
Compressed Prefix Sums�

O’Neil Delpratt, Naila Rahman, and Rajeev Raman

Department of Computer Science, University of Leicester, Leicester LE1 7RH, UK
{ond1,naila,r.raman}@mcs.le.ac.uk

Abstract. We consider the prefix sums problem: given a (static) se-
quence of positive integers x = (x1, . . . , xn), such that

∑n
i=1 xi = m,

we wish to support the operation sum(x, j), which returns
∑j

i=1 xi. Our
interest is in minimising the space required for storing x, where ‘min-
imal space’ is defined according to some compressibility criteria, while
supporting sum as rapidly as possible.

There are two main compressibility criteria: (a) the succinct space
bound, B(m,n) = �log2

(
m−1
n−1

)
� bits, applies to any sequence x whose

elements add up to m; (b) data-aware measures, which depend on the
values in x, and can be lower than the succinct bound for some sequences.
Appropriate data-aware measures have been studied extensively in the
information retrieval (IR) community [17].

We demonstrate a close connection between the data-aware measure
that is the best in practice for an important IR application and the
succinct bound. We give theoretical solutions that use space close to
other data-aware compressibility measures (often within o(n) bits), and
support sum in doubly-logarithmic (or better) time, and experimental
evaluations of practical variants thereof.

A bit-vector is a data structure that supports ‘rank/select’ on a bit-
string, and is fundamental to succinct and compressed data structures.
We describe a new bit-vector that is robust and efficient.

1 Introduction

The prefix sum problem is fundamental in a number of applications. An inverted
list is a sequence of integers 0 < y1 < . . . < yn representing (typically) the loca-
tions where a keyword appears in a text corpus. Compressing this inverted list,
called index compression, is commonly done by storing the difference sequence x,
where xi = yi − yi−1 (taking y0 = 0) in compressed form [17]. sum(x, i) then
provides direct access to yi; such direct access is important for answering queries
that have conjunctions of keywords [17, Chapter 4]. The application that we are
interested in involves storing a collection of strings. We concatenate all strings
into an array, and let xi denote the length of the i-th string. sum(x, i − 1) then

� Delpratt is supported by PPARC e-Science Studentship PPA/S/E/2003/03749.

Jan van Leeuwen et al. (Eds.): SOFSEM 2007, LNCS 4362, pp. 235–247, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

236 O. Delpratt, N. Rahman, and R. Raman

gives the offset in the string array where the i-th string begins.1 A plethora of
other applications can be found in the literature [7,12,14].

Measures. Let x be a sequence of n positive integers that add up to m. There
are l =

(
m−1
n−1

)
such sequences, so no representation can store all such sequences

in fewer than B(m, n) = �lg l� ≤ n lg(m/n) + n lg e bits2. B(m, n) is never more
than the cost of writing down all prefix sums explicitly, i.e., n�lg m� bits.

So-called data-aware measures are based on self-delimiting encodings of the
individual values xi, and have been studied extensively in the context of IR
applications [17]. There are two main families; the first is best represented by
the Golomb and Rice codes, and the second by the δ and γ codes.

Given an integer parameter b > 1, the Golomb code of an integer x > 0,
denoted G(b, x), is obtained by writing the number q = �(x − 1)/b� in unary
(i.e. as 1q0), followed by r = x − qb − 1 in binary using either �lg b� or �lg b�
bits. A Rice code is a Golomb code where b is a power of 2. This gives a first
data-aware measure: GOLOMB(b, x) =

∑n
i=1 |G(b, xi)|, where |σ| denotes the

length (in bits) of a string σ. In other words, GOLOMB measures how well
x compresses by coding each xi using a Golomb code.

The γ-code of an integer x > 0, γ(x), is obtained by writing �lg x� in unary,
followed by the value x − 2�lg x� in a field of �lg x� bits, e.g, γ(6) = 110 10.
Clearly |γ(x)| = 2�lg x�+1. The δ-code of an integer x > 0, δ(x), writes �lg x�+1
using the γ-code, followed by x − 2�lg x� in a field of �lg x� bits; e.g., δ(33) =
110 10 00001. We thus get two more measures of compressibility of x:

Γ (x) =
n∑

i=1

|γ(xi)| and Δ(x) =
n∑

i=1

|δ(xi)|

By the concavity of the lg function, it follows that the Γ and Δ measures are
maximised when all the xi’s are equal. This gives the following observation:

Γ (x) = Δ(x) = O(n log(m/n)) (1)

A careful estimate, using the fact that |δ(x)| = lg x + 2 lg lg x+ O(1) bits, shows
that the worst case of the Δ measure is not much worse than the succinct bound.
Conversely, if the values in x are unevenly distributed, then the Γ and Δ mea-
sures are reduced, and may be much less than the succinct bound. This, together
with the simple observation that Γ (x) can never exceed Δ(x) by more than Θ(n)
bits, makes the Δ measure asymptotically attractive. However, extensive experi-
ments show [17] that the Δ, Γ and GOLOMB measures of a sequence are broadly
similar, and Γ is often less than Δ; GOLOMB with the choice b = �(m ln 2)/n�
has generally been observed to be the smallest.

1 In our application the strings tend to be 10-12 characters long on average; string
array may be stored in compressed form, taking maybe 3-4 bytes per string on
average. Thus, a 32-bit pointer for each string is a large overhead in this context.

2 We use lg x to denote log2 x.

Compressed Prefix Sums 237

Our Contributions. We study the prefix sum problem in the word RAM
model [11] with a word size of O(log m) bits. Our contributions are as follows:

1. We observe that GOLOMB is closely related to the succinct bound when the
Golomb parameter b is chosen to be Θ(m/n). As noted above, Golomb cod-
ing, with a parameter chosen in this range, offers consistently good practical
compression performance for a range of applications.

2. We argue, that due to the not-so-large differences between the various com-
pressibility measures in practice, any data structure that attempts to achieve
the data-aware bounds above must have a space usage very close to the
bound. We show several data structures that are fast yet highly space-
efficient, and a number of trade-offs are possible by tuning parameters.
For example, we show how to achieve Δ(x) + O(n) bits and sum
in O(log log(m/n)) time, and we show how to achieve Δ(x) + o(n) bits, and
sum in O(log log(m)) time.

3. Item (1) motivates the engineering of a data structure that approaches the
succinct bound. For one particular prefix sum representation, due to [3,7],
the main component is a data structure that stores a (static) bit-string of
size N and supports the operations:
select(i): returns the position of the i-th 1, and
rank(x): returns the number of 1 bits to the left of position x (inclusive).
Such a data structure is called a bit-vector and is of fundamental importance
in succinct data structures. There are N+o(N)-bit bit-vector data structures
that support both operations in O(1) time (see e.g. [1]), but there does
not yet appear to be a suitably satisfactory “fast” data structure that uses
reliably “little” space in practice, despite some work [5,13].
Combining ideas from [5,13], we give a new N + o(N)-bit data structure
that supports rank and select in O(1) time, whose worst-case space usage
is superior to that of [5,13], but whose space usage and running time in
practice, particularly for select, are competitive with the best of the existing
data structures.

4. We implement and experimentally analyze data measures and running times.
Although some results are preliminary, our conclusions are that the new
bit-vector is probably, for our applications, superior to other practical bit-
vectors [5,13], and that the Golomb measure is indeed very close to the
succinct measure.

Related Work. There is a large body of related work:
� Data structures achieving within O(n) bits of the succinct bound were given
by many authors (e.g. [3,7]); the optimal bound was achieved in [14].
� In recent work [9], a new data-aware measure, gap was proposed, where
gap(x) =

∑n
i=1�lg xi�. The authors considered, in addition to sum, a variety

of operations including predecessor operations on the set represented by the
prefix sums of x. Unfortunately, gap is not an achievable measure, in that there
exist sequences that provably cannot be compressed to gap, and the best space
bounds of [9] tend to be of the form gap + o(gap).

238 O. Delpratt, N. Rahman, and R. Raman

Given the relatively little difference that exists in practice between the suc-
cinct and data-aware bounds, one must pay special attention to the lower-order
terms when considering such data structures. The advantages of our data struc-
ture are that we are able to prove more careful space bounds, while achieving
the same time bounds. For example, it appears that (c is any constant > 0):

Time (sum) [9,10] This paper
O(lg lg(m/n)) Δ(x) + O(n(lg(m/n))c) Δ(x) + O(n)

O(lg lg m) Δ(x) + O(n lg lg(m/n)) Δ(x) + o(n)

Our methods are similar at a high level to those developed independently [8]
by [10], but we use the building blocks more carefully.
� In [10], an experimental evaluation is performed on data-aware data struc-
tures. Their focus is on rank queries, while ours is on select, and our data sets
are different. Contrary to [10], we uphold the conclusions of [17] that Golomb
coding (and hence the succinct bound) are superior to the other gap-aware mea-
sures. Although it would be meaningless to draw direct conclusions regarding
running times between our work and theirs, in our implementations, only the
trivial gap-aware data structures came even close to the succinct data structure.
� Other work [6] implies that O(1)-time select is possible if space gap(x)+o(m)
bits is used, but the second term can be much larger than gap.

2 Preliminaries

We use the following notation. A sequence refers hereafter to a sequence of
positive integers. Given a sequence x its length is denoted by |x| and, if |x| = n

then its components are denoted by x1, . . . , xn. By W (x) we denote
∑|x|

i=1 xi.

2.1 Succinct Representations and Golomb Codes

A simple representation of a sequence that approaches the succinct space bound
is [3,7]:

Theorem 1. A sequence x with W (x) = m and |x| = n can be represented in
n lg(m/n) + O(n) bits so that sum(x, i) can be computed in O(1) time.

Proof. Let yi = sum(x, i) for i = 1, . . . , n. Let u be an integer, 1 ≤ u < lg m.
We store the lower-order lg m − u bits of each yi in an array, using n(lg m − u)
bits. The multi-set of values formed by the top-order u bits is represented by
coding the multiplicity of each of the values 0, . . . , 2u − 1 in unary, as a bit-
string s with n 1s and 2u 0s. We choose u = �lg n�, so |s| = O(n). A select
operation on s lets us compute yi (and hence sum(x, i)) in O(1) time, but the
data structures to support select on s in O(1) time require only o(n) additional
bits.

We now show the connection between the succinct and Golomb bounds:

Compressed Prefix Sums 239

Proposition 1. Let c > 0 be any constant, and let x be a sequence with W (x) =
m and |x| = n. Then, taking b = �cm/n�, |GOLOMB(b, x) − B(m, n)| = O(n).

Proof. We note that B(m, n) = n lg(m/n) + Θ(n), and:

GOLOMB(b, x) ≤
n∑

i=1

(⌊
xi − 1

b

⌋

+ 1 + �lg b�
)

≤
n∑

i=1

xi

b
+ n(�lg b� + 1)

=
m

b
+ n(�lg b� + 1) = n lg(m/n) + O(n).

Similarly, we show that GOLOMB(b, x) ≥ n lg(m/n). �

2.2 A New Bit-Vector Data Structure

We now discuss a new data structure to support select on a bit-string of length N .
Let t = �

√
lg N� and l = �(lg N)/2�. We divide the given bit-string A into blocks

of size B = tl, and sub-divide each block into t sub-blocks of size l. We obtain
the extracted string A′ (cf. [13]) by removing from A all blocks with no 1s. We
let N ′ denote the length of A′. The data structure comprises the following:

– For each block in A′, we store the number of 0s up to the start of the block
in A (the original bitstring) in an array R. Since each entry in R is log N
bits long, and it has N ′/B entries, the size of R is O(N/

√
lg N) bits.

– For each sub-block we store the number of 1s in that sub-block in an array
SBC; counts of 1s for each block are stored in BC. Since each entry in
SBC occupies O(lg lg N) bits, SBC takes O(N lg lg N/ lgN) = o(N) bits of
storage; BC takes even less space.

– Finally, we store the index (in A′) of the location of the it + 1-st 1, for
i = 0, 1, . . . , �N1/t�, in an array S, where N1 is the number of 1s in the bit-
string. As each block in A′ contains at least one 1, adjacent entries in S differ
by at most tB = O((lg N)2). We store every log N -th value in S explicitly,
and all remaining values relative to the previous explicit value. This requires
O(|S| lg lg N) = o(N) bits.

The data structure thus takes N ′ + o(N) bits. We note that we can perform
table lookup on a block in O(1) time, as well as on on t consecutive values in
both BC and SBC, as O(t lg lg N) = o(log N) bits. A select(i) works as follows:
from S we find the position in A′ of the �i/t�t-th 1. Let this lie in a block z.
Using (one) table lookup on z, we determine the number of 1s that precede the
�i/t�t-th 1 in z, and hence the number of 1s up to the start of z. Since the i-th
1 lies within t − 1 blocks of z, we apply table lookup (once) to t consecutive
values in BC to determine the block y in which the i-th 1 lies, as well as the
number of 1s before y. One more table lookup (on SBC) suffices to determine
the sub-block y′ containing the i-th 1, as well as the number of 1s in y before y′.
A final table lookup on y′ then locates the i-th 1, giving its position within the

240 O. Delpratt, N. Rahman, and R. Raman

extracted string A′. From R, we obtain the number of 0s in A that precede y,
from which we can calculate the position of the i-th 1 in A.

To support rank, we need to store the contracted string (cf. [13]), which stores
one bit for each block in A, indicating whether or not it is a block with all 0s,
and some auxiliary data structures (details omitted). We have thus shown:

Theorem 2. There is a data structure that occupies N + O(N lg lg N/
√

lg N)
bits, and supports rank and select in O(1) time.

Remark 1. A practical version of this data structure (which occupies (1 + ε)N
bits) is described in Section 4, and its performance for select is discussed there as
well. However, it is slightly slower than [13,5] for rank. An important advantage
of this data structure is that its space usage is predictably low. If parameters are
chosen so that for “most” inputs the space usage of [13,5] is moderate, then there
are some bit-strings for which these data structures may take a lot of space.

3 γ and δ Codes

We now consider compression criteria based on the γ and δ codes. A continu-
ing assumption will be that, given γ(x) or δ(x), we can decode x in O(1) time,
provided the code fits in O(1) machine words. With the appropriate low-level rep-
resentation, this is easy to do in our model. For an integer x, γ(x) is assumed to
be represented in a word with the unary representation of �lg x� stored reversed
in the lower-order bits, and the ‘binary’ part stored in the next higher-order bits.
For example, γ(11) = 1110 011 is stored in a word z as . . .011 0111, where
the lower-order bits are shown on the right. Standard tricks, such as computing
z and (z xor (z + 1)) leave only the ‘unary part’ of γ(x) in the lower-order
bits. Completing the decoding requires computing lg z, which can be done in
O(1) time in our model [4]. Decoding a δ-code is similar.

Define the operation access(x, i) as returning xi. We now show:

Proposition 2. A sequence x with |x| = n and W (x) = m can be stored in
Γ (x) + O(n log log(m/n)) bits and support access in O(1) time.

Proof. We form the bit-string σ by concatenating γ(x1), . . . , γ(xn) (the low-
level representation is modified as above). We create the sequence o, where oi =
|γ(xi)| and store it in the data structure of Theorem 1. Evaluating sum(o, i − 1)
and sum(o, i) gives the start and end points of γ(xi) in O(1) time, and xi is
decoded in O(1) further time. Since W (o) = Γ (x) = O(n log(m/n)), the space
used to represent o is O(n log log(m/n)) bits.

Remark 2. An obvious optimisation is to remove the unary parts altogether
from σ, since they are encoded in o, and this is what we do in practice.

A simple prefix-sum data structure is obtained as follows (Lemma 1 is quite
similar to one in [10]):

Compressed Prefix Sums 241

3 32 5

7

32

15

6

4 6

8 11

6 3

17

Fig. 1. Formation of tree(x); shaded nodes are removed from the output

Lemma 1. Given a sequence x, |x| = n and W (x) = m, we can store it using
Γ (x) + O(n log log(m/n)) bits and support sum in O(log n) time.

Proof. For convenience of description, assume that n is a power of 2. Consider
a complete binary tree T with n leaves, with the values xi stored in left-to-right
order at the leaves. At each internal node we store the sum of its two children. We
then list the values at the nodes in the tree in level-order (starting from the root),
except that for every internal node, we only enumerate its smaller child. This
produces a new sequence of length n, which we denote as tree(x). For example,
in the tree of Fig. 1, x = (3, 4, 6, 2, 6, 5, 3, 3) and tree(x) = (32, 15, 7, 6, 3, 2, 5, 3).
Given tree(x) and an additional n − 1 bits that specify for each internal node,
which of the two children was enumerated, we can easily reconstruct all values
in nodes on, or adjacent to, any root-to-leaf path, which suffices to answer sum
queries. The key observation is:

Γ (tree(x)) ≤ Γ (x) + 2n − 2. (2)

To prove this, consider a procedure to fill in the values in T bottom up. First,
it stores in each node at level 1 the sum of its two children. Let the values stored
at level 1 be y1, . . . , yn/2, and note that yi = x2i−1 + x2i ≤ 2 max{x2i−1, x2i}, so
|γ(yi)| ≤ γ(max{x2i−1, x2i}) + 2. If we now delete max{x2i−1, x2i} for all i, the
total lengths of the γ-codes of the yis, together with the remaining n/2 values
at the leaves, is n bits more than Γ (x). Since the construction of tree(x) now
essentially recurses on y1, . . . , yn/2, Equation 2 follows.

If we store tree(x) in the data structure of Prop. 2, we have O(1) time access
to each of the values in tree(x), and decoding all the values from a root-to leaf
path, and hence computing sum, takes O(log n) time. �

We now obtain the next result:

Lemma 2. Given an integer λ > 0, such that λ is a power of 2, a sequence x
with |x| = n and W (x) = m, there is a data structure that stores x using:

Γ (x) + O

(

n

(
log λ + log log(m/n)

λ
+

λ + log(m/n)
2λ

))

bits and supports sum in O(λ) time.

242 O. Delpratt, N. Rahman, and R. Raman

Before we prove this lemma, we note some consequences:

Corollary 1. Given an integer λ > 0, such that λ is a power of 2, a sequence x
with |x| = n and W (x) = m, there is a data structure that stores x using:

(a) Γ (x) + O(n log(m/n)/(log n)c) bits, for any c > 0, and supporting sum in
O(log log n) time.

(b) Γ (x) + O(n) bits, and supporting sum in O(log log(m/n)) time.

Proof. Follows by choosing λ = c log log n and λ = Θ(log log(m/n)) respectively.

Proof. (of Lemma 2.) We use mostly standard ideas: we store a regularly-spaced
subset of prefix sums in the O(1)-time data structure of Theorem 1, and apply
the slower data structure of Lemma 1 only to the short subsequences that lie in
between. We also replace the lower levels of the trees of Lemma 1 with slow but
optimally space-efficient bitstrings comprising concatenated γ-codes.

We begin by partitioning x into �n/λ� contiguous subsequences s1, s2,
Let r = (r1, . . . , r�n/λ�) where ri = W (si). We first discuss the representation of
the subsequences si. From each such subsequence, we delete the largest value,
giving a new subsequence s′

i and indicate, using a lg λ-bit value, the position
of the deleted element. All numbers in the subsequences s′

i are γ-encoded and
concatenated into a single bit-string σ. The sequence o, where oi = Γ (s′

i), is
stored using the data structure of Theorem 1, and sum(o, i − 1) gives the start
of the representation of s′

i in σ. Since W (o) ≤ Γ (x) = O(n log(m/n)), the
space used by the representation of o is O((n/λ) log(λ log(m/n))) bits. Within
this space bound, we can also include the O((n log λ)/λ) bits needed to specify
which elements were deleted from the subsequences si.

We claim that Γ (r) +
∑�n/λ�

i=1 Γ (s′
i) is bounded by Γ (x) + O((n/λ) log λ).

The reasoning is similar to that of Equation 2: the γ-code of any value ri is
O(log λ) bits longer than the γ-code of the value deleted from si. Note that this
additional space is also absorbed into the space bound for representing o.

Now we consider the representation of r. r is partitioned into �n/2λ� sub-
sequences, r1, r2, . . . of length 2λ/λ. We create a top-level sequence t where
ti = W (ri); |t| = �n/2λ�. We represent t using Theorem 1, which requires
O((n/2λ)(λ + log(m/n))) bits, and allows sum queries on t to be answered in
O(1) time. Finally, let z be the sequence obtained by concatenating tree(r1),
tree(r2) . . . ; z is stored in the structure of Proposition 2, and it should be clear
that supporting O(1) time access operations on z suffices to traverse the trees
representing the sequences ri in O(λ) time. Noting that W (z) = O(2λm), the
space overhead of this representation is easily seen to be negligible. �

An analogue of Lemma 2 for δ-codes can be proved similarly (proof omitted):

Lemma 3. Given an integer λ > 0, such that λ is a power of 2, a sequence x
with |x| = n and W (x) = m, there is a data structure that stores x using:

Δ(x) + O

(

n

(
log λ + log log(m/n)

λ
+

λ + log(m/n)
2λ

))

bits and supports sum in O(λ) time.

Compressed Prefix Sums 243

The final result requires an additional idea. We begin as in Lemma 2. For some
parameter ν, we begin by partitioning x into �n/ν� contiguous subsequences
s1, s2, Let r = (r1, . . . , r�n/λ�) where ri = W (si). We represent r using
Lemma 3, and delete the largest value from each of s1, s2, . . ., giving s′

1, s′
2, . . .,

as before, where |s′
i| = ν − 1. Access to the s′

i is handled differently. Note that a
δ-code can be thought of as a ‘binary’ part and a γ-code containing the length
of the binary part. We let l be such that li is the length of the binary part of
xi. Grouping the lis into contiguous sequences ti, we create a sequence p, that
pi = W (ti). p is stored in the data structure of Corollary 1(b), which, since
W (p) = O(n log(m/n)), supports sum(p, i) in O(log log log(m/n)) time. Modulo
some details, this suffices to access s′

i in O(ν + log log log(m/n)) time; we can
choose e.g. ν = Θ(log log m) to obtain the following (a full tradeoff is omitted in
the interests of brevity):

Theorem 3. Given a sequence x with |x| = n and W (x) = m, there is a data
structure that stores x using: Δ(x) + O(n log log log m/ log log m) bits and sup-
ports sum in O(log log m) time.

4 Implementation and Experimental Evaluation

We implemented three data structures to support the sum operation, the suc-
cinct data structure (Theorem 1) and two that store γ-codes. Our test data are
derived from XML files. We used 14 real-world XML files [15,16] with different
characteristics that come from applications including genomics and astronomy.
For each file, the input sequence x is such that xi is the length of the string stored
in the i-th text node in the XML file, numbered in document order (pre-order).
Section 1 explains the rationale for this.

In this section, we first describe the implementations of our data structures.
We then evaluate the compressibility of the test data under various measures.
Finally, we evaluate the space usage and (running time) performance of our
implementations.

Implementation of Data Structures. We implemented the data structures
in C++ and tested them on a dual processor Pentium 4 machine and a Sun
UltraSparc-III machine. The Pentium 4 has 512MB RAM, 2.8GHz CPUs and
a 512KB L2 cache, running Debian Linux. The compiler was g++ 3.3.5 with
optimisation level 2. The UltraSparc-III has 8GB RAM, a 1.2GHz CPU and
a 8MB cache, running SunOS 5.9. The compiler was g++ 3.3.2 with optimisation
level 2. We now describe the implementations of the new bit-vector data structure
and the prefix sums data structures.
Bit-vector data structure. The algorithm of Section 2.2 is implemented as follows.
We use a block size of B = 64 bits, and no sub-blocks. We use 32-bit integers to
store values in R. We store the offset of every s = 32-nd 1 bit in the array S,
which is compressed as follows. Every 8th value in S is stored explicitly as
a 32-bit value, every other value is represented relative to the previous explicit
value using 16 bits. With each block we also store an 8-bit value for the count

244 O. Delpratt, N. Rahman, and R. Raman

of 0s from the start of the block until the last offset from the S array into that
block. We compared with our optimised Clark-Jacobson bit-vector [5] (CJ-BV)
and our implementation [2] of Kim et al.’s bit-vector [13] (KNKP-BV).

For the important case where half the bits are 1, the table below gives the
typical and worst-case space usage for our new bit-vector and for CJ-BV using
parameters B = 64, S = 32 and L = 256, and for KNKP-BV using 256-bit
superblocks and 64-bit blocks (ε varies with file but is typically less than 0.2).
The typical space used by the new bit-vector to store a sequence of N bits is
just under 2N bits, which compares well with the typical usage of KNKP-BV
and CJ-BV; the worst-case is a lot better, however3.

Typical Worst-case
New CJ-BV KNKP-BV New CJ-BV KNKP-BV

Input bit-string (1 − ε)N N N N N N
select (1 − ε)0.94N (1 + ε)0.52N (1 + ε)0.63N 0.94N 2.77N 1.17N
rank 0.03N 0.5N 0.25N 0.02N 0.5N 0.25N

Succinct prefix sums data structure. For the implementation of the succinct prefix
sums data structure described in Theorem 1 we used u = �lg n� top-order bits.
The low-order lg n−u bits are packed tightly, so for example if lg n−u = 5 then
64 values are stored using ten 32-bit integers.
γ-code data structures. We have implemented two data structures for storing
γ-codes, which we refer to as explicit-γ and succinct-γ. For a sequence x =
(x1, . . . , xn) we form the bit-string σ by concatenating γ(x1), . . . , γ(xn). In the
explicit-γ data structure we store every G-th prefix sum, as well as offsets into σ
to the start of the G-th γ-code, explicitly (using 32 bits); in the succinct-γ
data structure, these prefix sums and offsets are stored using the succinct data
structure. To compute sum(x, i− 1), we access the appropriate G-th prefix sum,
and the corresponding offset, and sequentially scan σ from this offset.

Compressibility, Space Usage and Performance. Table 1 summarises the
measures of compressibility, in terms of bits per prefix sum value, using the var-
ious encoding schemes and using a succinct representation. In the Golomb codes
we use b = �0.69m/n�. Although gap gives the best measure of compressibility it
does not give decodable data. We see that in practice Γ and Δ are greater than
GOLOMB in 10 of our test XML files, and for half our files GOLOMB is at least
29% less than either Γ or Δ; this is in line with many results on compressing
inverted lists [17] (however, [10] give examples where Γ and Δ are smallest).
GOLOMB and the succinct bound were even closer than Prop. 1 suggested: for
13 of our XML files they were within 10% of each other.

Recall that Γ (tree(x)) ≤ Γ (x) + 2|x| − 2 (Eq. 2 in Lemma 1). Let tree∗(x)
be the sequence obtained by always deleting the right child. In the worst case,
Γ (tree∗(x)) ≥ 2Γ (x), and in the best case, Γ (tree∗(x)) = Γ (x) = Γ (tree(x))
(e.g. take x = (8, 1, 4, 1)). Table 1 shows (Γ (tree∗(x)) − Γ (x))/|x| for our se-
quences. It is interesting to note that this does not go below 1.96, which gives
3 As noted in [2], bit-vectors used to represent XML documents can have certain

regular patterns that lead to worst-case space usage in CJ-BV and KNKP-BV.

Compressed Prefix Sums 245

Table 1. Test file, number of text nodes. Compressibility measures: gap(x), Δ(x),
Γ (x), GOLOMB(b, x) (gol), B(m,n) (suc), all divided by n = |x|; m = W (x). Tree
ovhd: (Γ (tree∗(x)) − Γ (x))/|x|. Space usage: Total space in bits (spac) and wasted
space in bits (wast) per prefix value using the succinct prefix sum data structure and
using the explicit-γ and succinct-γ data structures. Data structure parameters selected
such that wasted space is roughly equal.

Space usage
File text Compressibility measures tree Succinct explicit-γ succinct-γ

nodes gap Δ Γ GOL Suc ovhd spac wast spac wast spac wast
elts 3896 2.90 5.53 5.36 4.15 4.04 1.97 7.10 3.07 7.36 2.00 7.89 2.53
w3c1 7102 2.22 4.73 4.70 5.86 5.46 2.72 8.19 2.73 6.70 2.00 7.38 2.67
w3c2 7689 1.85 3.98 3.96 5.05 5.26 2.37 8.12 2.85 5.96 2.00 6.49 2.53
mondial 34.9K 3.55 6.87 6.56 4.94 4.90 2.11 7.77 2.88 8.56 2.00 9.13 2.57
unspsc 39.3K 3.83 7.16 6.71 4.75 4.89 2.05 7.61 2.71 8.71 2.00 9.36 2.65
partsupp 48.0K 2.53 5.24 5.23 6.27 5.95 2.77 9.36 3.41 7.23 2.00 7.94 2.71
orders 150.0K 2.56 5.31 4.99 4.87 4.71 3.04 7.67 2.96 6.99 2.00 7.53 2.54
xcrl 155.6K 3.84 7.75 6.96 4.96 4.98 2.03 7.62 2.64 8.96 2.00 9.62 2.65
votable2 841.0K 2.56 5.67 5.28 3.97 4.03 1.96 7.26 3.23 7.28 2.00 7.85 2.57
nasa 948.9K 3.04 5.58 5.45 5.53 5.39 2.38 8.15 2.76 7.45 2.00 8.11 2.66
lineitem 1.0M 2.16 4.94 4.55 3.96 3.94 2.10 7.08 3.14 6.55 2.00 7.08 2.52
xpath 1.7M 3.26 6.41 5.81 4.42 4.37 2.21 7.26 2.89 7.81 2.00 8.38 2.57
treebank 2.4M 4.00 7.67 7.28 5.24 6.04 2.32 8.65 2.61 9.28 2.00 10.07 2.79
xcdna 16.8M 3.33 6.62 6.18 5.61 5.39 2.29 7.87 2.48 8.18 2.00 8.77 2.59

some insight into the distribution of values. Neither does it go above 3.04—and
is typically much smaller—showing that always deleting the right child (which
is simpler and faster) does not waste space in practice4.

We now consider the space usage of our data structures. We calculate the space
used, in bits per input sequence value, and also the difference between the space
used by the data structures and the corresponding compressibility measure (we
refer to this as wasted space). Table 1 summarises the space usage of the various
data structures where parameters have been selected such that the wasted space
is roughly the same. For the explicit-γ and succinct-γ data structures we used
G = 32 and G = 8 respectively. For these values the space usage in the γ-codes
data structures is comparable to the succinct data structure.

The performance measure we report is time in μs for determining a random
prefix sum value. Each data point reported is the median of 10 runs in which we
perform 8 million random sum operations. We have again selected parameters
such that the wasted space in each data structure is about the same. Table 2
summarises the performance of the data structures. The fastest runtime for each
file on the Pentium 4 and on the UltraSparc-III platforms is shown in bold.
The table shows the performance of the succinct data structure using the three
different bit-vectors. We see that the performance of the new bit-vector is similar
to CJ-BV and better than KNKP-BV. The table also shows the performance of

4 Recall that Γ (tree(x)) does not include the n − 1 bits needed for decoding x.

246 O. Delpratt, N. Rahman, and R. Raman

Table 2. Speed evaluation on Intel Pentium 4 and Sun UltraSparc-III. Test
file, number of text nodes, time in μs to determine a prefix sum value for succinct data
structures using CJ-BV, KNKP-BV and the new bit-vector. Time to determine a prefix
sum for explicit-γ (Exp) and for succinct-γ (Succ) data structures, both of which are
based on the new bit-vector. The best runtime for each file and platform is in bold.

Intel Pentium 4 Sun UltraSparc-III
text Succinct prefix sums γ-code Succinct prefix sums γ-code

File nodes CJ KNKPNew Exp Succ CJ KNKPNew Exp Succ
elts 3896 0.070 0.143 0.066 0.233 0.293 0.151 0.222 0.138 0.284 0.389
w3c1 7102 0.084 0.156 0.081 0.241 0.298 0.158 0.230 0.138 0.279 0.389
w3c2 7689 0.086 0.156 0.081 0.239 0.305 0.158 0.229 0.140 0.279 0.390
mondial 34.9K 0.086 0.159 0.083 0.249 0.305 0.176 0.240 0.146 0.293 0.399
unspsc 39.3K 0.083 0.158 0.081 0.241 0.293 0.176 0.244 0.149 0.290 0.401
partsupp 48.0K 0.085 0.161 0.081 0.239 0.303 0.168 0.240 0.150 0.284 0.396
orders 150.0K 0.105 0.178 0.101 0.235 0.306 0.199 0.270 0.176 0.298 0.408
xcrl 155.6K 0.088 0.163 0.085 0.244 0.313 0.196 0.270 0.170 0.313 0.418
votable2 841.0K 0.215 0.316 0.213 0.361 0.434 0.208 0.298 0.198 0.316 0.470
nasa 948.9K 0.305 0.423 0.294 0.391 0.545 0.223 0.321 0.212 0.324 0.519
lineitem 1.0M 0.283 0.401 0.274 0.378 0.443 0.215 0.310 0.207 0.316 0.481
xpath 1.7M 0.326 0.459 0.306 0.453 0.564 0.218 0.308 0.203 0.328 0.510
treebank 2.4M 0.410 0.556 0.409 0.506 0.686 0.241 0.341 0.244 0.345 0.545
xcdna 16.8M 0.464 0.759 0.471 0.551 1.175 0.742 0.951 0.733 0.646 0.989

the explicit-γ and succinct-γ data structures using the bit-vector. We see that
the explicit-γ data structure out-performs the succinct-γ data structure when
the space usage is roughly the same. Our performance results are preliminary
but we note that the succinct prefix sums data structure almost always out-
performs both the γ-codes data structures. We observed that a single γ-decode
is abouttwenty times faster than a select operation, so improvements in the bit-
vector would make succinct-γ more competitive.

We also perfomed some limited experiments on the relative performance of
the data structure of Lemma 1. We compared the time for sum(x, i), when x is
stored as in Lemma 1 (but always deleting the right child), versus in a simple
bit-string. At |x| = 64, 128, 256, 512 and 1024, the times in μs for the tree were
0.767, 0.91, 1.12, 1.28 and 1.5, and for the bit-string were 0.411, 0.81, 1.57, 3.08
and 6.03. We are not comparing like for like, as the tree uses more space, even
then we find that the (logarithmic) tree data structure does not outperform the
(linear) bit-string until |x| > 128. The tree requires two select operations at each
node visited, so an approach to speeding-up the tree data structure would be to
increase the arity and thereby reduce the height of the tree.

Summary. On our data sets, Golomb encoding and the succinct bound are
usually very similar, and they generally use less space than γ and δ encoding.
The succinct prefix sums data structure is faster than the γ codes data structures
when space usage is comparable. The new bit-vector has similar or better speed
than existing bit-vectors but uses less space in the worst case.

Compressed Prefix Sums 247

5 Conclusions

We have presented new, highly space-efficient, data structure for data-aware
storage of a sequence. An immediate question is whether there is a data structure
that supports sum in O(1) time using close to Γ (x) or Δ(x) space—there is
no obvious lower bound that rules it out. We have presented a new bit-vector
data structure, and shown it to be competitive in terms of speed to existing
bit-vectors, but with a robust space bound. Our experimental results show that
storing prefix sums succinctly, rather than in a data-aware manner, is appropriate
in some applications.

References

1. Clark, D. and Munro, J.I.: Efficient Suffix Trees on Secondary Storage. In Proc.
7th ACM-SIAM SODA, ACM Press (1996) 383–391

2. Delpratt, O., Rahman, N., and Raman, R.: Engineering the LOUDS Succinct Tree
Representation. In Proc. WEA 2006, Springer, LNCS 4007 (2006) 134–145

3. Elias, P.: Efficient Storage Retrieval by Content and Address of Static Files. J.
ACM 21 (1974) 246–260

4. Fredman, M.L. and Willard, D.E.: Trans-Dichotomous Algorithms for Minimum
Spanning Trees and Shortest Paths. J. Comput. Sys. Sci. 48 (1994) 533–551

5. Geary, R.F., Rahman, N., Raman, R., and Raman, V.: A Simple Optimal Rep-
resentation for Balanced Parentheses. In Proc. 15th CPM, Springer, LNCS 3109
(2004) 159–172

6. Grossi, R. and Sadakane, K.: Squeezing Succinct Data Structures into Entropy
Bounds. In Proc. 17th ACM-SIAM SODA, ACM Press (2006) 1230–1239

7. Grossi, R. and Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Ap-
plications to Text Indexing and String Matching. Manuscript (2002), Prel. vers.
in Proc. ACM STOC, ACM Press (2000) 397–406

8. Grossi, R. and Vitter, J.S.: Private communication (2004)
9. Gupta, A., Hon, W.-K., Shah, R., and Vitter, J.S.: Compressed Data Structures:

Dictionaries and Data-Aware Measures. In Proc. DCC ’06, IEEE (2006) 213–222
10. Gupta, A., Hon, W.-K., Shah, R., and Vitter, J.S.: Compressed Dictionaries: Space

Measures, Data Sets, and Experiments. In Proc. WEA ’06, Springer, LNCS 4007
(2006) 158–169

11. Hagerup, T.: Sorting and Searching on the Word RAM. In Proc. 15th STACS,
Springer, LNCS 1373 (1998) 366–398

12. Hagerup, T. and Tholey, T.: Efficient Minimal Perfect Hashing in Nearly Minimal
Space. In Proc. 18th STACS, Springer, LNCS 2010 (2001) 317–326

13. Kim, D.K., Na, J.C., Kim, J.E., and Park, K.: Effcient Implementation of Rank
and Select Functions for Succinct Representation. In Proc. WEA 2005, Springer,
LNCS 3503 (2005) 315–327

14. Raman, R., Raman, V., and Rao, S.S.: Succinct Indexable Dictionaries, with Ap-
plications to Representing k-Ary Trees and Multisets. In Proc. 13th ACM-SIAM
SODA, ACM Press (2002) 233–242

15. UW XML Repository. http://www.cs.washington.edu/research/xmldatasets/
16. VOTable Documentation. http://www.us-vo.org/VOTable/
17. Witten, I., Moffat, A., and Bell, I.: Managing Gigabytes, 2e. Morgan Kaufmann

(1999)

	Introduction
	Preliminaries
	Succinct Representations and Golomb Codes
	A New Bit-Vector Data Structure

	 and Codes
	Implementation and Experimental Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

