
Behaviourally Adequate Software Testing

Gordon Fraser
Saarland University – Computer Science

Saarbrücken, Germany
fraser@cs.uni-saarland.de

Neil Walkinshaw
Department of Computer Science

The University of Leicester
Leicester, UK

n.walkinshaw@leicester.ac.uk

Abstract—Identifying a finite test set that adequately cap-
tures the essential behaviour of a program such that all
faults are identified is a well-established problem. Traditional
adequacy metrics can be impractical, and may be misleading
even if they are satisfied. One intuitive notion of adequacy,
which has been discussed in theoretical terms over the past
three decades, is the idea of behavioural coverage; if it is
possible to infer an accurate model of a system from its test
executions, then the test set must be adequate. Despite its
intuitive basis, it has remained almost entirely in the theoretical
domain because inferred models have been expected to be
exact (generally an infeasible task), and have not allowed for
any pragmatic interim measures of adequacy to guide test set
generation. In this work we present a new test generation
technique that is founded on behavioural adequacy, which
combines a model evaluation framework from the domain
of statistical learning theory with search-based white-box test
generation strategies. Experiments with our BESTEST prototype
indicate that such test sets not only come with a statistically
valid measurement of adequacy, but also detect significantly
more defects.

Keywords-test case generation; search-based testing; test
adequacy; search-based software engineering

I. INTRODUCTION

To test a software system it is necessary to (a) determine
the properties that constitute an adequate test set and (b)
identify a finite test set that fulfils these adequacy criteria.
These two questions have featured prominently in software
testing research since they were first posed by Goodenough
and Gerhart in 1975 [1]. They define an adequate test set to
be one that implies no errors in the program if it executes
correctly. In the absence of a complete and trustworthy
specification or model, adequacy is conventionally measured
according to proxy-measures of actual program behaviour.
The most popular measures are rooted in the source code –
these include branch, path, and mutation coverage.

Such measures are hampered because there is a fundamen-
tal leap between source code syntax and observable program
behaviour. Ultimately, test sets that fulfil these criteria can
omit crucial test cases, and quantitative assessments can
give a misleading account of the extent to which program
behaviour has really been explored.

In this paper, we take an alternative view of test set
adequacy, following an idea first proposed by Weyuker in

1983 [2]: If we can correctly infer the general behaviour of
a system by observing the behaviour elicited by a test set,
then it can be deemed to be adequate. The appeal of this
approach lies in the fact that it is concerned with observable
program behaviour, as opposed to some proxy source-
code approximation. However, despite this intuitive appeal,
widespread adoption of this approach has been hampered
by the dual problems that (a) the capability to infer accurate
models has been limited, and (b) establishing the equivalence
between a model and a program is generally undecidable.

The challenge of assessing the equivalence of inferred
models with their hidden counterparts is one of the major
avenues of research in the field of Machine Learning. In
1984 this gave rise to Valiant’s Probably Approximately
Correct (PAC) learning framework [3] – an evaluation frame-
work for model inference techniques that can be used to
attribute a statistically valid assessment of the accuracy to
an inferred model. This ability to quantify model accuracy in
a justifiable way presents an opportunity to make Weyuker’s
idea of inference-driven test adequacy a practical reality.

In this paper we introduce the BESTEST (BEhavioural
Software TESTing) approach, which applies the ideas behind
PAC to the challenge of assessing the adequacy of test sets
and generating adequate test sets. It builds upon our earlier
work on behavioural adequacy [4] by making the following
contributions:

• It presents an enhanced measure of adequacy that is
founded upon program behaviour, but also incorporates
complementary code coverage information.

• It shows how the inference-based adequacy measure
can be used to assess test sets for systems that take
(potentially complex) data inputs and produce a data
output (Section III).

• It presents a search-based test generation technique that
will automatically generate test sets that are optimised
with respect to this criterion (Section IV).

• It includes an empirical study on several Java units,
demonstrating that the technique is practical for a wide
range of systems and is effective at producing rigorous,
truly adequate test sets (Section V).

II. SYNTAX-BASED TEST SET ADEQUACY

When reduced to reasoning about program behaviour
in terms of source code alone, it is generally impossible
to predict with any confidence how the system is going
to behave [5]. Despite this disconnect between code and
behaviour, test adequacy is still commonly assessed purely
in terms of syntactic constructs. Branch coverage measures
the proportion of branches executed, path coverage measures
the proportion of paths, mutation coverage measures the
proportion of syntax mutations that are discovered.

These approaches are appealing because they are based on
concepts every programmer understands; for example, it is
straightforward to add new tests to improve branch coverage.
However, the validity of these approaches is dubious because
the precise relationship between a syntactic construct and
its effect on the input/output behaviour of a program is
generally impossible to ascertain. Branches and paths may
or may not be feasible. Mutations may or may not change
program behaviour. Loops may or may not terminate.

Even if these undecidability problems are set aside and
one temporarily accepts that it is possible to cover all
branches and paths, and that there are no equivalent mutants,
there still remains the problem that these measures remain
difficult to justify. There is at best a tenuous link between
coverage of code and coverage of observable program be-
haviour (and the likelihood of exposing any faults). These
measures become even more problematic when used as a
basis for measuring how adequate a test set is. It is generally
impossible to tell whether covering 75% of the branches,
paths or mutants implies the exploration of 75% of the
observable program behaviour; depending on the data-driven
dynamics of the program it could just as well be 15% or 5%.

Some of these problems are illustrated with the bmiCate-
gory example in Figure II. The test set in the table achieves
branch and path coverage, but fails to highlight the bug in
line 5; the inputs do not produce a BMI greater than 21 and
smaller than 25 that would erroneously output “overweight”
instead of “normal”. Although mutation testing is capable
in principle of highlighting this specific inadequacy, this de-
pends on the selection of mutation operators and their quasi-
random placement within the code—there is no means by
which to establish that a given set of mutations collectively
characterises what should be a truly adequate test set.

The fact that the given test set is unable to find this
specific fault is merely illustrative. There is a broader point;
source code coverage does not imply behavioural coverage,
and is not in itself a justifiable adequacy criterion. If a
test set claims to fully cover the behaviour of a system, it
ought to be possible to derive an accurate picture of system
behaviour from the test inputs and outputs alone [2], [6],
[7]. A manual inspection of only the inputs and outputs of
the BMI example tells us virtually nothing about the BMI
system; one could guess that increasing the height can lead

1 public String bmiCategory(double height, double weight){
2 double bmi = weight / (height∗height);
3 if (bmi < 18.5)
4 return ‘‘underweight’’;
5 else if (bmi<21) //bug − should be (bmi<25)
6 return ‘‘normal’’;
7 else if (bmi<30)
8 return ‘‘overweight’’;
9 else if (bmi < 40)

10 return ‘‘obese’’;
11 else return ‘‘very obese’’;
12 }

height weight bmi output
2 70 17.5 “underweight”

1.9 75 20.776 “normal”
1.8 85 26.23 “overweight”
1.7 90 31.14 “obese”
1.6 110 42.97 “very obese”

Figure 1. bmiCategory example that calculates the body mass index (BMI),
and a test set for the BMI example that achieves branch and path coverage.

to a change in output category. However, it is impossible to
accurately infer the relationship between height, weight, and
category from these five examples. Despite being nominally
adequate, they fail to sufficiently explore the behaviour of
the system.

III. BEHAVIOURAL TEST SET ADEQUACY

The idea of behavioural adequacy is founded on the idea
that, if a test set is to be deemed adequate, it should contain
enough information to capture the full range of program
behaviour. In other words, it should be possible to infer the
program behaviour from the test set. In this context, the term
behaviour refers to the relationship between the possible
inputs and outputs of a program. The concrete representation
of this will vary depending on the nature of the program;
a sequential control driven system could be modelled as a
Finite State Machine, a data function might be represented
by a differential equation, or a decision tree.

A. Current Approaches to Behavioural Adequacy and their
Limitations

The idea of adopting this perspective to assess test ade-
quacy was first proposed by Weyuker [2], who developed a
proof-of-concept system that inferred LISP programs to fit
input / output data. Since then, the idea of combining model
inference with software testing has been comprehensively
explored in several theoretical and practical contexts [8],
[6], [7], [9], [10], [11], [12], [13]. Much of this work
has focussed on the appealing, complementary relationship
between program testing and machine learning. The former
is concerned with finding suitable inputs and outputs to
exercise a given model of some hidden system, and the latter
infers models from observed inputs and outputs. Together,
the two disciplines can be combined to form a ‘virtuous
loop’ where (at least in principle) it would be possible

to fully automate the complete exploration of software
behaviour.

A key factor that has prevented the widespread use
of behavioural adequacy has been its practicality. So far,
approaches have sought to make an adequacy decision,
rather than a obtain a quantitative measurement. Models are
deemed either accurate or inaccurate, accordingly test sets
must either be adequate or inadequate. This is problematic
because the tasks of inferring an exact model and testing a
model against a system are often either NP complete or NP
hard. In practice, this means that the combined processes of
inference and testing tend to require infeasibly large numbers
of test cases to converge upon the final adequate test set. If
on the other hand a cheaper inference process is adopted
that allows for an inexact model (c.f. previous work by
Walkinshaw et al. [13]), there has been no reliable means
by which to gauge the accuracy of the final model, and to
assess the adequacy of the final test set.

B. The Probably Approximately Correct (PAC) Framework

The above problems of expense and accuracy have formed
the basis for a substantial body of research in the Machine
Learning community. Much of this research has been carried
out under the heading of Statistical or Computational Learn-
ing Theory [14]. In this context, Valiant’s popular Probably
Approximately Correct (PAC) framework [3] has been used
extensively to reason in statistical terms about the learn-
ability of various types of concept, or to provide a sound
basis for drawing statistically justified conclusions about the
accuracy of inferred models. PAC describes a basic learning
setting, where the key factors that determine the success of
a learning outcome are characterised in probabilistic terms.
As a consequence, if it can be shown that a specific type
of learner fits this setting, important characteristics such as
its accuracy and expense with respect to different sample
sizes can be reasoned about probabilistically. Much of the
notation used here to describe the key PAC concepts stems
from Mitchell’s introduction to PAC [14].

The PAC setting assumes that there is some instance space
X . For a software system this would be the infinite set of
all (possible and impossible) combinations of inputs and
outputs. A concept class C is a set of concepts over X ,
or the set of all possible models that consume the inputs
and produce outputs in X . The nature of these models
depends on the software system; for sequential input/output
processors C might refer to the set of all possible finite state
machines over X . For systems such as the BMI example, C
might refer to the set of all possible decision trees [14].

A concept c ⊂ X corresponds to a specific target within C
to be inferred (we want to find a specific subset of relation-
ships between inputs and outputs that characterise our soft-
ware system). Given some element x (a given combination
of inputs and outputs), c(x) = 0 or 1, depending on whether
it belongs to the target concept (conforms to the behaviour of

test

genera�on

black	box

	system

model

inference

2:	execu�on

observa�ons	A

3:	test

oracle

1:	test	

inputs	A

PAC

Assessment

6:	test	

inputs	B

7:	execu�on

observa�ons	B

5:	δ,ε

8:	adequacy

decision

4:	test	

inputs	B

PAC	induc�ve	test	assessment

framework

Figure 2. PAC-driven test adequacy assessment [4]

the software system or not). The conventional assumption in
PAC is that there exists some selection procedure EX(c,D)
that randomly selects elements in X following some static
distribution D (we do not need to know this distribution, but
it must not change).

The basic learning scenario is that some learner is given
a set of examples as selected by EX(c,D). After a while it
will produce a hypothesis h. The error rate of h subject to
distribution D (errorD(h)) can be established with respect
to a further ‘test’ sample from EX(c,D). This represents the
probability that h will misclassify one of the test samples,
i.e. errorD(h) ≡ Prx∈D[c(x) 6= h(x)].

In most practical circumstances, a learner that has to guess
a model given only a finite set of samples is susceptible
to making a mistake. Furthermore, given that the samples
are selected randomly, its performance might not always
be consistent; certain input samples could happen to suffice
for it to arrive at an accurate model, whereas others could
miss out the crucial information required for it to do so. To
account for this, the PAC framework enables us to explicitly
specify a limit on (a) the extent to which an inferred model is
allowed to be erroneous to still be considered approximately
accurate, and (b) the probability with which it will infer
an approximate model. The error parameter ε that puts an
upper limit on the probability that an inferred model may
mis-classify a given input. The δ parameter denotes an upper
bound on the probability of a failure to infer a model (within
the error bounds).

C. Using PAC to Quantify Behavioural Adequacy

The PAC framework presents an intuitive basis for reason-
ing about test adequacy. Several authors have attempted to
use it in a purely theoretical setting to reason about “testa-
bility”, or to reformulate syntax-based adequacy axioms [6],
[7], [10]. More recently, Walkinshaw [4] showed how the
PAC framework could be incorporated into a more general,
statistically sound basis for assessing test set adequacy and
to place bounds on the number of tests required to produce
an adequate test set.

In Figure 2 the arcs are numbered to indicate the flow of
events. The test generator produces tests according to some
fixed distribution D that are executed on the SUT c. With
respect to the conventional PAC framework they combine
to perform the function of EX(c,D). The process starts
with the generation of a test set A by the test generator
(this is what we are assessing for adequacy). These are
executed on the SUT, the executions are recorded and
supplied to the inference tool. This infers a hypothetical
test oracle. Now, the test generator supplies a further test
set B. The user may supply the acceptable error bounds ε
and δ (without these the testing process can still operate,
but without conditions for what constitutes an adequate test
set). The observations of test set B are then compared
against the expected observations from the model to compute
errorD(h). If this is smaller than ε, the model inferred by
test set A can be deemed to be approximately accurate (i.e.
the test set can be deemed to be approximately adequate).

The δ parameter is of use if we want to make broader
statements about the effectiveness of the combination of
learner and test generator. By running multiple experiments,
we can count the proportion of times that the test set is
approximately adequate for the given SUT. If, over a number
of experiments, this proportion is greater than or equal to
1− δ, it becomes possible to state that, in general, the test
generator produces test sets that are probably approximately
adequate (to paraphrase the term ‘probably approximately
correct’, that would apply to the models inferred by the
inference technique in a traditional PAC setting).

D. Behavioural Adequacy for White-box Testing

The PAC process described above will produce a test set
that is adequate in an empirical sense. It treats the software
as a black box, collects a sample of observations, produces a
hypothesis, and validates the hypothesis on an independent
set of further observations. Although this is statistically
valid, there remains the danger that the sampling process
that produced the two sets misses out test cases that happen
to exercise a crucial facet of program behaviour. This is
particularly problematic if the SUT has a wide range of
outputs that depend a highly specific set of inputs, which
are unlikely to be triggered without prior knowledge.

Previous work [4] thus assumed sufficiently large test sets,
such that there is a high probability that all behaviour is
triggered. However, when we are testing without a formal
specification we are interested in producing small test sets,
such that the developer can manually assess test outcomes,
or can add test oracles in terms of test assertions.

To overcome this issue, we take a white-box view on the
traditional black-box PAC setting: If we know that some
part of the code has not even been executed, then clearly
the adequacy measurement cannot relate to the behaviour
related to that code. Consequently, a minimal requirement
to properly assess adequacy is that all of the code is

executed–in other words, statement or branch coverage are
a prerequisite for adequacy.

IV. GENERATING ADEQUATE TEST SETS

Based on the notion of test set adequacy, we now turn to
the question of how to produce such test sets. In this sec-
tion, we describe a search-based technique to automatically
generate adequate test sets.

A. Search-based Testing

The use of search techniques to produce test cases is
commonly referred to as search-based testing. A popular
meta-heuristic applied in this context is a genetic algorithm,
which imitates the processes of natural evolution in order to
produce solutions to an optimization problem. A population
of candidate solutions (chromosomes) is evolved by select-
ing individuals for reproduction based on their fitness for
the given problem. For example, in the context of software
testing the individuals of the population are candidate test
cases or test suites, and the fitness value estimates the
suitability with respect to a coverage criterion. Selected
individuals reproduce using crossover and mutation opera-
tors, and as the evolution procedes the population gradually
evolves towards better fitness values, until a solution is found
or a predetermined resource limit has been reached.

B. Problem Representation

In our context, we are aiming to produce adequate test
sets. To determine adequacy of a given test set, we need a
second test set which we can check against a model inferred
from the first test set. Thus, the chromosomes in our search
are pairs of test sets 〈T1,T2〉. A test set T is a set of test
cases ti, and a test case is a value assignment for the input
parameters of the target function. The number of tests in
a test set is not fixed, such that it can vary through the
application of search operators, but has an upper bound BT .
Based on this representation, we need to define the search
operators of crossover and mutation, and we need to define
how the initial population is derived.

1) Crossover: Crossover between two parent individuals
P1 and P2 produces two offspring O1 and O2, such that
genetic material is exchanged between the parents. However,
in our context it is not desirable that genetic material
is exchanged between the first (test set) and the second
(validation set). Therefore, crossover of P1 = 〈T1,T2〉 and
P2 = 〈T ′1,T ′2〉 results in offspring O1 = 〈T1,T ′2〉 and
O2 = 〈T ′1,T2〉.

2) Mutation: The aim of mutation is to introduce new
genetic material in the search, in order to support the
exploration aspect of the search. When mutating a pair of
test sets 〈T1,T2〉 we always mutate both test sets T1 and
T2. When mutating a test set, we can either remove, add,
or mutate individual tests. When inserting tests, we insert a
new random test case to Ti with probability σ. If it is added,

then a second test case is added with probability σ2, and so
on, until the ith test case is not added. This type of mutation
respects the upper bound on the number of test cases in a
set, so once a test set has reached its maximum bound BT ,
then no new tests are added. When deleting tests, each test
is deleted with probability 1/n. Finally, each test in a set of
n tests is mutated with probability 1/n.

When mutating a test case t = 〈p1, . . . pn〉, each param-
eter is mutated with probability 1/n. The mutation of the
value depends on its type: For example, numeric parameters
are mutated by adding a delta using a Gaussian distribution
around 0, while string values are mutated by randomly
inserting, deleting, or changing characters.

3) Initial population: The initial population of the search
consists of randomly generated chromosomes. For each test
set in a pair, we select a random number n = [Tmin,Tmax],
and then generate n test cases. For each test case, we assign
random values to the parameters of the method under test.

C. Fitness Function

A fitness function determines how good a given chro-
mosome is with respect to the optimization goal, and thus
guides the search by providing feedback which operations
lead to better individuals. In our context, the goal is to pro-
duce a test set that adequately exercises the target method;
these are actually two distinct objectives: first, to execute all
the code of the method, and second, to adequately do so.

1) Code coverage: The first objective is a traditional goal
in test generation, as a prerequisite to find errors in a piece
of code is that this piece of code is actually executed in
the first place. This is articulated in the traditional statement
and branch coverage metrics: Statement coverage requires
that all statements of a program are executed, while branch
coverage additionally requires that all predicates in the
program evaluate to true and to false.

We assume that a minimum requirement for any adequate
test set is that all feasible branches in the program have been
executed. Achieving branch coverage is a classical objective
in search-based testing, and the literature has treated this
problem sufficiently. A common metric to estimate how
close a logical predicate in the program was to evaluating
to true or to false is the branch distance [15]: The branch
distance for any given execution of a predicate can be
calculated by applying a recursively defined set of rules
(see [15] for details). For example, for predicate x ≥ 10
and x having the value 5, the branch distance to the true
branch is 10−5+k, with k ≥ 1. When targeting individual
branches, one can further use the approach level [15], which
counts how many control dependencies need to be satisfied
additionally before the target branch is reached.

In contrast, when targeting all branches at the same time
(e.g., [16]) it is sufficient to simply sum up the individual
branch distances. In this case, we also require that each
branch has been executed twice, such that it is possible to

cover both, the true and the false branch. This results in the
following definition of the branch distance d(b,T) for branch
b for a given test set T :

d(b,T) =

0 if the branch has been covered,

ν(dmin(b,T)) if the predicate has been
executed at least twice,

1 otherwise.

Here, ν(x) is a normalizing function in [0,1], e.g. ; we use
the normalization function [17]: ν(x) = x/(x + 1). When
generating adequate test sets, we require that the branch
coverage for all branches in the set of target branches B
is maximized, i.e., the branch distance is minimized:

cov(T) =
∑
bk∈B

(1− d(bk,T))

2) Behavioural adequacy: Once all the code has been
reached, the second objective expresses how thoroughly
this code has to be exercised with respect to its externally
observable behaviour. This part of the fitness function is
based on the PAC process shown in Figure 2. We infer a
model M of the behaviour exhibited by test set T1, and
measure the extent to which T2 agrees with M .

The specific nature of this comparison depends entirely
on the type of SUT and the type of model used to represent
its behaviour. There exists a plethora of inference algorithms
that are suited to specific types of system and input/output
characteristics. The SUTs considered in the case studies
in this paper all take numerical inputs and return either
numerical or categorical outputs. Accordingly, we have
selected two well-established inference algorithms that suit
such systems. Both infer models in the form of decision
trees (nested if-then-else statements). For SUTs that take
numerical inputs and produce categorical outputs (e.g. the
BMI example), we use the C4.5 algorithm [18]. For SUTs
that take numerical inputs and return numerical outputs, we
selected the M5 algorithm [19].

The task of measuring the overlap between M and T2 also
depends on the type of model M . If M produces categorical
outputs, the overlap between the outputs produced by M
and T2 is be measured with standard binary classification
assessment measures such as Precision and Recall or the
kappa statistic (used for the results in this paper). For
numerical outputs it is similarly possible to use standard
statistical measures such as the correlation coefficient, which
is used in this paper.

3) Adequacy measurement: This results in an adequacy
measurement A in the range [0,1], where adequacy 0 denotes
an inadequate test set. Often, an adequacy value of 0 simply
means that the number of samples is too small to draw any
conclusions. Therefore, whenever adequacy is 0 we include
the size the test set in the fitness function, such that the

growth of test sets is favoured until adequacy can be reliably
determined. We do this by normalizing the size of T1 in the
range [0,1] if adequacy is 0, and by adding 1 if adequacy is
> 0 such that now growth is required:

A(〈T1,T2〉) =

{
1 +A if A > 0,

ν(|T1|) otherwise

The A measurement can also take into account how much
the test sets T1 and T2 differ, penalizing a difference in size
beyond a given threshold.

Finally, this results in the following fitness function:

fitness(〈T1,T2〉) = α · A(T1,T2) + β · cov(T1) + β · cov(T2)

The values α and β are used to weight coverage against
adequacy; for example, in our experiments, we used β =
1000, and α = 1.

D. Handling Test Set Size

The number of tests in a test set is variable up to the
upper bound BT . The accuracy of inferred models tends
to be greater if the given set of tests is broad and diverse.
Accordingly, the fitness function will tend to favour large
test sets. Ultimately the minimal size required to infer an
accurate model depends on the behavioural characteristics
of the SUT (as is the case with the minimal number of
tests). This can however lead to issues of efficiency. If a
test set grows too large it can hamper the search process,
requiring too many resources. Furthermore, commonly the
resulting test set is provided to the developer, who then has
to provide test oracles (e.g., assertions), as automated oracles
are seldom available in practice. For this task it is important
to ensure that a test set is as small as possible.

To encourage this, we use a secondary search objective
that seeks to reduce the size of test sets. We use rank
selection, where test sets with identical fitness are ranked
according to their size, such that the smaller test set will have
a better rank. This way, even though the search can explore
large test sets to achieve adequacy, as the search proceeds
the size of the adequate sets is reduced to a minimum.

E. The Independence of T1 and T2
The PAC evaluation process is based on the premise that

the samples T1 and T2 are drawn independently from each
other. If this is not the case, it threatens the reliability of
the resulting adequacy measurement. In statistical terms this
threat is referred to as sampling bias; a pair of samples is
selected according to a biased strategy that tends to produce
samples that are not truly representative, which leads to
skewed conclusions.

In our case, both sets are evolved such that the model
inferred by T1 returns the greatest score with respect to
T2. The danger here is that, instead of favouring test sets
that spur the inference and evaluation of accurate models,
the test sets are merely encouraged to be similar to each

Table I
STUDY SUBJECTS

Name Source #Lines #Branches

BMICalculator [4] 17 9
CalDate [21] 25 7
Evaluation [20] 33 3
Expint [22] 51 31
Fisher [23] 49 17
Gammq [22] 71 27
Middle [21] 19 29
Remainder [24] 33 25
TicTacToe [4] 69 45
Triangle [15] 25 17
TCAS [25] 99 78
WrapRoundCounter [21] 9 3

other in a shallow sense without exercising the system. As
a consequence, there is a danger that this leads to adequacy
scores that are artificially high.

This risk is attenuated somewhat by the large degree
of stochasticity in the test set generation process – the
likelihood that two test sets end up with the same test cases
is low for most systems. In our experiments (see following
section), out of 40,728 tests, only 409 (1%) were identified
as being equivalent. Breaking this possible source of bias is
the subject of ongoing work.

V. EVALUATION

To evaluate the effects and implications of behavioural
coverage, we have implemented the BESTEST proto-
type based on the EVOSUITE [16] framework, using the
WEKA [20] toolkit for model inference. BESTEST takes as
input a Java class, and produces a behaviourally adequate
test set for each of its methods. Currently, the inference step
is limited to parameters of primitive type and primitive return
values, though we will extend the implementation to general
data structures and stateful types in future work.

A. Experimental Setup

We identified suitable case study subjects from the testing
literature, resulting in the set of classes summarized in
Table I. Each class contains only one top level public
method, but may include further code in private methods
not directly callable.

During our experiments we encountered an interesting
(albeit unintended) case demonstrating the usefulness of
search-based testing. Our fitness function is based on the
adequacy measurement, which internally is based on the
calculation of a correlation coefficient in WEKA. Although
the maximum value for a correlation coefficient should be
1, in several examples, the search would optimize such
that, when evaluated by the PAC process would elicit a
correlation coefficient much larger than 1. It turned out
that our search had identified a pathological case in the
correlation coefficient calculation in WEKA, where the value
can become unstable for small sample sizes and would return

a large value (possibly > 1) instead of 0 or NaN. For
the experiments a corrected correlation coefficient imple-
mentation has been used, and the version from WEKA has
been included in our set of case study subjects (labelled
“Evaluation”).

For each of the case study subjects, we ran BESTEST
for 10 minutes to produce a set as adequate as possible;
to account for the randomness of the search algorithm
all experiments were repeated 30 times. In addition, we
also measured the adequacy of traditional branch coverage
test sets by using BESTEST without factoring behavioural
adequacy into the fitness function. Furthermore, as a sanity
check for the search, we generated sets of random test sets
of a similar size to those produced by the search.

B. Adequacy of Branch Coverage Test Sets

First, let us consider what level of behavioural adequacy
test sets produced using only branch coverage can achieve.
For this, we used the BESTEST prototype to evolve pairs of
test sets, but the fitness would only try to maximize the
branch coverage of the individual test sets. Adequacy is
then assessed by following the PAC approach – using the
second test set of each pair as a validation set for the model
inferred from the first set. The top section of Table II lists the
achieved levels of coverage as well as the resulting adequacy
values for branch coverage test sets. In four cases adequacy
is 0 (the inferred model could not predict anything in T2),
and in most other cases the adequacy value is very low. This
clearly indicates that merely covering structural aspects of
the source code does not imply coverage of the behaviour.

Branch coverage test sets
have a low behavioural adequacy.

C. Behaviourally Adequate Test Sets

Having seen that test sets optimized for branch cover-
age tend to be behaviourally inadequate, we would like
to determine whether our BESTEST approach can lead to
better test sets. The middle part of Table II summarizes
the results of the experiments using BESTEST. In all cases
the behavioural adequacy is significantly higher than in the
case of the branch coverage test sets. This shows that the
BESTEST test sets are justifiable; high adequacy values show
that T1 incorporates a sufficient amount of information about
program behaviour to predict the output of test sets in T2
that have not been observed yet.

It is interesting to note that the adequacy of the Fisher
example is very low (0.03). This might have two reasons:
First, the behaviour may be very complex, requiring more
tests and more time to be fully explored. Alternatively, it
might be that the combination of model and model inference
technique used in the implementation BESTEST (i.e. using
M5 to infer a decision tree) is not suited to infer the
behaviour of this specific SUT. In this case, using a different

Table II
TEST SET STATISTICS

Name Tests Branch Behavioural Mutation
Coverage Adequacy Score

B
ra

nc
h

C
ov

er
ag

e

BMICalculator 5.0 0.89 0.05 0.85
CalDate 2.0 1.00 0.00 0.76
Evaluation 2.0 1.00 0.00 0.93
Expint 9.7 0.96 0.44 0.51
Fisher 22.07 1.00 0.00 0.91
Gammq 8.0 0.81 0.60 0.52
Middle 9.0 1.00 0.40 0.86
Remainder 17.3 0.94 0.23 0.49
TicTacToe 4.0 0.58 0.39 0.21
Triangle 5.0 1.00 0.20 0.78
TCAS 11.43 0.87 0.11 0.42
WrapRoundCounter 2.0 1.00 0.00 0.81

B
eh

av
io

ur
al

A
de

qu
ac

y

BMICalculator 75.6 0.89 0.92 0.92
CalDate 19.7 1.00 1.00 0.82
Evaluation 12.8 1.00 1.00 0.98
Expint 35.6 0.95 0.95 0.56
Fisher 29.0 1.00 0.03 0.95
Gammq 41.7 0.81 1.00 0.61
Middle 25.57 1.00 1.00 0.88
Remainder 25.6 0.94 0.77 0.55
TicTacToe 26.56 0.58 1.00 0.30
Triangle 39.55 1.00 0.99 0.84
TCAS 52.4 0.79 0.52 0.29
WrapRoundCounter 24.3 1.00 1.00 0.87

R
an

do
m

Te
st

in
g

BMICalculator 76.0 0.62 0.50 0.69
CalDate 20.0 0.97 0.43 0.76
Evaluation 13.0 1.00 0.12 0.98
Expint 36.0 0.76 0.57 0.46
Fisher 29.0 0.95 0.00 0.95
Gammq 42.0 0.75 0.69 0.60
Middle 26.0 0.86 0.38 0.69
Remainder 26.0 0.67 0.25 0.37
TicTacToe 27.0 0.56 0.27 0.29
Triangle 40.0 0.74 0.06 0.57
TCAS 52.0 1.00 0.00 0.09
WrapRoundCounter 24.0 1.00 0.62 0.87

combination might lead to better results. It is worth noting
however that in such cases, the adequacy measure tends to
be conservative; the PAC process will generally produce a
low value as opposed to an artificially high one. Determining
the best suited model for a given type of SUT is clearly part
a future research direction.

Search-based testing can produce test sets of high
behavioural adequacy.

D. Effects of Adequacy on Test Set Size

We have seen that BESTEST produces tests of higher
adequacy, but now the question is: At what price does
adequacy come? To see the effects of adequacy on the costs
of testing we look at the number of tests in the resulting
test sets. Table II lists the average numbers of tests in the
resulting test sets in our experiments. Averaged over all
examples, branch coverage required 7.44 tests per set. In
contrast, the test sets produced by BESTEST are significantly
larger, with an average size of 34.69 tests. Thus, as expected

the increase in adequacy clearly comes with an increase in
the number of tests.

Higher adequacy requires significantly
larger test sets than branch coverage.

However, in practice one might not want to produce a test
set that maximizes adequacy at any costs, but may have an
upper bound on the number that is feasible. For example, if
a tester has to manually assess correctness of test cases by
adding assertions, the number of tests plays a crucial role. In
this case, BESTEST could be used to produce test sets of a
desired target level of adequacy (e.g., the objective could be
to achieve 50% behavioural adequacy), or one could try to
maximize the behavioural coverage of a test set of fixed size.
In all cases a central benefit of the BESTEST approach is that
whatever test set is produced, it comes with a statistically
valid measurement of its adequacy.

E. Effects of Adequacy on Fault Detection Ability

Of course, the question now is what the behavioural
adequacy measurement really expresses. On an intuitive
level, the idea of covering the behaviour of a program is
easily understandable. This is essential, as for practicioners
to adopt an adequacy measurement it needs to be intuitive
– it is easy to understand a measurement that tells how
many statements or branches have been taken, which is why
these measurements are so popular in practice. In contrast,
understanding mutation scores or dataflow coverage criteria
is less intuitive, which probably contributes to their rare use.
We argue that a measurement of the program behaviour is
just as simple to grasp as simple code coverage metrics.

However, ease of understanding and intuition are difficult
to evaluate without involving humans in experiments, and
so for practical reasons we would like to measure whether
higher adequacy actually means better ability to detect faults.
For this, we resort to traditional mutation analysis: The more
seeded defects (mutants) a test set can distinguish from the
original program, the better it is at detecting real faults. For
this reason, we calculated the mutation score for each of the
produced test sets, using the mutation analysis component
of the EVOSUITE testing tool. We consider a mutant to
be killed when the output of the mutated function differs
from the normal output. The results are presented in the last
column of Table II.

It is important to bear in mind the discussion from Section
II – syntax-based adequacy measures (such as mutation
testing) are unreliable. Mutants can be equivalent and they
might fail to capture the full range of program behaviour.
We do not use the mutation score here as an absolute verdict
on individual test sets, but merely to compare different test
sets against each other – a test set that produces a greater
mutation score is probably more rigorous.

To compare the mutation scores of behavioural adequacy,
branch coverage and random tests, we measured statistical

Table III
Â12 MEASURE VALUES IN THE MUTATION SCORE COMPARISONS:
Â12 < 0.5 MEANS BESTEST ACHIEVED LOWER, Â12 = 0.5 EQUAL,
AND Â12 > 0.5 HIGHER MUTATION SCORES THAN THE RANDOM /

BRANCH COVERAGE TEST SUITES. BOLD FONTS REPRESENT A
STATISTICAL SIGNIFICANCE WITH α < 0.05.

Case Study Branch Coverage Random

BMICalculator 0.99 0.98
CalDate 0.85 0.65
Evaluation 1.00 0.25
Expint 1.00 1.00
Fisher 0.78 0.74
Gammq 0.94 0.45
Middle 0.97 0.98
Remainder 0.87 0.99
TicTacToe 0.99 0.63
Triangle 0.87 1.00
TCAS 0.06 0.96
WrapRoundCounter 0.84 0.47

Mean: 0.85 0.76

difference with the Mann-Whitney U test following the
guidelines described by Arcuri and Briand [26]. To quantify
the improvement in a standardized way, we used the Vargha-
Delaney Â12 effect size [27]. In our context, the Â12 is
an estimation of the probability that, if we use the test
sets produced by BESTEST, we will obtain better mutation
score than using the branch coverage test sets. When two
randomized algorithms are equivalent, then Â12 = 0.5. A
high value Â12 = 1 means that, in all of the 30 runs
of BESTEST, we obtained mutation scores higher than the
ones obtained in all of the 30 runs of branch coverage.
Table III lists the resulting Â12 values for the comparison
between branch coverage tests and the test sets with higher
adequacy. The improvement in the mutation score is striking,
as in all but one case the behaviourally adequate test sets
are practically certain to achieve higher mutation scores
(statistically significant with α < 0.05).

Test sets optimized for behavioural adequacy detect more
mutants than those optimized for branch coverage.

The TCAS example is an interesting exception in this
analysis, as in this case the probability of achieving a higher
mutation score is very low, even though the behavioural
adequacy of the test sets produced by BESTEST is higher.
However, this can be explained by considering the level of
code coverage: The branch coverage achieved by the test
sets produced for branch coverage is higher than that of
the test sets produced by BESTEST. This means that even
though the adequacy of the behavior tested by the BESTEST
test set is higher, there is a significant amount of behavior
that is missed by this test set. Clearly, if more branches are
executed this makes it possible to detect more mutants. This
demonstrates the importance of the white-box perspective
discussed in Section III-D. The lower branch coverage of the
test set produced by BESTEST can be attributed to the fact

that more of the search effort is invested in the exploration
of the adequacy aspect, rather than the branch coverage. It is
likely that this would be substantially improved by allowing
the search to proceed for longer than 10 minutes.

F. Adequacy as Fitness Function for Search-based Testing

As the number of tests in the test sets produced by
BESTEST is significantly higher than that of the branch cov-
erage test sets, the question arises whether the improvement
in adequacy and mutation score we observed is simply a
consequence of the size increase, or whether the adequacy
does actually guide towards better test sets. To establish
whether this is the case we generated 30 pairs of random test
sets for each of the case study examples, each of the same
size as the mean size of the test sets produced by BESTEST.
The results are summarized in the lower part of Table II. In
most cases, the branch coverage is lower than in the other
test sets, and the behavioural adequacy is significantly lower
than in all sets produced by BESTEST. Not surprising, in
some cases the behavioural adequacy is higher than that of
the branch coverage test sets. The effectiveness in terms of
detecting mutants is summarized in Table III (last column):
In nine out of 12 cases the mutation score is higher for
BESTEST (statistically significant in 8 cases), while in three
cases it is lower. However, only in a single case is the
lower mutation score statistically significant (Evaluation);
however, looking at mean mutation scores, we see that this
difference is 0.5% which, despite its statistical significance,
is acceptably small.

Test sets optimized for behavioural adequacy detect more
mutants than random test sets of the same size.

These results can only be treated as indicative; there
remains the possibility that this increase in performance
could be due to some unaccounted combination of branch
coverage and size. Capturing the precise properties that
contribute to behavioural adequacy underpins a significant
part of our ongoing work.

G. Threats to Validity

Threats to construct validity are on how the performance
of a testing technique is defined. Traditionally, test gen-
eration techniques are compared in terms of the achieved
code coverage; in our scenario, this is difficult as we are
arguing about the inadequacy of such criteria. As a proxy
measurement we use mutation testing. As mentioned previ-
ously, mutation testing is susceptible to the same problems
as code coverage (how adequate is 80% mutation score?).

Threats to internal validity might arise from the method
used for the empirical study. To reduce the probability of
having faults in our testing framework, it has been carefully
tested. Furthermore, randomized algorithms are affected by
chance. To cope with this problem, we ran each experiment
30 times, and we followed rigorous statistical procedures to

evaluate their results. We limited the search to 10 minutes
when generating both, adequate and branch coverage test
sets, which might lead to a biased results favoring the branch
coverage test sets. However, it is difficult to determine what
precisely would constitute a fair comparison.

Threats to external validity concern the generalization to
other types of software, common for any empirical anal-
ysis. We have selected 12 different classes for evaluation,
which arguably results in a small evaluation, such that the
results might not generalize to all types of software. This
was largely necessitated by the current limitations of the
BESTEST prototype (e.g., limitation to primitive data types,
model inference only for single outputs), which is the subject
of ongoing work.

VI. CONCLUSIONS AND CONSEQUENCES

Dijkstra famously stated that software testing can only
show the presence of faults, but never their absence. General
acceptance of this view has led to the conclusion that, if it is
futile to attempt to demonstrate the absence of faults, then
a test set should at least make sure that it achieves some
notional level of “coverage”. However, traditional structural
criteria cannot serve as reliable gauge to tell the tester how
rigorously a program has been tested.

In this paper we have argued for an intuitive idea dating
back to Weyuker in 1983 [2]: If we can correctly infer
the behaviour of a system from its test set, then we have
tested the behaviour adequately. Exploiting Valiant’s Proba-
bly Approximately Correct learning framework [3], we can
put a statistically valid measurement to this adequacy. Given
this approach, we can precisely estimate how much of the
behaviour of a system is exercised by a test set, and we can
use the measurement as guidance in automatically producing
test sets of any desired level of adequacy.

Does 100% adequate mean 100% correct? Unfortunately,
the answer to this question is no, for two reasons: The first
reason is of course that behavioural adequacy only measures
how much of the behaviour has been executed, but makes no
statement about how much has actually been checked. The
second reason is that, as discussed in Section III-D, there
is the possibility that the sampling process misses out some
aspects of the behaviour in all runs, leading to an overly
optimistic adequacy measurement. We attenuate this risk by
incorporating white-box techniques such as code coverage,
but there remains a substantial scope for identifying further
complementary code analysis techniques.

Our current BESTEST prototype serves as a proof-of-
concept for the idea of using behavioural adequacy to drive
test generation. Many aspects of this implementation need
further consideration and evaluation, and in fact with this
paper we open up a wealth of future research opportunities:
• The representation and search operators may be ex-

tended to better suite the problem and to increase
independence between the individual test sets.

• A sensitivity analysis is necessary with respect to the
parameters of the search (e.g. α, β, δ, ε, etc.)

• The fitness function might be refined, e.g.to take the
similarity between the individual sets into account.

• The adequacy measurement itself could be refined, e.g.
by using more than one evaluation set at the same time.

• Our adequacy notion is based on branch coverage
following the intuition that every branch needs to be ex-
ecuted as a minimal prerequisite to explore behaviour.
However, other structural or data-flow criteria might
better serve as baseline.

• Currently, we only use the size as a secondary objec-
tive during the search. However, as the size of test
sets is important, dedicated minimization strategies for
behaviourally adequate test sets need to be explored.

• Our current BESTEST prototype applies to methods
that take primitive parameters as inputs and return a
primitive value. We will extend this approach to apply
to inputs and outputs of any complexity (e.g., instances
of any class), which will require to use new model types
and learning algorithms that can handle several outputs.

By replacing code coverage as a standard with behavioural
adequacy, software testing has the potential for the first time
to be driven by meaningful metrics. We believe that the
availability of such metrics has the potential to profoundly
change the landscape of software testing.
Acknowledgments. This project has been funded by
Deutsche Forschungsgemeinschaft (DFG), grant Ze509/5-1,
a Google Focused Research Award on “Test Amplification”,
and the DSTL-funded BATS project DSTLX1000062430.

REFERENCES

[1] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test
data selection,” in Proceedings of the international conference
on Reliable software. ACM, 1975, pp. 493–510.

[2] E. Weyuker, “Assessing test data adequacy through program
inference,” ACM Transactions on Programming Languages
and Systems, vol. 5, no. 4, pp. 641–655, 1983.

[3] L. Valiant, “A theory of the learnable,” Communications of
the ACM, vol. 27, no. 11, pp. 1134–1142, 1984.

[4] N. Walkinshaw, “Assessing test adequacy for black-box
systems without specifications,” in Proceedings of the In-
ternational Conference on Testing Systems and Software
(ICTSS’11), 2011.

[5] M. Ernst, “Static and dynamic analysis: Synergy and duality,”
in WODA 2003: ICSE Workshop on Dynamic Analysis, 2003,
pp. 24–27.

[6] H. Zhu, P. Hall, and J. May, “Inductive inference and software
testing,” Software Testing, Verification, and Reliability, vol. 2,
no. 2, pp. 69–81, 1992.

[7] H. Zhu, “A formal interpretation of software testing as induc-
tive inference,” Software Testing, Verification and Reliability,
vol. 6, no. 1, pp. 3–31, 1996.

[8] J. Cherniavsky and C. Smith, “A recursion theoretic approach
to program testing,” IEEE Transactions on Software Engi-
neering, vol. 13, 1987.

[9] F. Bergadano and D. Gunetti, “Testing by means of inductive
program learning,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 5, no. 2, pp. 119–145, 1996.

[10] K. Romanik, “Approximate testing and its relationship to
learning,” Theoretical Computer Science, vol. 188, no. 1-2,
pp. 175–194, 1997.

[11] L. Briand, Y. Labiche, Z. Bawar, and N. Spido, “Using
machine learning to refine category-partition test specifica-
tions and test suites,” Information and Software Technology,
vol. 51, pp. 1551–1564, 2009.

[12] N. Walkinshaw, J. Derrick, and Q. Guo, “Iterative refinement
of reverse-engineered models by model-based testing,” in
Formal Methods (FM), ser. LNCS. Springer, 2009, pp. 305–
320.

[13] N. Walkinshaw, K. Bogdanov, J. Derrick, and J. Paris, “In-
creasing functional coverage by inductive testing: A case
study,” in International Conference on Testing Software and
Systems (ICTSS), ser. LNCS, 2010.

[14] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[15] P. McMinn, “Search-based software test data generation: A

survey,” Software Testing, Verification and Reliability, vol. 14,
no. 2, pp. 105–156, 2004.

[16] G. Fraser and A. Arcuri, “Evolutionary generation of whole
test suites,” in International Conference On Quality Software
(QSIC). Los Alamitos, CA, USA: IEEE Computer Society,
2011, pp. 31–40.

[17] A. Arcuri, “It really does matter how you normalize the
branch distance in search-based software testing,” 2011.

[18] J. R. Quinlan, C4. 5: Programs for Machine Learning. San
Mateo, CA: MK, 1993.

[19] ——, “Learning with Continuous Classes,” in 5th Australian
Joint Conference on Artificial Intelligence, 1992, pp. 343–
348.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
SIGKDD Explor. Newsl., vol. 11, pp. 10–18, November 2009.

[21] K. Ghani and J. A. Clark, “Strengthening inferred specifi-
cations using search based testing,” in Proceedings of the
International Workshop on Search-based Software Testing.
IEEE Computer Society, 2008, pp. 187–194.

[22] C. Schneckenburger and J. Mayer, “Towards the determina-
tion of typical failure patterns,” in 4th International Work-
shop on Software Quality Assurance, co-located with ES-
EC/FSE’07 (SOQUA’07). ACM, 2007, pp. 90–93.

[23] E. Dorrer, “F-distribution,” Commun. ACM, vol. 11, no. 2, pp.
116–117, 1968.

[24] H. Sthamer, “The automatic generation of software test data
using genetic algorithms,” Ph.D. dissertation, University of
Glamorgan, Pontyprid, Wales, UK, April 1996.

[25] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure
and its potential impact,” Empirical Software Engineering,
vol. 10, pp. 405–435, October 2005.

[26] A. Arcuri and L. Briand, “A practical guide for using statis-
tical tests to assess randomized algorithms in software engi-
neering,” in ACM/IEEE International Conference on Software
Engineering (ICSE), 2011, pp. 1–10.

[27] A. Vargha and H. D. Delaney, “A critique and improvement
of the CL common language effect size statistics of McGraw
and Wong,” Journal of Educational and Behavioral Statistics,
vol. 25, no. 2, pp. 101–132, 2000.

