Indecidibilidad de conservatividad en ALCQIO

Paula Severi

University of Leicester

Curso Julio 2018. Facultad de Ingeniería. Universidad de la República, Montevideo, Uruguay.

Variante del problema del embaldosado

Sistema de baldosas (variante)

Un sistema de baldosas es una tupla $\mathcal{B} = (B, H, V, D, I, S, A)$ donde B es un conjunto finito, $H, V \subseteq B \times B, D, I, S, A \subseteq B$.

- H dice qué baldosas pueden ponerse a la derecha de otras
- *V* dice qué baldosas pueden ponerse arriba de otras.
- D, I, S, A dicen qué baldosas se pueden poner en el margen derecho, izquierdo, superior y el inferior.

Variante del problema del embaldosado

Embaldosado (variante)

Un *embaldosado* (o *solución*) para \mathcal{B} es una tripleta (n, m, f) donde $n, m \in \mathbb{N}$ y $f: \{i \mid i \leq n\} \times \{j \mid j \leq m\} \to B$, que asigna baldosas a cada celda de una matriz de $n \times m$ donde

- $f(0,j) \in I, f(n,j) \in D$ para $j \le m$.
- $f(i,0) \in A, f(i,m) \in S$ para $i \le n$.
- $(f(i,j), f(i+1,j)) \in V$ para $i < n, j \le m$.
- $(f(i,j), f(i,j+1)) \in H$ para $i \le n, j < m$.

Indecidibilidad de la variante del problema del embaldosado

El problema de, dado un sistema de baldosas, determinar si existe un embaldosado, es indecidible.

Sea
$$\mathcal{B} = (B, H, V, D, L, S, A)$$
 un sistema de baldosas con $B = \{b_0, b_1, \dots, b_k\}.$

Necesitamos introducir los siguientes nombres:

- nombres b0, b1, ... bk de conceptos, uno por cada baldosa en B.
- nombres bordeSup, bordeInf, bordeIzq, bordeDer de conceptos para las márgenes superior, inferior, izquierda y derecha.
- nombres derecha, arriba de roles para moverse a la derecha y arriba.
- nombre de individuo origen que marca el origen.

Vamos a construir \mathcal{T}_1 y \mathcal{T}_2 tal que:

Propiedad Clave

 \mathcal{B} tiene solución (existe un embaldosado para \mathcal{B}) si y solo si $\mathcal{T}_1 \cup \mathcal{T}_2$ no es una extensión conservativa de \mathcal{T}_1 .

Definición de \mathcal{T}_1

Se define \mathcal{T}_1 con los siguientes axiomas:

• derecha, arriba, derecha⁻, arriba⁻ son funciones (parciales).

$$\top \sqsubseteq \le 1$$
 derecha. $\top \qquad \top \sqsubseteq \le 1$ arriba. \top
 $\top \sqsubseteq \le 1$ derecha. $\top \qquad \top \sqsubseteq \le 1$ arriba. \top

• Exactamente una baldosa se pone en cada lugar.

$$\top \sqsubseteq \bigsqcup_{i=0}^{k} \mathsf{bi} \sqcap (\bigcap_{0 \le j \le k, j \ne i} \neg \mathsf{bj})$$

• Los colores coinciden horizontal y verticalmente:

$$\top \sqsubseteq \bigcap_{i=0}^{k} (\mathsf{bi} \Rightarrow (\forall \mathsf{derecha}. \bigsqcup_{(b_i,b_j) \in H} \mathsf{bj}) \sqcap (\forall \mathsf{arriba}. \bigsqcup_{(b_i,b_j) \in V} \mathsf{bj})$$

Definición de \mathcal{T}_1 (cont)

• Los límites de la cuadrícula:

```
bordeDer ⊑
¬∃derecha.⊤ □ ∀arriba.bordeDer □ □∀arriba<sup>-1</sup>.bordeDer
¬bordeDer □ ∃derecha.⊥
```

En forma similar se agregan axiomas para los otros bordes bordelzq, bordeSup, bordeInf.

Origen: {origen}
 ⊑ bordelzq
 □ bordelnf.

Definición de \mathcal{T}_2

Sean q y p dos nombres de conceptos. Se define \mathcal{T}_2 con el siguiente axioma:

Si I es modelo de $\mathcal{T}_1 \cup \mathcal{T}_2$ entonces entonces una de las dos condiciones que siguen se cumple:

- existe un camino infinito cuyos arcos son arriba o derecha que sale de origen^I
- $arriba^I$ y $derecha^I$ no conmutan en la parte conectada de I que sale de $origen^I$.

Teorema

y

Si \mathcal{B} tiene solución $\mathcal{T}_1 \cup \mathcal{T}_2$ no es una extensión conservativa de \mathcal{T}_1 .

La solución de \mathcal{B} es (n, m, f). Definimos el concepto testigo C como la conjunción de:

```
{origen} \sqcap ∀derecha".bordeDer \sqcap ∀arriba".bordeSup \exists w \exists derecha \exists derecha^{-1} \exists derecha^{-1} \exists w.{origen}
```

donde w es una secuencia de existenciales de arriba y derecha que contiene a lo sumo n arriba's y m derecha's, $\stackrel{\leftarrow}{w}$ es la w

Construimos un modelo de \mathcal{T}_1 tal que $C^I \neq \emptyset$ como sigue:

$$\begin{array}{lll} \Delta^{I} & = & \{(i,j) \mid i \leq n, j \leq m\} \\ \text{derecha}^{I} & = & \{((i,j),(i+1,j)) \mid i < n, j \leq m\} \\ \text{arriba}^{I} & = & \{((i,j),(i,j+1)) \mid i \leq n, j < m\} \\ \text{bordelzq}^{I} & = & \{(0,j) \mid j \leq m\} \\ \text{bordeDer}^{I} & = & \{(i,j) \mid j \leq m\} \\ \text{bordeInf}^{I} & = & \{(i,0) \mid i \leq n\} \\ \text{bordeSup}^{I} & = & \{(i,m) \mid i \leq n\} \\ \text{bl}^{I} & = & \{(i,j) \mid f(i,k) = b_{l}\} \end{array}$$

Además, para todo modelo I de $\mathcal{T}_1 \cup \mathcal{T}_2$, tenemos que $C^I = \emptyset$.

Bibliografía

- Ghilardi, Lutz, Wolter. Did I damage my ontology? KR 2006.
- Lutz, Walther, Wolter. Conservative extensions in expressive description logics. IJCAI 2007.