Representación de relaciones de aridad n en OWL

Paula Severi

University of Leicester

Curso Noviembre-Diciembre 2018. Facultad de Ingeniería. Universidad de la República, Montevideo, Uruguay.

Resúmen de la clase

Representación de una relación de aridad n en OWL por medio de la Reificación.

Método para representar relaciones de aridad n basado en la noción de agregación de base de datos.

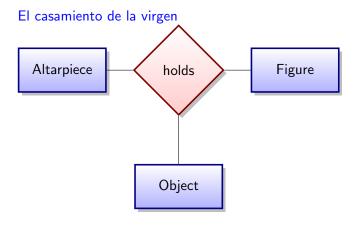
Como expresar dependencias en OWL

Representación de relaciones narias en OWL

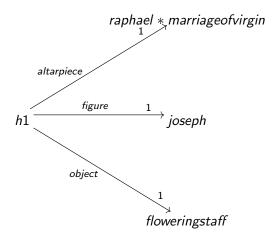
Cómo se representan en OWL las relaciones n-arias cuando n > 2?

Representación de relaciones narias en OWL

Cómo se representan en OWL las relaciones n-arias cuando n > 2?


Se pueden representar en forma indirecta codificándolas como clases.

La clase que codifica la relación naria se llama reificación.


Un retablo famoso pintado por Rafael

holds: una relación de aridad 3

Reificación de una relación ternaria en Semantic Web

Reificación de una relación ternaria en OWL

ObjectProperty: altarpiece Characteristics: Functional

Domain: Reifholds Range: Altarpiece

ObjectProperty: figure

Characteristics: Functional

Domain: Reifholds

Range: Figure

ObjectProperty: object

Characteristics: Functional

Domain: Reifholds

Range: Object

Reificación de una relación ternaria en OWL

Class: Reifholds

SubClassOf: altarpiece some Altarpiece and

figure some Figure and object some Object

HasKey: (altarpiece, figure, object)

Individual: h1

Types: Reifholds

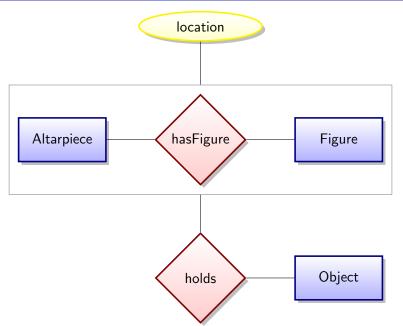
Facts: altarpiece raphael*marriageofvirgin,

figure joseph,

object floweringstaff

holds como una relación de aridad 3

Altarpiece	Figure	Object
raphaelmarriageofvirgin	joseph	floweringstaff
raphaelmarriageofvirgin	joseph	ring
corregiofoursaints	peter	keys
corregiofoursaints	peter	book
rosellimadonnasaints	catherine	palm
rosellimadonnasaints	catherine	book
dabresciamadonnaandchild	catherine	sword
dabresciamadonnaandchild	catherine	palm
corregiofoursaints rosellimadonnasaints rosellimadonnasaints dabresciamadonnaandchild	peter catherine catherine catherine	keys book palm book sword


Reifholds: reificación de holds

Altarpiece	Figure	Object	Reifholds
raphaelmarriageofvirgin	joseph	floweringstaff	h1
raphaelmarriageofvirgin	joseph	ring	h2
corregiofoursaints	peter	keys	h3
corregiofoursaints	peter	book	h4
rosellimadonnasaints	catherine	palm	h5
rosellimadonnasaints	catherine	book	h6
dabresciamadonnaandchild	catherine	sword	h7
dabresciamadonnaandchild	catherine	palm	h8

Desventajas de la reificación

- Trabajoso como cualquier codificación: muchas clases, propiedades, individuos y axiomas extras.
- Ontologías son muy díficiles de leer y entender.
- Información (que está codificada) no es visible inmediatamente.

Representación alternativa de holds

FiguresinAltarpiece: reificación de hasFigure

Altarpiece	Figure	FiguresinAltarpiece
raphaelmarriageofvirgin	joseph	f1
corregiofoursaints	peter	f2
rosellimadonnasaints	catherine	f3
dabresciamadonnaandchild	catherine	f4

En vez de reificar holds, reificamos hasFigure

Codificamos solamente 4 pares y estos son los pares que ocurren en forma repetida en la relación holds.

holds representada como una relación de aridad 2

FiguresinAltarpiece	Object
f1	floweringstaff
f1	ring
f2	keys book
f2	book
f3	palm
f3	book
f4	sword
f4	palm

Reificación de hasFigure en OWL

Class: FiguresinAltarpiece

SubClassOf: altarpiece some Altarpiece and

figure some Figure

HasKey: (altarpiece, figure)

Individual: h1

Types: FiguresinAltarpiece

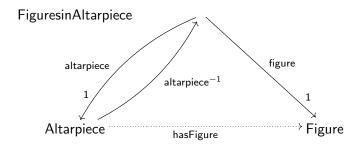
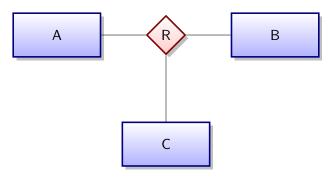
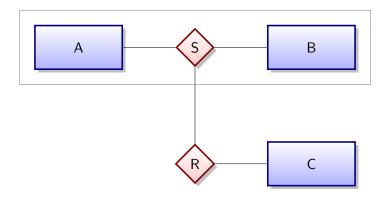

Facts: altarpiece raphael*marriageofvirgin,

figure joseph

Object Property: hasFigure


SubPropertyChain: inverse(altarpiece) o figure

Reificación de hasFigure en OWL


REDUCCION DE LA ARIDAD DE UNA RELACION

Una relación ternaria $R \subseteq A \times B \times C$

REDUCCION DE LA ARIDAD DE UNA RELACION

SE TRANSFORMA en una relación binaria entre S y C

Participación

Definición (Participación en relaciones de aridad 3)

Sea $R \subseteq A \times B \times C$, $S \subseteq A \times B$. Decimos que S participa en R si para todo $x \in A, y \in B, z \in C$,

$$(x,y,z) \in R \Rightarrow (x,y) \in S$$

Esta definición se puede generalizar a cualquier aridad y se puede tomar cualquier combinación de dominios.

Participación

Definición (Participación en relaciones de aridad 3)

Sea $R \subseteq A \times B \times C$, $S \subseteq A \times B$. Decimos que S participa en R si para todo $x \in A, y \in B, z \in C$,

$$(x, y, z) \in R \Rightarrow (x, y) \in S$$

Esta definición se puede generalizar a cualquier aridad y se puede tomar cualquier combinación de dominios.

Ejemplos:

- 1 has Figure participa en holds.
- 2 Sea $R \subseteq A \times B \times C$. Existen (siempre) por lo menos tres relaciones participantes:

$$S = A \times B$$
, $S = B \times C$ y $S = A \times C$.

Participación

Definición (Participación en relaciones de aridad 3)

Sea $R \subseteq A \times B \times C$, $S \subseteq A \times B$. Decimos que S participa en R si para todo $x \in A, y \in B, z \in C$,

$$(x, y, z) \in R \Rightarrow (x, y) \in S$$

Esta definición se puede generalizar a cualquier aridad y se puede tomar cualquier combinación de dominios.

Ejemplos:

- 1 has Figure participa en holds.
- 2 Sea $R \subseteq A \times B \times C$. Existen (siempre) por lo menos tres relaciones participantes:

$$S = A \times B$$
, $S = B \times C$ y $S = A \times C$.

Caso particular de dependencia de inclusión. $R_{12} \subseteq S_{12}$.

Representación alternativa para una relación de aridad 3

Si S participa en R entonces R se puede considerar como una relación binaria entre la reificación de S y C.

$$ReificaciondeS \xrightarrow{R} C$$

Participación implica Reducción de Aridad

Teorema sobre la reducción de la aridad para n = 3

Sea $R \subseteq A \times B \times C$ una relación de aridad 3 y $S \subseteq A \times B$. Si S participa en R entonces R se puede reducir a una relación binaria entre la agregación de S y C.

Este teorema generaliza a cualquier aridad.

Método para la representación de relaciones de aridad n

Analizamos las relaciones que participan en otras relaciones.

Si S participa en R entonces, en vez de reificar R, se reifica la relación participante S y representar R como una propiedad cuyo dominio es la reificación de S.

Ventajas de nuestro método

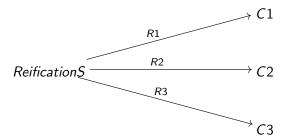
Eliminamos redundancia y codificaciones.

2 Reusabilidad.

3 En principio siempre se puede usar y se puede usar para cualquier aridad.

4 Una forma de expresar la dependencia de participación en OWL.

Reusabilidad

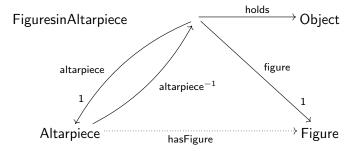

Catherine está usando una corona en el retablo "The Madonna and Saints" pintada por Roselli.

$$\mathsf{Figures in Altarpiece} \xrightarrow{\mathsf{wears}} \mathsf{Object}$$

La reificación de hasFigure se puede usar para representar otras relaciones.

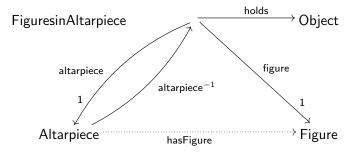
Reusabilidad

La reificación de S se puede usar para representar otras relaciones.


Menos reificaciones. Para representar las relaciones R1, R2 and R3, reificamos solamente S.

Reducción de la aridad incondicional

Teorema sobre la reducción de la aridad incondicional


Sea $R \subseteq A_1 \times ... \times A_n$. Entonces R siempre se puede reducir a una relación de aridad n-m para todo m < n. En particular, R siempre se puede reducir a una relación binaria.

Expresamos la restricción participante en OWL

Con nuestro método, podemos expresar en OWL que hasFigure participa en holds.

Expresamos la restricción participante en OWL

- Con nuestro método, podemos expresar en OWL que hasFigure participa en holds.
- Es una forma de expresar la restricción participante en DL manteniendo la decidibilidad.
 - Notar: OWL +relaciones de aridad n + operador que proyecte en varias componentes es indecidible.
- El razonador infiere las aserciones de hasFigure

Bibliografía para esta clase

Paula Severi, José Fiadeiro and David Ekserdjian. Guiding the representation of n-ary relations in ontologies through aggregation, generalisation and participation. J. Web Sem, volume 9 (2) pages 83-98, 2011 Volume 9.

Paula Severi, José Fiadeiro and David Ekserdjian. Guiding Reification in OWL through Aggregations. Proc. of the 23rd International Workshop on Description Logics, 2010.