

[30] S. Schwoon. Determinization and complementation of streett
automata. In Automata, Logics, and Infinite Games: A Guide
to Current Research, LNCS 2500, pp 79–91, 2001.

[31] S. Schwoon. Model-checking pushdown systems. PhD thesis,
München, 2002.

[32] A. Sistla, M. Vardi, and P. Wolper. The complementation
problem for Büchi automata with applications to temporal
logic. In 10th ICALP, LNCS 194, pp 465–474, 1985.

[33] W. Thomas. Automata on infinite objects. Handbook of TCS,
pp 165–191, 1990.

[34] M. Vardi. Reasoning about the past with two-way automata.
In 25th ICALP, LNCS 1443, pp 628–641, 1998.

[35] K. Wagner. On ω-regular sets. IC, 43:123–177, 1979.

10

A Proofs from Section 4
We prove Claim 4.1.

Proof: The labeling is determined by the labels of the
leaves. As the labels of all leaves are disjoint there are at
most n leaves. We can represent the annotation h by anno-
tating every edge by the value j ∈ [k] such that j is in the
annotation of the parent and not in the annotation of the son.
If no such j exists then we annotate the edge by 0. There
exists a path from the root to a leaf all whose edges are not
annotated by 0. For every edge annotated 0, there is a path
from the target of this edge to a leaf all whose edges are not
annotated by 0. Hence, there are at most n − 1 edges an-
notated by 0. Every other edge corresponds to some index
i ∈ [k] or some state s ∈ S so there can be at most nk such
edges. Totally, there are at most n(k + 1) nodes.

The number of ordered trees on m nodes is at most 4m.
We represent the naming of the nodes by f : [m] → [m].
There are at mostmm such functions. The labeling function
S → [n] associates a state s with the leaf it belongs to (the
label of every node is determined by the labels of the leaves
in the subtree below it). There are at most n leaves and nn

such functions. The edge annotation function is h : [m] →
[0..k] associating an index to the target node of the edge.
Finally, E and F are represented by a function a : V →
{0, 1, 2}.

To summarize, the number of trees is at most 22m · 3m ·
mm ·nn · (k+1)m = (12)n(k+1)nn(k+2)(k+1)2n(k+1).

We prove Claim 4.3.

Proof: Just like Streett Safra trees there are at most m
nodes. We use only the numbers of the nodes. The parent-
hood relation is represented by a function p : [m] → [m].
As the labels of the leaves form a partition of the set of
states S there are at most n leaves. We add the function
l : S → [n] that associates a state with the unique leaf to
which it belongs. Setting l(s) = i means that s belongs to
the ith leaf. We can represent the annotation h by annotation
every edge by the value j ∈ [k] such that j is in the annota-
tion of the parent and not in the annotation of the son. If no
such j exists then we annotate the edge by 0. The edge an-
notation is represented by a function h : [m] → [0, . . . , k].
Finally, there are m options for e and f each.

It follows that there are at most m ·m ·mm · nn · (k +
1)m = (n(k + 1))2(n(k + 1))n(k+1)nn(k + 1)n(k+1) =
nn(k+2)+2(k+1)2n(k+1) different compact Streett Safra
trees.

We prove Theorem 4.4.

Proof: Consider w ∈ L(S). We have to show w ∈ L(D).
Let r = s0s1 · · · be an accepting run of S on w. Let J ⊆

[k] be the maximal set such that for every j /∈ J we have
inf(r) ∩ Gj = ∅ and for every j ∈ J we have inf(r) ∩
Rj 6= ∅. Let r′ = d0d1 · · · be the run of D on w and let
di = 〈Ni,Mi, 1, pi, li, hi, ei, fi〉. It is simple to see that
forall i ≥ 0 we have si ∈ li(1). Let i1 be the location
such that forall i > i1 we have si ∈ inf(f). That is, all
states appearing after i1 appear infinitely often in the run.
In particular, forall i > i1 we have si /∈ Gj forall j /∈ J .

If step 7 is applied infinitely often to node 1 (equiva-
lently, f = 1 infinitely often, or during the application of
transitions the descendants of 1 are all annotated by [k])
then r′ visits F0 infinitely often. Otherwise, from some
point onwards in r′ we have step 7 is not applied to node
1. Let i2 > i1 be this point. It follows that forall i > i2 we
have 1 is not a leaf. Then forall i > i2 we have si appears in
the label of some son of 1. This son can be changed a finite
number of times. The annotation of the edge to this son can
only decrease. If the edge is annotated by some j ∈ J then
r eventually visits again Rj and r is migrated to some son
annotated by j′ < j. If the edge is annotated by some j /∈ J
then r never visits again Gj and the only way to migrate to
a different son is if r somehow appears again in a different
son with smaller annotation, or if r appears again in a dif-
ferent son with smaller number. Obviously, this can happen
a finite number of times and eventually r stays in the same
son of 1. The edge to this son is either annotated by 0 or
by some j1 /∈ J . Formally, let i3 > i2 be such that forall
i > i3 we have si appears in li(v1) and v1 is a son of 1. We
know that forall i > i3 we have J ⊆ hi(v1). The number
M(v1) may decrease finitely often until it is constant. Let
i4 > i3 be such that forall i > i4 we have a1 = Mi(v1).
As Mi(v1) = a1 forall i > i4 it follows that ei > a1 forall
i > i4.

If step 7 is applied to node v1 infinitely often then we
are done. Otherwise, we construct by induction a sequence
1, v1, . . . , vk such that va+1 is a son of va, eventually
v1, . . . , vk do not change their numbers and r appears in
the label of all of them. Furthermore, we have J ⊆ h(vk)
(which implies that J ⊆ h(va) forall 1 ≤ a ≤ k). As the
number of the active nodes in a tree is bounded bymwe can
repeat the process only finitely often. Hence, w is accepted
by D.

In the other direction, consider w ∈ L(D). Let r′ =
d0d1 · · · be the accepting run of D on w where di =
〈Ni,Mi, 1, pi, li, hi, ei, fi〉. Let F2b be the minimal set to
be visited infinitely often. It follows that eventually always
ei > b+ 1 and infinitely often fi = b+ 1.

We find a subset J ⊆ [k] and construct an infinite tree
with finite branching degree. The root of the tree corre-
sponds to the initial state of S. Every node in the tree is
labeled by some state of S and a time stamp i. An edge
between the nodes labeled (s, i) and (t, j) corresponds to a
run starting in s, ending in t, reading w[i, j − 1], avoiding

11

all sets Gj for j /∈ J , and visiting all Rj for j ∈ J . From
König’s lemma this tree contains an infinite branch. The
composition of all the run segments in this infinite branch is
an infinite accepting run of S on w.

We first prove two claims. The first, showing that all the
states of S that appear in labels of nodes of a state of D are
reachable from the initial state of S. The second, proves
that if for some 2j the set F2j is visited in di and di′ and no
visit to Fj′ for j′ < 2j occurs between i and i′, then there
exists a node v such that Ma(v) = j + 1 forall i ≤ a ≤ i′

and for every state s in li′(v) we find a run segment of S
that starts in some state in li(v), avoids Gj forall j /∈ hi(v),
visits Rj forall j ∈ hi(v), and ends in s.

Claim A.1 For every i, j, and every state s ∈ li(j) we have
s is reachable from s0 reading w[0, i− 1].

Proof: We prove the claim for all j ≥ 1 by induction on
i. Clearly, it holds for i = 0. Suppose that it holds for i.
As li+1(j) ⊆ δ(li(j′), wi) for some j′ it follows that every
state in li+1(j) is reachable from s0 reading w[0, i].

Claim A.2 Let i < i′ be two locations such that qi, qi′ ∈
F2j for some j and forall j′ ≤ 2j and forall i < a < i′

we have qa /∈ Fj′ . Then there exists a node v such that
Ma(v) = j + 1 forall i ≤ a ≤ i′ and every state s in li′(v)
is reachable from some state in li(v) reading w[i, i′ − 1]
with a run that avoids Gj forall j /∈ hi(v) and visits Rj

forall j ∈ hi(v).

Proof: There exists some node v such that Mi(v) = j+ 1
(as di ∈ F2j). By assumption, for every j′ < 2j the set
Fj′ is not visited between i and i′. Hence, for every node
v′ such that Mi(v) ≤ j + 1 we have that Ma(v′) = Mi(v′)
forall i ≤ a ≤ i′. That is, between i and i′ all nodes whose
number is at most j + 1 do not change their numbers. In
particular, forall i ≤ a ≤ i′ we have Ma(v) = j + 1. In
addition, there exists J ⊆ [k] such that ha(v) = J forall
i ≤ a ≤ i′.

We find a run followed by node v between i and i′ that
avoids Gj forall j ∈ J and visits Rj forall j ∈ J . We
first show that all runs followed by v do not visit Gj for
j /∈ J . Suppose that for some i ≤ a ≤ i′ there exists
s ∈ la(v) such that s ∈ Gj for some j /∈ J . Let v′ be the
youngest (according to the parenthood relation) ancestor of
v such that j ∈ ha(v′) and let v′′ be the son of v′ that is an
ancestor of v (it may be v itself). It follows that the edge
from v′ to v′′ is labeled by j. Then, when applying step 3b
on the transformation from da−1 to da the state s would
have been moved from v′′ to some other son of v′.

We show now that for every i < a < i′ and every
s ∈ la(v) such that s appears in a son of v whose edge
is annotated j ∈ J there exists a run starting in some state
in li(v), visiting Rj forall j′ ∈ J such that j′ > j, reading

w[i, a− 1], and ending in s. We prove this by induction on
a. The first thing in the transformation from di to di+1 is to
put all the elements in li+1(v) in a son labeled by max(J).
Clearly, this satisfies our requirement. Suppose that it is true
for a and prove for a + 1. Consider a state s appearing in
la+1(v) in a son v′ such that the edge (v, v′) is annotated by
j. If there is a predecessor of s in the same son in da then
the claim follows (this covers the case where the same state
appears in a node with smaller annotation or in a node with
same annotation but smaller number). Otherwise, s appears
in a son created by step 3a. It follows that there is some
predecessor s′ of s in a son v′ of v in da such that (v, v′) is
annotated by the minimal j′ > j such that j′ ∈ J . Then,
by induction there exists a run that ends in s′ and visits Rj

forall j′′ > j′. In addition s is in Gj′ . The claim follows.
As during the transformation from di′−1 to di′ all the

states s ∈ li′(v) are found in sons whose edge is annotated
by 0 we conclude that every state s ∈ li′(v) is reachable
along a run that visits Rj forall j ∈ J .

We are now ready to build the tree t. Let (s0, 0) label
the root of t. Let i be the minimal location such that forall
j < 2b the set Fj is not visited after i. Let v be the node
such that forall i′ > i we have Mi′(v) = b+ 1. Let J ⊆ [k]
be such that forall i′ > i we have hi′(v) = J . Let i1 be
the minimal location such that i1 > i and fi1 = b + 1
(that is step 7 was applied to v). For every state s in li1(v)
we add a node to t, label it by (s, i1) and connect it to the
root. We extend the tree by induction. We have a tree with
leaves labeled by the states in la(v) stamped by time a, and
fa = b+1 (step 7 was applied to v). That is, for every state
s in la(v) there exists a leaf labeled (s, a). We know that
F2b is visited infinitely often. Hence, there exists a′ > a
such that fa′ = b+1 (step 7 is applied to v). For every state
s′ in la′(v) we add a node to the tree and label it (s′, a′).
From Claim A.1 it follows that every edge (s0, 0), (s′, i′)
corresponds to some run starting in s0, ending in s′, and
reading w[0, i′ − 1]. From Claim A.2, every other edge in
the tree (s, a), (s′, a′) corresponds to some run starting in s,
ending in s′, reading w[a, a′− 1], avoiding Gj forall j /∈ J ,
and visiting Rj forall j ∈ J . From König’s lemma there
exists an infinite branch in the tree. This infinite branch
corresponds to an accepting run of S on w.

12

