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Abstract. Ordinal trees are arbitrary rooted trees where the children
of each node are ordered. We consider succinct, or highly space-efficient,
representations of (static) ordinal trees with n nodes that use 2n + o(n)
bits of space to represent ordinal trees. There are a number of such
representations: each supports a different set of tree operations in O(1)
time on the RAM model.

In this paper we focus on the practical performance the fundamental
Level-Order Unary Degree Sequence (LOUDS) representation [Jacob-
son, Proc. 30th FOCS, 549–554, 1989]. Due to its conceptual simplic-
ity, LOUDS would appear to be a representation with good practical
performance. A tree can also be represented succinctly as a balanced
parenthesis sequence [Munro and Raman, SIAM J. Comput. 31 (2001),
762–776; Jacobson, op. cit.; Geary et al. Proc. 15th CPM Symp., LNCS
3109, pp. 159–172, 2004]. In essence, the two representations are com-
plementary, and have only the basic navigational operations in common
(parent, first-child, last-child, prev-sibling, next-sibling).

Unfortunately, a naive implementation of LOUDS is not competitive
with the parenthesis implementation of Geary et al. on the common
set of operations. We propose variants of LOUDS, of which one, called
LOUDS++, is competitive with the parenthesis representation. A moti-
vation is the succinct representation of large static XML documents, and
our tests involve traversing XML documents in various canonical orders.

1 Introduction

Ordinal trees are arbitrary rooted trees where the children of each node are or-
dered. We consider succinct, or highly space-efficient, representations of (static)
ordinal trees with n nodes. An information-theoretically optimal representation
of such trees would require 2n − O(log n) bits. There are a number of represen-
tations that use 2n + o(n) bits of space, and support various navigational and
other operations in O(1) time on the RAM model of computation [6, 1, 5, 9].

This paper compares the practical performance of the fundamental level-order
unary degree sequence succinct representation (hereafter louds) [6] with non-
succinct ordinal tree representations, as well as the parenthesis succinct represen-
tation (hereafter paren) [9], which supports a complementary set of operations
to louds. In practice, one must consider the lower-order terms in the space
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bound, which come from augmenting a bit-string of 2n + O(1) bits representing
the tree with a number of directories, or auxiliary data structures, that are used
to support operations in O(1) time. The space used by each directory is, of course,
asymptotically o(n) bits, but is usually a function like Θ(n log log n/ log n) (and
sometimes worse). For this and other reasons, the directories can use much more
space than the representation of the tree, for practical values of n.

With this in mind, we consider the operations supported by the two succinct
representations above, assuming a ‘minimal’ set of directories. Both support
the basic navigational operations of parent, first-child, last-child, prev-sibling and
next-sibling. However, louds supports additional O(1)-time operations such as
degree(x) (reporting the number of children of x), childrank(x) (the position of x
among the children of its parent), child(x, i) (reporting the i-th child of x — recall
that ordinal trees can have unbounded degree) and can enumerate all nodes at
the same depth as a given node x, in time proportional to the number of such
nodes. paren, on the other hand, readily supports operations such as desc(x)
(report the number of children descended from x). louds essentially numbers
the nodes of the tree with integers in a level-order (breadth-first) numbering,
while paren uses a depth-first (pre- or post- order) numbering.

The functionality of these ‘minimal’ representations can be expanded at neg-
ligible asymptotic cost. For example, paren can support degree(x) in O(1) time
by augmenting it with additional o(n)-bit directories [2], or level-ancestor queries
in O(1) time using yet another directory [10]. The depth-first unary degree se-
quence representation [1] comes close to being a ‘union’ of louds and paren.
However, its directories are also an (almost disjoint) union of the directories
of both louds and paren. Quite apart from the fact that none of these aug-
mented data structures subsumes each other, adding additional directories may
lead to poor practical performance. As noted above, directories consume signif-
icant space in practice. Different directories may have different memory access
patterns, and adding additional ones can make it difficult to organise data to
minimise cache misses. This motivates the study of alternative ‘minimal’ tree
representations, such as louds and paren, so that the one that best suits an
application may be chosen, rather than a single ‘universal’ representation.

Although we defer a complete description of louds to Section 3, we give a
brief overview, in order to summarise the main issues and contributions. We first
explain the task which we use to evaluate the data structures (the motivation
is in the sub-section on XML below). We store, along with the tree, an array of
size n, which stores a satellite symbol associated with each node. We traverse
the nodes of the tree in pre-order, reverse pre-order and breadth-first order. As
the traversal visits a node, we find the associated symbol in the array and gather
some simple statistics (e.g. the number of nodes with a particular symbol). This
set of tasks tests the first-child, last-child, prev-sibling and next-sibling operations1,
all of which are supported in O(1) time by louds and paren.

louds stores an n-node ordinal tree as a bit-string of 2n + 1 bits. Navigation
on the tree is performed by rank and select operations on the bit-string:

1 We currently use a recursive pre-order traversal, so parent is not tested.
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rank1(x) Returns the number of 1 bits to the left of, and including, position x
in the bit-string.

select1(i) Given an index i, returns the position of the i-th 1 bit in the bit-string,
and −1 if i ≤ 0 or i is greater than the number of 1s in the bit-string.

The operations rank0 and select0 are defined analogously for the 0 bits in
the bit-string; the operations are collectively referred to as rank and select. We
refer to a data structure that supports (a nonempty subset of) rank and select
operations on a bit-string as a bit-vector.

A bit-vector is a fundamental data structure and is used in many succinct and
compressed data structures. A bit-vector that supports rank and select in O(1)
time can be obtained by augmenting a bit-string of length k with directories
occupying o(k) space [6, 3]. Unfortunately, rank and select, though O(1)-time
asymptotically, are certainly not free in practice. Using the approach of [3] in
practice is very slow [7]. In fact, Kim et al. [7] argue that their 3k + o(k)-bit
data structure is more practical than approaches based on [3]. Even in this well-
engineered data structure, a select is over three times as slow as a rank, and
a rank is somewhat slower than a memory access. Given this, it was perhaps
not surprising that a direct implementation of louds (using either of the bit-
vectors of [4, 7]) was sometimes over twice as slow as the implementation of
paren by [4], when parameters were chosen to make the space usages of the data
structures somewhat similar. This rather negative result prompted our attempt
at engineering louds.

For louds, Jacobson [6] suggested a numbering of nodes from 1 to 2n. Using
his numbering, parent, first-child and last-child all require just one call each to
rank and select, and next-sibling and prev-sibling only require the inspection of a
bit in the representation of the tree. As nodes are numbered from 1 to 2n, rather
than 1 to n, to access an array of size n that contains information associated
with a given node, one has to perform a rank operation on its node number. We
first observe that, due to the way rank and select calls are made in louds, one
may eliminate calls to rank altogether. The idea, called double-numbering, not
only speeds up the navigational operations, it also numbers the nodes from 1 to
n in level-order, making it easy to access information associated with a node.
The resulting data structure, louds1, is indeed much faster than louds, but
remains slower and more space-expensive than paren.

We then note that, in practice, ordinal trees have a high proportion of leaves:
e.g., our XML trees have often about 67% leaves, and a random tree has about
50% leaves. Thus, a rapid test that determines whether a node is a leaf could
speed up the first-child operation of louds considerably in practice. We propose
a numbering of nodes from 1 to 2n, which is different from that of [6]. Using this
numbering, testing whether a node is a leaf is quick. Applying double-numbering,
we again require no rank operations to support navigation in this representa-
tion. In this scheme, parent and first-child (for non-leaf nodes), next-sibling and
prev-sibling all require up to two select operations, compared with at most one in
louds1, and last-child requires one select. This data structure is called louds0.
Unfortunately, the performance advantages, such as speeding up first-child for
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non-leaf nodes, does not gain enough to make up for the slow next-sibling and
prev-sibling operations. The overall speed is poor for pre-order and BFS traver-
sals, but is better (but still poor) for traversals in reverse pre-order.

Finally, we present a new variant of louds, called louds++, which partitions
the bit-string representing the tree into two separate bit-strings, and stores them
as bit-vectors. The advantages of louds++ are:

– Testing if a node is a leaf, as well as next-sibling and prev-sibling, require only
the inspection of bits in one of the bit-strings.

– The other navigational operations (first-child, last-child and parent) are
slightly slower than louds1, requiring a rank and a select1 operation.

– The other operations, degree, childrank and child(x, i) are as easy as louds1.
– Each of the bit-vectors only needs to support select1 and rank, while the

louds1 bit-vector needs to support both select1 and select0 (but not rank, be-
cause of double-numbering). This gives significant space savings in practice,
since the select directories are usually much larger; in addition, bit-vectors
such as that of [7] need the rank directory to implement select.

The rest of this paper is as follows. Immediately following is a short background
on XML files. Section 2 discusses bit-vectors, Section 3 introduces louds, in-
cluding all our variants. Section 4 contains our experimental results.

Representing XML Documents. Our motivation is in the use of this data
structure for the representation of (large, static) XML documents. The corre-
spondence between XML documents and ordinal trees is well-known (see e.g.
Fig. 1). In this paper we focus on storing the tree structure. The XML Docu-
ment Object Model (DOM) is a standard interface (see www.w3.org) through
which applications can access XML documents. DOM implementations store an
entire XML document in memory, with its tree structure preserved, but this
can take many times more memory than the raw XML file. This ’XML bloat’
seriously impedes the scalability and performance of XML query processors [12].

DOM allows tree navigation through the Node interface, which represents a
single node in the tree. The node interface contains attributes to store informa-
tion about the node, as well as navigational methods parentNode, firstChild,

<COMPLAINT>
<NOTE></NOTE>
<DETAILS>

<NAME></NAME>
<DESCRIPTION></DESCRIPTION>
<WHEN>

<NOTE></NOTE>
<TIME>

<HOUR></HOUR>
<MINUTE></MINUTE>

</TIME>
</WHEN>
<NOTE></NOTE>

</DETAILS>
<NOTE></NOTE>

</COMPLAINT>

DETAILS

COMPLAINT

NOTE

NAME DESCRIPTION

WHEN

NOTE

TIME

NOTE

NOTE

HOUR MINUTE

1

32 12

6 11

109

87

54

Fig. 1. Left: Small XML fragment (only tags shown). Right: Corresponding tree rep-
resentation, nodes numbered in depth-first order.
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lastChild, previousSibling and nextSibling. The usual way of storing the
tree in DOM implementations is to store with each node a pointer to a (subset
of) the parent, the first/last child, and the previous/next sibling. We store the
tree succinctly, and simulate access to node information by accessing an array.
Traversals are important primitives in DOM. There are two main orders of tra-
versals: document order, which corresponds to pre-order, and reverse document
order, which corresponds to reverse pre-order. There is no recognised equivalent
of BFS traversal in DOM.

2 Bit-Vector Implementations

We now discuss the space usage of the two bit-vector implementations that we
use. The formulae in Table 1 are implicit in [4, 7]. We break the space usage down
into constituent parts, as this is important to understand the space-efficiency of
louds++. In what follows, k is the size of the bit-string to be represented. The
implementations assume a machine with word-size 32 bits (and hence k ≤ 232).
The space usage figures given below do not include the space for pre-computed
tables which are used to perform computations on short bit-strings of 8 or 16
bits (the ‘four Russians’ trick).2

Table 1 gives the space usage of the implementation of Clark-Jacobson bit-
vector in [4]. The implementation has three parameters, L, B and s; we show
the space usage when B = 64, L = 256 and s = 32. In Table 1, k0 and k1
are the numbers of 0s and 1s in the bit-string, and l0 and l1 are values that
depend upon the precise bit-string (the number of so-called ‘long gaps’). It is
easy to show that max{l0, l1} ≤ k/L, but in practice, the number of long gaps
is rather small in most cases (see Section 4). Note that since rank0 trivially
reduces to rank1 and vice-versa, a single directory suffices to support both rank
queries.

We now state the space usage of the ‘byte-based’ bit-vector Kim et al. [7],
again broken down into its various components. Referring to their paper, the
space usage of the the directory for select1 comprises the space usage of its
constituent components, including the delimiter bit-string and its rank directory
(we use a block size of 64 rather than 32). The final terms (c0 and c1) are the
space usages of the clump delimiter and the clump array. Their values depend
upon the precise distribution of 0s and 1s in the bit-string. In the worst case,
c1 ≤ k0 +0.043k, but (as the authors suggest and we confirm) it is much smaller
than this upper bound. In order to support select0 in addition to select1, we
augment the bit-string with a symmetric directory for indexing 0s, whose space
is shown in the last line. The similarity between the space bounds in Table 1 is
highlighted in the following remark.

Remark 1. If selecti is to be supported, for only one i ∈ {0, 1}, the space bound
for the bit-vector implementations is of the form k+fr(k)+fs(k)+gs(ki)+hsi(A),

2 This may seem like cheating, but it is standard practice, since the size of tables is
determined by factors such as the size of the cache, independently of k.
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Table 1. The space usage of the two bit-vector implementations used

Clark-Jacobson Kim et al.
Input bit-string k k
rank0/rank1 directory 0.5k 0.25k
select0 directory 0.023k + k0 + 1024l0 1.25k1 + c1

select1 directory 0.023k + k1 + 1024l1 1.25k0 + c0

where fr, fs and gs are linear functions, indicating the space required for rank
and two kinds of select directories respectively, and A is the input bit-string.

For example, if only rank and select0 are to be supported, the Clark-Jacobson
implementation of [4], as described in Table 1 has fr(k) = 0.5k, fs(k) = 0.023k,
gs(k0) = k0, and hs0(A) = 1024l0.

3 The LOUDS Representation

The LOUDS bit-string (LBS) is defined as follows. We begin with an empty
string. We visit every node in level-order, starting from the root. As we visit a
node v with d ≥ 0 children, we append 1d0 to the bit-string. Finally, we prefix
the bit-string with a 10, which is the degree of an imaginary ‘super-root,’ which
is the parent of the root of the tree (see Figure 2).

a

b c

f h

i

g

d e

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 1 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 0
(b)

Vertex a b c d e f g h i
BFS 1 2 3 4 5 6 7 8 9
1-based 1 3 4 5 6 9 10 13 16
0-based 7 8 11 12 14 15 17 18 19

(c)

Vertex a b c d e f g h i
R0 1 0 1 0 1 0 1 0 0 1
R1 1 0 0 0 1 0 1 1 1

(d)

Fig. 2. An example ordinal tree (a) and its representations ((b)–(d)).(b) the LOUDS
bit-string (LBS); the vertical bars in the LBS have been inserted for readability. The
numbers above are the positions of the bits. The initial 10 is for the ‘super-root’. (c)
Zeros- and ones-based numberings. (d) Partitioned bitvector.

Proposition 1. The LBS of a tree T with n nodes has n 1s and n + 1 0s.The
i-th node of T in level-order is represented twice: as the i-th 1, which lies within
the encoding of the degree of its parent, and is associated with the edge that
attaches it to its parent, and also as the i + 1-st 0, which marks the end of its
own degree sequence.
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Ones-based numbering. Jacobson [6] suggests numbering the i-th node in
level-order by the position of the i-th 1 bit. This gives a node a number from
{1, . . . , 2n + 1}. To access data associated with a node numbered x, calculating
rank1(x) numbers the nodes from {1, . . . , n} in level-order.

Zeros-based numbering. Proposition 1 suggests that a node may also be
represented by a 0 bit, namely the bit that ends the unary sequence of that node’s
degree. Again, this is a number from {1, . . . , 2n+1}, and a rank0 operation may be
needed to map the nodes to numbers from {1, . . . , n}. Figure 3 indicates how the
navigational operations might work on the zero-based numbering. Although the
operations seem more complex, with the notable exception of isleaf, there is hope
that the practical performance may not be too poor, as many of the operations
apply select0 to consecutive zeros in the LBS. Also, next-sibling (prev-sibling)
requires only one select for the last (first) child; there are as many last (first)
children as non-leaf nodes.

Ones-based numbering

isleaf(x)
See first-child

parent(x)
select1(rank0(x))

first-child(x)
y := select0(rank1(x))+1
if A[y] = 0 then -1 else y

last-child(x)
y := select0(rank1(x)+1)-1
if A[y] = 0 then -1 else y

next-sibling(x)
if A[x+1] = 0 then -1

Zero-based numbering

isleaf(x)
(A[x-1] = 0) and (A[x] = 0)

parent(x)
select0(rank0(select1(rank0(x)-1)+1))

first-child(x)
if (isleaf(x)) then -1
else select0(rank1(select0(rank0(x)-1))+2)

last-child(x)
if (isleaf(x)) then -1
else select0(rank1(x)+1)

next-sibling(x)
y := select1(rank0(x)-1)+1
if A[y] = 0 then -1 else select0(rank0(x))

Fig. 3. Navigation operations for zeros-based and ones-based numberings (A is the
LBS). prev-sibling is analogous to next-sibling.

3.1 Double-Numbering

Both the ones-based and the zeros-based numberings benefit from the following
proposition:

Proposition 2. Computing y = selecti(x), for i = 0 or 1, also computes rank0(y)
and rank1(y).

Proof. If y = select0(x) then rank0(y) = x and rank1(y) = y−x. select1 is similar.
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This allows us to maintain the following invariant. We represent a node as a pair
〈x, y〉, where y is the position of the node in level-order, and x is the position of
the representation of the node in the bit-string. Clearly, depending on whether
the numbering is one-based or zero-based, x = rank1(y) or x = rank0(y) − 1.
It follows that all computations of the form rank(select(·)) are really just select
operations. Also, since the final step in any (nontrivial) navigation operation is
always a select, it follows that the invariant can be maintained at the end of each
navigational operation. For example, the call to rank0 in the parent function in
the ones-based numbering in Figure 3 can be implemented as follows:

parent(<x,y>)
rzerox := y - x
newy := select1(rzerox)
newx := newy - rzerox
return(<newx, newy>)

We refer to the ones-based and zeros-based representations with double-
numbering as louds1 and louds0 respectively.

3.2 Partitioned Representation

We now describe a new representation that has the simplicity of louds1 and also
allows the isleaf test in O(1) time. The idea is to encode the runs of zeros and ones
in the LBS in two separate bit-strings, which we will call R0 and R1. Specifically,
if there are runs of 0s of length l1, l2, . . . , lz in the LBS, then the bit-string R0 is
simply 0l1−110l2−11 . . .0lz−11. R1 is defined analogously. Noting that the LBS
begins with a 1 and ends with a 0, it is clearly possible to reconstruct it from
R0 and R1. It is now trivial to access the i-th 1 or the i + 1-st 0 that represents
the node numbered i in level-order. This means, in particular, that operations
such as isleaf are trivial: the node numbered x in level order is a leaf iff the x-th
and x + 1-st 0 belong to the same run of 0s, which is easily tested by probing
the appropriate bits of R0. Likewise next-sibling and prev-sibling are trivial to
implement by looking at R1. louds++ is simply R0 and R1, each augmented
with directories to support select1 and rank− operations, where:

rank−(x) returns the number of 1 bits strictly to the left of position x in the
bit-vector. (rank−(x) = rank1(x − 1) except when x = 1.)

We now observe:

Proposition 3. select operations on the LOUDS bit-vector can be simulated by
a select1 and a rank− on R0 and R1.

Proof. We claim that select1(LBS, i) = select1(R0, rank−(R1, i)) + i. Note that
rank−(R1, i) equals the number of completed runs of 1s before the run that i is
in. There must be an equal number of completed runs of 0s before i. The select
on R0 then gives the total length of these runs, which is then added to i to give
the position of the i-th 1. select0(LBS, i) is similar.
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Corollary 1. louds++ supports the operations parent, first-child and last-child.

Proof. We look at the implementation of these operations in louds1. Due to
double-numbering, these operations only have a single select call, which can be
simulated as in Proposition 3.

Proposition 4. The number of 1s in R0 and R1 is equal to the number of
non-leaf nodes in the input tree plus one.

Proof. A run of 1s in the LBS is a node of degree > 0, i.e. a non-leaf node
(with the exception of the super-root). The number of 1s in R1 is the number
of runs in the LOUDS bit-string. The number of runs of 0s in the LBS equals
the number of runs of 1s.

This proposition is key to the good space usage of louds++: not only do we
need to support just select1, but also, the number of non-leaf nodes is usually just
a small fraction of the number of nodes. In particular, the (usually considerable)
space usage represented by functions gs() in Remark 1 is much reduced. The
above representation also gives a nice bound on the number of non-leaf nodes in
a random n-node ordinal tree:

Proposition 5. For any constant c > 0, with probability greater than 1 − 1/nc,
the number of non-leaf nodes in a random n-node ordinal tree is n/2 ± o(n).

Proof. (outline) The bit-strings R0 and R1 can be represented using lg
(
n
t

)
bits,

where t is the number of non-leaf nodes. If, for a random random ordinal tree,
t deviates significantly from n/2, the bit-strings R0 and R1 can be represented
using significantly less than n bits, thus giving a representation of the random
tree’s LBS that uses significantly less than 2n bits. However, a simple counting
argument shows that no representation of an ordinal tree can represent a random
ordinal tree using less than 2n − O(log n) bits, with probability greater than
1 − 1/nc, for any constant c > 0.

4 Experimental Evaluation

To test our data structures we obtained ordinal trees from the following 6 real-
world XML files: xcdna.xml and xpath.xml, which contain genomic data, and
mondial-3.0.xml, orders.xml, nasa.xml and treebank e.xml [14]. We also tested
the data structures on randomly generated XML files. These were obtained by
using the algorithm described in [11] to generate random parentheses strings. A
random parentheses string was converted to an XML file by replacing the open-
ing and closing parentheses of non-leaf nodes by opening and closing tags. The
parentheses for leaf nodes were replaced with short text nodes. Our real-world
and random files were selected to get some understanding of the behaviour of
the data structures as the file size varied with respect to the size of the hardware
cache and as the structure of the trees varied. In all cases, the type of each node
(element, text node etc.) was stored as a 4-bit value in an accompanying array.
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louds++ louds0/louds1

KNKP-BV CJ-BV KNKP-BV CJ-BV
clump long clump long

File nodes %leaf total DS total gap total DS total gap Paren
mondial-3.0 57372 78 3.12 0.07 3.82 0.34 5.11 0.11 5.65 0.55 3.73
orders 300003 50 3.78 0.03 5.64 1.60 5.07 0.07 5.10 NEG 3.73
nasa 1425535 67 3.37 0.05 4.27 0.57 5.09 0.09 5.42 0.33 3.73
xpath 2522571 67 3.37 0.04 3.99 0.27 5.08 0.08 5.63 0.53 3.73
treebank e 7312612 67 3.37 0.04 3.77 0.06 5.08 0.08 5.10 0.01 3.73
xcdna 25221153 67 3.35 0.02 3.80 0.08 5.11 0.11 5.48 0.38 3.73
R62K 62501 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R250K 250001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R1M 1000001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R4M 4000001 50 3.79 0.04 4.05 NEG 5.08 0.08 5.09 NEG 3.73
R16M 16000001 49 3.81 0.04 4.07 NEG 5.08 0.08 5.10 NEG 3.73

Fig. 4. Space Usage. Test file, number of nodes, %leaf node. For louds++ and for
louds0/louds1 together: total space per node and space per node for the clump data
structure using KNKP-BV; total space per node and space per node to support long
gaps using the CJ-BV. For paren: space per node, where the numbers are obtained
using a generic formula, that does not take into account tree-specific parameters. In
[4] this formula was shown to be quite accurate for a wide variety of XML files.

We used Centerpoint XML’s DOM [13] implementation to parse the XML
files. Our experiments were to traverse the trees and to count the total number
of nodes of a particular XML type by accessing the nodetype array. We tested
with three different types of traversal, breath-first order, BFO, recursive depth-
first order, DFO, and recursive reverse depth-first order, RDO, where we first
visit the last child at each nodes and then each of its previous siblings in turn. We
compared the three louds data structures with CenterPoint XML’s DOM [13]
and the paren implementation of [4].

We implemented the data structures in C++ and tested them on a dual
processor Pentium 4 machine and a Sun UltraSparc-III machine. The Pentium 4
has 512MB RAM, 2.8GHz CPUs and a 512KB L2 cache, running Debian Linux.
The compiler was g++ 3.3.5 with optimisation level 2. The UltraSparc-III has
8GB RAM, a 1.2GHz CPU and a 8MB cache, running SunOS 5.9. The compiler
was g++ 3.3.2 with optimisation level 2.

For rank and select we used an optimised version of the Clark-Jacobson bit-
vector [4], with B = 64 and s = 32. We refer to this as CJ-BV. We also imple-
mented the bit-vector described in [7], which we refer to as the KNKP-BV. In
this data structure we use 256-bit superblocks and 64-bit blocks.

Figure 4 summarises the space usage per node. We see that louds++ gener-
ally uses less space than the other louds data structures and with the KNKP-BV
its space usage is competitive with the paren. Note that louds++ using CJ-BV
uses more space than louds1 for the file orders.xml. The structure of the file
is such that the number of long gaps in the partitioned bit-strings is relatively
large, but there are no long gaps in the LBS.
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The performance measure we report is the slowdown relative to DOM of the
succinct data structures. We first determine which bit-vector to use. The table
below gives the slowdown relative to DOM of louds++ using the KNKP-BV
and using the CJ-BV for a DFO traversal on a Pentium 4. The CJ-BV based
louds++ outperforms the KNKP-BV based data structure. We saw the same
relative performance for louds1 and louds0 and for RDO and BFS traversals.
This is not too surprising since the KNKP-BV was designed for sparse bit-
vectors, the bit-vectors here are dense. In the remaining experimental results
the louds data structures use CJ-BV.

mond order nasa xpath treeb R62K R250K R1M R4M R16M
KNKP-BV 1.82 3.24 2.82 3.13 3.26 3.63 3.73 3.77 4.09 2.14
CJ-BV 1.46 2.15 2.18 2.23 2.53 2.78 2.84 2.93 3.12 1.73

We now consider RDO traversals. At each node DOM stores a pointer to the
parent, first child and next sibling in the tree. So the operation getLastChild()
requires a traversal across all the children and getPrevSibling() at the i-th
child requires a traversal across i − 1 children. At a node with d children DOM
performs O(d2) operations. In the real-world files orders.xml, xpath.xml and
treebank e.xml there is at-least one node with over 214 children and for these
files the slowdown relative to DOM of the louds data structure is 0 (to two
decimal points), for the other real-world XML files it is between 0.14 and 0.45.

Figure 5 summarises the performance of the data structures for DFO and BFO
traversals. We see that louds++ is faster than louds0 or louds1. louds++

is also almost always faster than the paren when comparing performance of the
basic tree navigation operations.

Pentium 4 Sun UltraSparc-III
DFO BFO DFO BFO

File L1 L0 L++ Par L1 L0 L++ Par L1 L0 L++ Par L1 L0 L++ Par
mond 1.99 2.96 1.46 1.67 1.08 1.08 0.80 0.94 2.47 3.80 2.15 2.27 1.91 2.77 1.73 1.67
order 2.48 4.04 2.15 2.20 1.83 1.83 1.67 1.69 1.34 2.35 1.51 1.33 0.80 1.25 0.85 0.74
nasa 2.80 4.30 2.18 2.24 1.38 1.38 1.11 1.29 1.20 1.94 1.16 1.17 0.66 1.00 0.67 0.59
xpath 2.83 4.37 2.23 2.29 2.15 2.15 1.39 1.60 1.20 1.98 1.18 1.18 0.71 1.04 0.69 0.61
treeb 3.02 4.92 2.53 2.62 1.28 1.28 1.01 1.44 1.22 1.92 1.18 1.29 0.65 0.97 0.72 0.72
xcdna 1.21 1.95 1.15 1.13 0.75 1.03 0.65 0.61
R62K 3.17 5.04 2.78 3.16 2.06 3.24 1.75 3.07 2.30 3.58 2.40 2.82 2.14 3.45 2.32 3.22
R250K 3.22 5.10 2.84 3.22 2.02 3.21 1.71 3.01 1.53 2.40 1.60 1.85 1.42 2.25 1.54 2.12
R1M 3.29 5.25 2.93 3.19 1.92 3.08 1.69 2.96 1.23 1.90 1.31 1.75 1.12 1.78 1.21 1.71
R4M 3.46 5.61 3.12 3.21 1.13 1.86 0.97 3.01 1.24 1.93 1.34 1.77 0.99 1.59 1.08 1.57
R16M 1.76 2.97 1.73 1.84 0.50 0.80 0.44 0.30 1.22 1.93 1.32 1.81 0.61 0.96 0.65 1.17

Fig. 5. Performance evaluation on Pentium 4 and Sun UltraSparc-III.: Test
file, slowdown relative to DOM for depth-first order (DFO) and breath-first order
(BFO) traversals for louds1 (L1), louds0 (L0), louds++ (L++) all using CJ-BV
and for paren. The fastest data structure for each result is set in bold font. DOM
could not fit XCNDA.xml into the internal memory of the Pentium 4.
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5 Conclusions and Future Work

We have presented a partitioned version of Jacobson’s [6] louds representation,
called louds++, that appears to outperform other succinct tree representations
in practice. Although we have demonstrated experimentally that louds++ uses
less space than louds, this could be understood on a firmer theoretical basis.
It would be interesting to see whether the partitioning idea generalises to other
applications.

Acknowledgement. We thank Richard Geary for useful discussions.
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