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1 Introduction

Rewriting is the repeated transformation of a structured object according to
a set of rules. This simple concept has turned out to have a rich variety of
elaborations, giving rise to many different theoretical frameworks for reasoning
about computation. Aside from its theoretical importance, rewriting has also
been a significant influence on the design and implementation of real program-
ming languages, most notably the functional and logic programming families of
languages. For a theoretical perspective on the place of rewriting in Computer
Science, see for example [14]. For a programming language perspective, see for
example [16].

Much of the interest in rewriting paradigms for programming arises from the
possibility of a dual reading of a rewrite rule. On the one hand, a rule can be
read as a syntactic transformation on a structure. On the other hand, a rule can
be read as an equation. For example, the rule:

fibs = f(0, 1) where f(m,n) = Cons(m, f(n, m + n))

can be read either as an equational definition of a structure which is the infinite
list of Fibonacci numbers, or alternatively as instructions for a rewriting machine
to construct increasingly better approximations to this infinite list. No real ma-
chine can compute the whole of an infinite structure, but by defining suitable
finite selectors, we can write programs for rewriting machines which define finite
structures in terms of infinite ones. Thus giving the command:

print(nth(15,fibs))

to a suitable rewriting machine will result in the printing of the 15th Fibonacci
number. The rewriting machine has to be careful about how it uses the definitions
if it is to achieve a result. From a purely rewriting perspective, the problem is
to find a sequence of reductions which is normalising, for example the famous
normal order reduction for the lambda calculus [4]. Solutions to this problem are
the basis of lazy functional languages. Using implementations of such languages,
it is possible to program by devising a suitable set of equations over infinite data
structures which can be read as syntactic rewrite rules which deliver an effective
means of computing the solution.
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However, it is rather easy to write down things that look as if they have both
equational and rewrite interpretations, but which do not do what one might
expect. Here is an example:

primesthenfibs = append(primes,fibs)

where append appends one list to another, and primes and fibs are the infinite
lists of prime and Fibonacci numbers. One can write this program in a lazy
functional language such as Haskell, but the result is just the infinite list of
primes — the Fibonacci numbers disappear. The problem here is that the first
list does not have an end to attach the second list to, so the append function
seeks forever.

It is clear that some styles of building infinite terms can be computationally
useful, whilst others are not. This raises an interesting question for the underlying
theory of term rewriting, which is: what happens to various standard results for
term rewriting if we allow infinite terms and infinite rewriting sequences, and
what should those infinitary concepts be? Do the standard confluence and related
results still hold for orthogonal infinitary systems?

We give an account of a theory of infinitary rewriting, beginning with the
initial work done with and inspired by Jan Willem Klop, and ending with some
recent work on lambda calculus which derives model theoretic notions from the
kind of infinite terms which obstruct some traditional theorems of finitary rewrit-
ing.

2 Infinite term rewriting systems

In this section we will introduce the basic concepts of infinite term and reduction
sequence of transfinite length. We introduce the notion of a strongly convergent
reduction sequences for the more general setting of abstract reduction systems.
Then we will describe some of the basic theorems that hold for infinite extensions
of term rewriting systems. Detailed proofs can be found in [7, 9, 10].

2.1 Infinite terms

By interpreting finite terms as trees, infinite terms can be defined as trees having
infinite branches as in Figure 1. There is a decision to be made about whether
an infinite path in such a tree may be allowed to have a symbol at its end, which
could then have further descendants, allowing paths from the root of a term to its
leaves to have any ordinal length. We have taken the view that such terms have
no computational meaning. Although we might imagine the limit of a reduction
sequence A → B(A) → B(B(A)) →. . . to be the term B(B(B(...(A)))) with
infinitely many occurrences of B, there is no corresponding infinite process by
which the symbol at the end of such a branch might be brought back up to the
root.

We shall also require trees to be finitely branching, that is, that every op-
erator symbol have finite arity. It is not clear whether allowing infinite arities
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Fig. 1. An infinite term

would significantly change the resulting theory, but it would significantly com-
plicate the exposition for little gain, and the restriction is reasonable on intuitive
computational grounds.

Definition 1. Let V be a set of variables and let Σ =
⋃

Σn be a signature, i.e. a
disjoint union of sets Σn of function symbols of arity n ≥ 0. The set T ∞(Σ,V)
(abbreviated as T ∞) of finite and infinite terms is defined by coinduction from
the grammar:

t := x | f(t1, . . . , tn) for x ∈ X and f ∈ Σn

To talk about subterms in a precise way, we introduce the concept of an
address. An address is a finite sequence of positive integers α = i1 . . . in, where
n is called the depth of α. Given a term t, the subterm of t at α (if it exists)
is denoted by t|α and defined as follows. If α is empty then t|α is t. If α = iβ,
t = f(t1, . . . , tm), and i ≤ n, then t|α = ti|β . The result of replacing the subterm
of t at α by a term t′ is denoted by t[α := t′].

A term in T ∞ can equivalently be defined as a function from a set of ad-
dresses to function symbols and variables. The set of addresses must satisfy three
conditions: it must be prefix-closed; if αi is in the set, so is αj for j < i; and for
each α there is an upper bound to the i for which αi is in the set. This is Rosen’s
definition of a “tree domain”[18], generalised to infinite terms with finite arities.
Variables may only occur at leaves, i.e. at addresses α for which no αi is in the
set.

Note that addresses are always finite, even for infinite terms. In a term such
as that of Figure 1, there is nothing at the end of the infinite branch, and no
infinite address 222 . . . . However, we do not require any sort of regularity or
computability. Given the symbols Cons, 0, and 1, all infinite lists of 0 and 1
are included in the set of infinite terms, even lists which are not recursively
enumerable.

2.2 Reduction on infinite terms

A term rewrite rule is defined as usual, that is, a pair of terms, written t → t′,
such that t is not a variable and contains every free variable of t′. We allow t′ to



be infinite, but require t to be finite. The rule is called left-linear if no variable
occurs more than once in t.

A single reduction step is defined in the same way as for finitary term rewrit-
ing. A substitution is a function from a set of variables to terms. A substitution
σ is applied to a term t by replacing every occurrence in t of every variable x
in the domain of σ by σ(x). The result is denoted by σ(t). Given a rule p → q
and a term t, if t|α = σ(p) for some substitution σ of terms for variables, then t
can be reduced to t[α := σ(q)]. The concept of an orthogonal set of rules is also
identical to that for finitary term rewriting: all rules must be left-linear, and for
any two rules p→ q and r → s, there is no address α such that p|α exists and is
not a variable and r and p|α are unifiable (excluding the trivial case where the
two rules are the same rule and α is the empty address).

On computational grounds we might restrict the sets of function symbols and
of rewrite rules to be finite, but none of our results depend on such a restriction.

2.3 Reduction sequences of transfinite length

To define transfinite rewriting sequences, we must have some notion of the limit
of a sequence of terms. The natural notion is one which arises from the standard
metric on trees. For distinct terms t and t′, define the tree distance d(t, t′) = 2−n,
where n is the length of the shortest address α for which t and t′ have different
symbols at α, or for which α is in the tree domain of one but not the other. For
example, d(x, y) = 1, d(A(B), A(C)) = 1

2 , and d(A(B(C)), A(B)) = 1
4 .

For an infinite rewriting sequence to be considered to converge to a limit, we
might simply require that the sequence of its terms converge in the metric. This
type of convergence (called weak or Cauchy convergence) was first substantially
studied in [6].

Example 2. With the rules A(x, y) → A(y, x) and B → C, the term A(B,B)
reduces to itself infinitely often. If one occurrence of B is reduced to C, the stan-
dard construction of a confluent diagram for finite orthogonal rewriting cannot
be completed, because the bottom row of the diagram does not converge:

A(B,B)→ A(B,B)→ A(B,B)→ A(B,B)→ . . . A(B,B)
↓ ↓ ↓ ↓ ↓

A(B,C)→ A(C,B) → A(B,C)→ A(C,B) → . . . ?

Example 3. With the rule I(x) → x, we can reduce Iω = I(I(I(. . . ))) to itself
infinitely often, reducing at the root of the term each time:

I(I(I(. . . )))→ I(I(I(. . . )))→ I(I(I(. . . )))→ . . . I(I(I(. . . )))

But if we track the identity of the occurrences of I throughout the sequence, we
observe something strange:

I1(I2(I3(. . . )))→ I2(I3(I4(. . . )))→ I3(I4(I5(. . . )))→ . . . I?(I?(I?(. . . )))

Every redex in the original term is reduced, yet we still have infinitely many in
the final term, none of which derive from any part of the initial term.



Example 4. With the rule A(x) → A(B(x)) we have the following convergent
sequence:

A(C)→ A(B(C))→ A(B(B(C)))→ . . . A(B(B(. . . )))

If we again track the identities of subterms, we see that an endless stream of Bs
flows down from the root, but none of those occurring in the final term derive
from them:

A1(C)→ A2(B1(C))→ A3(B2(B1(C)))→ . . . A?(B?(B?(. . . )))

Example 5. (Due to Simonsen [24].) With an infinite set of rules:

A→ B

F (Gk(C), x, y)→ F (Gk+1(C), y, y) for even k

F (Gk(C), x, y)→ F (Gk+1(C), A, y) for odd k

we can construct the following weakly convergent reduction:

F (C,A, A)→ F (G(C), A, A)→ F (G(G(C)), A, A)→ . . . F (Gω, A, A)

We also have F (C,A,A) → F (C,A,B). However, F (C,A,B) and F (Gω, A, A)
have no common reduct. Thus although the system is orthogonal, it is not con-
fluent.

In all of these examples, what goes wrong is that although the terms of the
sequence have larger and larger prefixes in common, rewriting always continues
at the root of the term. In order to be able to relate the structure of the limiting
term to the structures of the terms of the sequence, we require a stronger notion
of convergence, according to which not only must the terms of the sequence
converge, but the depths at which rewrites take place must increase without
bound, so that larger and larger prefixes of the term remain “stable”.

We can capture the essentials of the situation by considering abstract reduc-
tion systems equipped with a measure of the depth of a reduction.

Definition 6. An abstract reduction system is a set A of objects called terms,
and a function from a set L to A × A. We write a

l→ b if l ∈ L is mapped
to (a, b), and call this a reduction step. Note that there can be more than one
reduction step from a to b, of different sizes.

A metric abstract reduction system in addition has a metric on A and a
measure of size s mapping L to positive real numbers.

In such a system, a strongly convergent reduction sequence of length α, for
an ordinal α, consists of:

1. a sequence of terms tβ for all β ≤ α, and
2. for each β < α, a reduction step tβ

sβ→ tβ+1,



such that for every limit ordinal λ ≤ α, the sequence {sβ |β < λ} tends to zero.
We write t → t′ for a single reduction step, t →→ t′ for a finite sequence

of reductions, and t →→→ t′ for a possibly infinite strongly convergent sequence.
t→α t′ denotes a strongly convergent sequence of length α.

The equality relation generated by the transfinite rewrite relation is the equiv-
alence closure of →→→, that is, (→→→ ∪ ←←←)∗.

A term rewriting system forms a metric abstract reduction system in an
obvious way: the size of a reduction step is 2−d where d is the length of the
address of the redex, and the metric is the tree distance.

Metric abstract reduction systems on their own, however, have too little
structure to produce interesting theorems. For that we depend on the term
structure.

Example 7. With the rule I(x) → x and the term Iω as in Example 3, we can
reduce every other redex of the initial term, and obtain a limiting term whose
subterms all arise from subterms of terms earlier in the sequence:

I1(I2(I3(I4(. . . ))))→ I2(I3(I4(I5(. . . ))))→ I2(I4(I5(I6(. . . ))))→

I2(I4(I6(I7(. . . ))))→ω I2(I4(I6(I8(. . . ))))

Example 8. With the rule A→ B(A), we can generate an infinite term in a way
similar to Example 4:

A1 → B1(A1)→ B1(B2(A1))→ω B1(B2(B3(. . . )))

However in this case the place where reductions happen moves down the term
instead of staying at the root.

The movement of reductions to deeper and deeper levels is the crucial prop-
erty that allows the structure of the limiting term to be related to that of the
earlier terms in the sequence.

Note that when a rewrite system is “top-terminating” (having no reduction
sequences performing infinitely many reductions at the root), a condition intro-
duced by Dershowitz et al. [6], weak convergence and strong convergence are
equivalent. However, many systems of interest are not top-terminating.

2.4 Compression of transfinite sequences to length ω

Once we have the concept of an infinite rewriting sequence that converges to
a limit term, we cannot avoid opening the door to rewriting sequences of any
ordinal length. If the limit term after ω steps contains redexes, we can continue
to rewrite, to generate a reduction sequence of length ω + ω, ω2, or longer.

From Example 3 we can see that a reduction of at least any countable ordinal
length can be constructed. This is in fact the maximum: because arities and
addresses are finite, there are no uncountably long strongly convergent sequences.



Theorem 9. Every strongly convergent sequence has countable length.

Proof. In a strongly convergent sequence, there can be only finitely many re-
ductions of depth n, for any given finite n. Therefore the total number of steps
must be countable. ut

For left-linear systems we can prove a much stronger result, which helps to
give computational meaning to sequences longer than ω: they are all equivalent
to sequences of length at most ω.

Theorem 10 (Compression Lemma). In a left-linear term rewriting system,
for every strongly convergent sequence t →α t′, there is a reduction from t to t′

of length at most ω.

Proof. This is proved by induction on α.
If α = λ + 1 for a limit ordinal λ, then the redex reduced by the final step

must, by strong convergence and the finiteness of left hand sides, already exist
at some point before λ. One can show that it is possible to reduce it at such an
earlier point, and to carry out the remainder of the original reduction sequence
in no more than λ steps. By repetition, this proves the theorem for λ + n for all
finite n.

If α is a limit ordinal greater than ω, then we proceed by considering the
minimum depth d of any step in the sequence. One can reorder the sequence so
as to perform all of the steps at depth d within some finite initial segment of an
equivalent sequence no longer than α. The remainder of the sequence performs
reductions only at depth at least d + 1. Repeating the argument generates a se-
quence consisting of at most ω finite subsequences, in which the nth subsequence
performs reductions only at depth at least n. This sequence must converge to
the limit of the original sequence. ut

Example 11. The Compression Lemma does not hold for weakly convergent re-
duction in left-linear systems. Consider the rules G(x,B) → G(F (x), B) and
B → C. G(A,B) reduces by weakly convergent reduction to G(Fω, C) in ω + 1
steps but not in any smaller number:

G(A,B)→ G(F (A), B)→ G(F (F (A)), B)→ω G(Fω, B)→ G(Fω, C)

Example 12. The Compression Lemma does not hold for strongly converging
reductions in non-left-linear systems. Consider the rules A→ G(A), B → G(B),
and F (x, x) → C. Then F (A,B) →ω F (Gω, Gω) → C, but F (A,B) does not
reduce to C in fewer than ω + 1 steps.

2.5 Confluence

One of the fundamental properties of finite rewriting in orthogonal systems is
confluence. Surprisingly, this turns out to not quite hold for strongly convergent
reductions. A limited version does hold, called the Strip Lemma.



Theorem 13 (Strip Lemma). If t0 → t1 and t0 →→→ t2, then for some t3,
t1 →→→ t3 and t2 →→→ t3.

Proof. The proof is essentially the same as for finitary term rewriting. We con-
sider the set of residuals of the redex t0 → t1 in each term in the reduction of
t0 to t2. Because the residuals of a subterm are always disjoint from each other
(that is, none of them is a subterm of any other), each of these sets of residuals
has a strongly convergent complete development. It is a straightforward mat-
ter to show that the resulting construction of a tiling diagram can be carried
through, and that its bottom side is strongly convergent. ut

But confluence fails.

Example 14. Consider the rules A(x) → x and B(x) → x. In the term A(B(A(
B(. . . )))), if we reduce all of the A redexes, we obtain B(B(B(. . . ))) but if we
reduce all of the B redexes, we obtain A(A(A(. . . ))). These two terms reduce
only to themselves, and have no common reduct.

Example 15. By adding the rule C → A(B(C)) to the previous example, we
obtain an example in which all the terms in the two sequences except for the
limiting terms are finite.

C → A(B(C))→ A(C)→ A(A(B(C)))→ A(A(C))→ω A(A(A(. . . )))

C → A(B(C))→ B(C)→ B(A(B(C)))→ B(B(C))→ω B(B(B(. . . )))

However, the situation is not lost. Examples similar to the above are essen-
tially the only way in which an orthogonal transfinite term rewriting system can
fail to be confluent.

Definition 16. A collapsing rule is a rewrite rule whose right hand side is a
variable. A hyper-collapsing term is a term whose every reduct reduces to a redex
of a collapsing rule. A collapsing tower is a term of the form t1[α1 := t2[α2 :=
t3[α3 := . . . ]]], where each term ti[αi := x] is a redex of a collapsing rule t→ x
such that t|αi = x.

Theorem 17. Strongly convergent reduction in an orthogonal term rewriting
system is confluent if and only if it contains at most one collapsing rule, and the
left hand side of that rule contains only one variable.

We can also prove restricted versions of confluence for systems not covered
by the above theorem, to the effect that if collapsing towers do not arise in the
construction of a particular tiling diagram, its construction can be completed.
For details we refer to [8].

The types of orthogonal rewriting system that are used to model functional
languages almost always contain multiple collapsing rules, for example, to im-
plement selectors for data structures:

Head(Cons(x, y))→ x Tail(Cons(x, y))→ y



These rules immediately give counterexamples to confluence like that of Exam-
ple 14.

Instead of proving exact confluence for restricted situations, we can prove
approximate versions of confluence for all orthogonal systems. Such theorems
can be found by further consideration of the meaning of hyper-collapsing terms.

2.6 A more general way of restoring confluence

The collapsing towers which obstruct confluence do not have an obvious meaning.
In domain-theoretic terms, a term such as Iω with the rewrite rule I(x) →
x suggests the least fixed point of the identity function, which is undefined.
The same is true of all the hyper-collapsing terms. If we regard these terms
as meaningless, and identify them all with each other, it turns out that the
confluence property is recovered for orthogonal systems.

Definition 18. Given a class of terms U , rewriting is confluent modulo U if,
whenever t0 ←←← t1

U←→ t2 →→→ t3, there exist t4 and t5 such that t0 →→→ t4
U←→

t5 ←←← t3.

Theorem 19. An orthogonal term rewriting system is confluent modulo HC.

The next theorem assures us that the identification of all hyper-collapsing
terms with each other introduces no new equalities, since they are already prov-
ably equal.

Theorem 20. Any two hyper-collapsing terms t and t′ are interconvertible.
Specifically, there exist terms t′′, s, and s′ such that t→→→ s←←← t′′ →→→ s′ ←←← t′.

Proof. Since t and t′ are hyper-collapsing, they reduce to collapsing towers
C0[C1[C2[. . . ]]] and D0[D1[D2[. . . ]]]. The term C0[D0[C1[D1[C2[D2[. . . ]]] reduces
to each of these towers. ut

2.7 Axiomatic treatment of undefinedness

Theorem 19 was proved for orthogonal term rewriting systems in [8], but later
work has shown that it does not depend on the details of this particular set of
terms. Instead, we can state a set of axioms which any set of “undefined” terms
should satisfy, and derive confluence modulo undefinedness from these axioms.
Some preliminary definitions are necessary:

Definition 21. For any set U of terms, define t
U←→ t′ if t′ can be obtained

from t by replacing some (finite or infinite) set of subterms of t in U by terms
in U . The transitive closure of U←→ is denoted by U==.

Let t contain a redex by a rule p→ q at address α, and a subterm at address
β. That subterm overlaps the redex if β = αγ for some nonempty γ such that
p|γ exists and is not a variable.

A term t is root-active if every reduct of t can be reduced to a redex. The set
of root-active terms is denoted by RA.



Definition 22. A set U satisfying the following axioms will be called a set of
undefined terms.

1. Closure. For all s→→→ t, s ∈ U if and only if t ∈ U .
2. Overlap. If t is a redex, and some subterm of t overlapping the redex is in
U , then t ∈ U .

3. Activeness. U includes RA.
4. Indiscernability. If t

U←→ t′ then t ∈ U if and only if t′ ∈ U .

These axioms were first stated in [10], except that we have here strengthened the
Closure axiom, which originally required only that U be closed under reduction.
This extra condition ensures that the Compression Lemma continues to hold for
an extended form of reduction we shall introduce in section 2.8. In most cases,
the Indiscernability axiom is the only axiom requiring any significant effort to
prove. An equivalent way of stating it is that the U←→ and U== relations are
identical.

In [10, 7] it is proved that for any set U satisfying enough of these axioms,
transfinite reduction is confluent modulo U , and also possesses the following
genericity property:

Definition 23. Call a term totally meaningful if none of its subterms is in U .
U is generic if for every s ∈ U and every term t, if t[x := s] reduces to a totally
meaningful term t′, then for every term r, t[x := r] also reduces to t′.

Theorem 24. In an orthogonal sytem, if U satisfies all the axioms except pos-
sibly Activeness, and includes HC, then reduction is confluent modulo U . If U
satisfies Closure and Overlap, it is generic.

The root-active terms are themselves a class satisfying all the axioms, and the
hyper-collapsing terms satisfy all but the Activeness axiom. In the next section
we will give some other concrete examples.

2.8 Syntactic domain models from sets of undefined terms

Another way of looking at the concept of reduction modulo undefinedness is to
identify all undefined terms with each other by introducing a new symbol ⊥.
Terms which may contain ⊥ are called partial terms, and form the set T ∞⊥ . T ∞⊥
is partially ordered by the prefix order �, defined as the least partial order for
which ⊥ is the bottom element and all the function symbols are monotonic.
The rewrite relation of the original rewrite system R extends immediately to
partial terms. A set U of undefined terms can be extended to a set U⊥ ⊆ T ∞⊥ by
defining t ∈ U⊥ if there is a way of replacing all occurrences of ⊥ in t by terms
in U to obtain a term in U . (Note that by the Indiscernability property, if one
such substitution yields a term in U , then every substitution does.) We then add
an additional rule called ⊥U -reduction, which allows any undefined subterm to
be replaced by ⊥. Let R∞⊥U denote this extension of the original system R. We



write→R for rewriting by the original rules,→⊥U for rewriting by the new rule,
and →R⊥U for the combination.

For any set U of undefined terms in an orthogonal term rewriting system,
the following statements hold.

1. R∞⊥U satisfies the Compression Lemma.
2. R∞⊥U is confluent.
3. ⊥U -reductions can always be postponed after ordinary reductions. That is,

if t→→→R⊥U t′, then for some t′′, t→→→R t′′ →→→⊥ t′. This fact serves to connect
reductions in the augmented system with plain reductions of ordinary terms.

4. Every term t has a unique normal form NF(t) by strongly converging→→→R⊥U
reduction.

This allows the construction of models of a term rewriting system. The nor-
mal forms of R∞⊥U are the values, with the semantics given by the mapping NF
of terms to their unique normal forms.

The properties of this interpretation depend on the choice of U . In some
pathological cases the normal form function is not monotonic, and the set of nor-
mal forms may not be a complete partial order with respect to the prefix order.
As a somewhat contrived counterexample, consider a term rewriting system with
two unary symbols s and p, and no rewrite rules. Any set of the form {t}, where
t is any term which is not a proper subterm of itself (as infinite terms can be)
satisfies all of the axioms of undefinedness. (Closure, Overlap, and Activeness are
trivial when there are no rewrite rules.) Take U = {s(pω)}. Then s(⊥) is a nor-
mal form for →R⊥U , but s(⊥) � s(pω) →⊥U ⊥, and so NF(s(⊥)) 6� NF(s(pω)).
Furthermore, NF is not continuous at limit points, since every finite prefix of
s(pω) is its own normal form.

2.9 Sets of undefined terms

There may be many different sets of undefined terms in an orthogonal term
rewriting system. The set of root-active terms is the smallest set of undefined
terms. Trivially, the set of all terms is the largest. We call sets which are smaller
than the set of all terms consistent. The intersection of any set of sets of undefined
terms is a set of undefined terms. This does not necessarily hold for unions:
Closure, Overlap, and Activeness all hold for unions, but Indiscernability may
not.

An interesting set of undefined terms is the opaque terms. A term t is opaque
if no reduct of that term can overlap any redex. This is proved to be a set of
undefined terms in [10] for the axioms used there. Our stronger form of the
Closure axiom can be ensured by extending the set to include every term that
reduces to an opaque term, and we shall use this as our definition of opaqueness
here. Orthogonality immediately implies that all root-active terms are opaque,
but in general there are many others. For example, Head(Nil) is opaque in a
term rewriting system with just the rule Head(Cons(x, y))→ x.

Of more interest is the concrete term rewriting system for calculating Fi-
bonacci numbers in Figure 2. The opaque terms in this TRS are the terms



0 + y → y nth(0, y :z) → y fibs → f(0, s(0))
s(x) + y → s(x + y) nth(s(x), y :z) → nth(x, z) f(x, y) → x :f(y, x + y)

Fig. 2. The orthogonal Fibonacci TRS

that cannot reduce to any instance of 0, s(x), or x :y. This includes root-active
terms like 0+(0+(. . . )), but also some normal forms such as nth(0, 0). The nor-
mal forms of →→→R⊥opaque

reduction are all the terms built from the constructor
symbols, i.e. 0, s, and :, together with ⊥.

3 Infinite lambda calculus

The theory of infinitary term rewriting can be extended to lambda calculus in a
straightforward way, allowing us to prove confluence modulo a similar notion of
undefined term, and to derive models from sets of undefined terms. The collection
of all sets of undefined lambda terms turns out to be much richer than our original
collection of three such sets in [9]. We will explain and extend some of the recent
developments in [21–23].

3.1 Infinite λ-terms

The concept of an infinite term can be defined for lambda calculus in the same
way as for terms, interpreting application as a binary operator and λx as a unary
operator for each x.

Definition 25. The set of Λ∞⊥ of finite and infinite λ-terms is defined by coin-
duction from the grammar:

M ::= ⊥ | x | λx.M |MM

The set Λ∞ consists of the terms in Λ∞⊥ which do not contain ⊥.

We ignore the identity of bound variables and do not distinguish alpha-
equivalent terms, considering (λx.x)(λx.x) and (λy.y)(λz.z) to be the same term.
In particular, the distance between two terms is defined to be the minimum tree
distance between any members of their alpha-equivalence classes.

Definition 26. We will need the following abbreviations of λ-terms:

1. ∆ = λx.xx, Ω = ∆∆, K = λxλy.x, I = λx.x and the fixed point combinator
Y = λf.(λx.f(xx))(λx.f(xx))

2. The normal form of the fixed point YK of K is O = λx1λx2λx3 . . ., also
known as the ogre.1

1 Because it eats an unlimited number of arguments.



3.2 Reduction on infinite λ-terms

The rule of β-reduction extends in the obvious way to Λ∞⊥ . The concept of a
strongly convergent reduction sequence in Definition 6 applies to the set Λ∞⊥ .
Since beta reduction is a collapsing rule, it is not surprising that the confluence
property fails, for the same reason it fails for term rewriting. In fact, even the
Strip Lemma fails. This is because in lambda calculus, unlike term rewriting, the
residuals of a redex can be nested within each other, and in the Strip Lemma
diagram, it is possible to find examples in which the set of residuals of the initial
redex by an infinite sequence form a collapsing tower.

Example 27. We show a simple counterexample to the Strip Lemma which can
be found in [2]. Define W = λx.I(xx). Then the term ∆W has a one-step
reduction to Ω = ∆∆ and an infinite reduction to I(I(. . .))), namely

∆W →β WW →β I(WW )→β I(I(WW ))→→→β I(I(I(. . .)))

Both ∆∆ and I(I(I(. . .))) reduce only to themselves, and have no common
reduct. Note that both terms are examples of root-active terms in the sense of
Definition 21 applied to lambda calculus.

Despite the counterexample there are several useful restricted forms of Strip
Lemma [7]. For instance:

Theorem 28 ([7]). If M0 →β M1 and M0 →→→β M2 then for some M3, M1 →β

M3 and M2 →→→β M3 provided M0 →M1 is a head β-reduction.

It is interesting to note that although root-active terms may not have common
reducts, they are all interconvertible.

Theorem 29. For every root-active term M , there is a term which reduces to
both M and Iω.

Proof. For any term M , define M I to be the term resulting from replacing every
application PQ in M by I(PQ). Clearly M I →→→ M . We also have (P [x :=
Q])I = P I[x := QI] (which is immediate by considering the introduced copies of
I as labels attached to the applications, and applying the technique of labelled
reduction [17]). Hence also

((λx.P )Q)I = I(λx.P I)QI → I(P I[x := QI]) = I(P [x := Q])I → (P [x := Q])I

This lets us mimic for M I any reduction of M : if M →→→M ′ then M I →→→M ′I.
If, however, we modify this construction by omitting the reduction of I when-

ever it occurs at the root, then we instead reduce M I to In(M ′I) when the reduc-
tion of M to M ′ performs n reductions at the root. This transforms a reduction
of M which performs infinitely many such reductions to a strongly convergent
reduction of M I to Iω. ut

Note that the proof of Theorem 20 does not work for lambda calculus, since
a root-active term in lambda calculus (for example, Ω) need not be reducible
to a collapsing tower. This is because in term rewriting, a reduction at the root
cannot create new redexes, whereas in lambda calculus it can.



3.3 Undefinedness in lambda calculus

The remedies for the failure of confluence are the same as for term rewriting: we
can identify a set of terms as undefined and define rewriting modulo this set,2 or
extend reduction with a ⊥ rule reducing undefined terms to ⊥, and prove that
these forms of rewriting are confluent.

The Closure, Activeness, and Indiscernability axioms carry over unchanged.
Note that since the β rule is a collapsing rule, all root-active terms are hyper-
collapsing. The Overlap rule is also unchanged, but can be stated in a simpler
and more explicit form. There is also an additional axiom requiring closure under
substitution. This last axiom was not necessary for term rewriting, because the
variables in a term behave like constant symbols, and are never substituted for
by the process of reduction.

Definition 30. A set U ⊆ Λ∞ will be called a set of undefined terms if it
satisfies the Axioms of Closure, Activeness and Indiscernability of Definition 22
and the following two axioms:

1. Overlap. If (λx.P ) ∈ U then (λx.P )Q ∈ U .
2. Substitution. U is closed under substitution.

Now let U be a set of terms of Λ∞ satisfying the axioms. We add the following
rewrite rule:

M [⊥ := Ω] ∈ U M 6= ⊥
(⊥U )

M → ⊥
(Note that by Indiscernability, there is nothing special about the use of the term
Ω — any other member of U could be used.) The infinitary lambda calculus
over Λ∞⊥ with the β and ⊥U rules is denoted λ∞β⊥U , and the combined reduction
relation written simply →. Reductions using only one or other of the rules will
be denoted →β or →⊥U

The ⊥U rule is of course not computable (since U is not recursively enu-
merable unless U = Λ∞), but it provides a mathematically convenient way of
talking about terms modulo undefinedness. The postponement property in the
next theorem serves to connect reductions in λ∞β⊥U with plain beta reduction.

Theorem 31. Let U be a set of undefined terms.

1. Strongly converging reduction in λ∞β⊥U is confluent.
2. Every term M has a strongly converging reduction to normal form, which by

the first part is unique and will be denoted by NFU (M).
2 Recently Ketema and Simonsen [12, 13] have shown that strongly converging reduc-

tion is confluent modulo HC in fully-extended orthogonal infinitary combinatory
term rewriting systems with rules with finite right hand sides. Since the notions
root-active and hyper-collapsing coincide in lambda calculus (because the beta rule
is hyper-collapsing) their result generalises our results on confluence modulo HC for
orthogonal term rewriting and confluence modulo RA for lambda calculus with the
beta rule.



3. ⊥-reduction can be postponed after β-reduction. That is, if M →→→ N , then
for some term L, M →→→β L→→→⊥U N .

4. The Compression Lemma holds for strongly converging reduction in λ∞β⊥U .

Thus λ∞β⊥U is a complete (normalising and confluent) extension of the finite
lambda calculus λβ .

Theorem 32. Let U be a set of undefined terms. For any term M in λ∞β⊥U we
have NFU (M) = ⊥ iff M [⊥ := Ω] ∈ U .

Proof. “If”is trivial. “Only if”: suppose that for a term M in Λ∞⊥ we have that
its normal form in λ∞β⊥U is equal to ⊥. Hence there is a reduction M →→→β⊥ ⊥. By
Theorem 31 this factors as M →→→β K →→→⊥ ⊥. Hence M [⊥ := Ω] →→→β K[⊥ :=
Ω]→→→⊥ K →→→⊥ ⊥. By definition of ⊥U -reduction and indiscernability it follows
that K[⊥ := Ω]→→→⊥ ⊥ implies K[⊥ := Ω]→⊥ ⊥. Hence K[⊥ := Ω] ∈ U . Since
U is closed under β expansion we find that M [⊥ := Ω] ∈ U . ut

3.4 Sets of undefined lambda terms

In this section we will study the collection U of all sets of undefined terms. Since
U is closed under intersections (though not under unions), it forms a complete
lattice under set inclusion. The top and bottom elements are Λ∞ and T N , and
the meet operation is intersection. The join of a set of sets of undefined terms is
the intersection of all sets of undefined terms containing their union.

Let us now give some concrete examples of such sets. For a while the following
three sets were the only known sets of undefined lambda terms (cf. [8, 1, 10, 7]).

Definition 33. 1. A term M ∈ Λ∞ is a head normal form if M is of the form
λx1 . . . xn.yP1 . . . Pk. HN is the set of terms without a finite β-reduction to
head normal form.

2. A term M ∈ Λ∞ is a weak head normal form if M is a head normal form
or M = λx.N . WN is the set of terms without a finite β-reduction to weak
head normal form.

3. A term M ∈ Λ∞ is a top normal form if it is either a weak head normal for
or an application (NP ) if there is no Q such that N →→β λx.Q. T N is the
set of terms without a finite β-reduction to top normal form.

Lemma 34. HN , WN and T N satisfy the axioms for undefined terms.

Proof. Apart from closure under expansion all the axioms have been proved
to hold for HN , WN and T N in [10]. We show the expansion property for
HN . Suppose N is a term in Λ∞ without a β-reduction to head normal form.
Suppose also that M1 →→→β N and M1 has a head normal form M2. Without loss
of generality we may assume that there is a finite head reduction from M1 to M2.
Repeated application of the Restricted Strip Lemma 28 then gives us a common
reduct M4 of both N and M2. The term M4 is a head normal form because it is
a reduct of the head normal form M2. This contradicts the assumption that N
has no head normal form. Hence M1 has no head normal form either. Closure
under expansion for the other two sets can be proved in a similar way. ut



If we now apply the Main Theorem 31 of the previous section to these three
sets we find that λ∞β⊥HN

, λ∞β⊥WN
and λ∞β⊥TN

are confluent and normalising
extensions of finite lambda calculus. The normal form of a term M in λ∞β⊥HN
(respectively λ∞β⊥WN

and λ∞β⊥TN
) corresponds to the Böhm tree (respectively

the Lévy-Longo tree and Berarducci tree) of M . As a useful corollary of the
confluence and normalisation property of λ∞β⊥TN

we obtain a useful refinement
of the old observation of Wadsworth [4] that finite lambda terms are either of the
form λx1 . . . λxn.yMk . . .M1 or λx1 . . . λxn.(λy.P )QMk . . .M1 where n, k ≥ 0.

Lemma 35 ([23]). A term in Λ∞⊥ has one of the following five forms:

1. λx1 . . . λxn.yMk . . .M1

2. λx1 . . . λxn.(λy.P )QMk . . .M1

3. λx1 . . . λxn.⊥Mk . . .M1

4. λx1 . . . λxn.(((. . .M3)M2)M1

5. λx1λx2λx3 . . . = O

Of course, the third option does not apply to terms in Λ∞.
Now the key to constructing other sets of undefined terms lies in finding a

definition of these sets in terms of what they include, rather than what they
exclude [22, 23]. For doing so we need some terminology.

Definition 36. 1. A term M ∈ Λ∞⊥ is root-active (with respect to β) if for all
M →→→β N there exists a redex (λx.P )Q such that N →→β (λx.P )Q.

2. A term M ∈ Λ∞⊥ is a head active form if M = λx1 . . . xn.RP1 . . . Pk and R
is root-active.

3. A term M ∈ Λ∞⊥ is a strong active form if M = RP1 . . . Pk and R is root-
active.

4. A term M ∈ Λ∞⊥ is a strong active form relative to X if M = RP1 . . . Pk and
R is root-active and P1, . . . , Pk ∈ X.

5. A term M ∈ Λ∞⊥ is an infinite left spine form if M = λx1 . . . xn.((. . .)P2)P1.
6. A term M ∈ Λ∞⊥ is a strong infinite left spine form if M = ((. . .)P2)P1.

A term M ∈ Λ∞⊥ is a strong infinite left spine form relative to X if M =
((. . .)P2)P1 and Pi ∈ X for all i.

Example 37. 1. The term Ω is a finite root-active term. The fixed point YI
reduces to the infinite root-active term I(I(I(. . .))).

2. Ωxyz, (YI)xyz and I(I(I(. . .)))xyz are strong active terms.
3. The finite term Ω3 = (λx.xxx)(λx.xxx) reduces to the strong infinite left

spine form ((. . .)ω3)ω3, where ω3 = λx.xxx.

We can now redefine the sets HN , WN and T N .

Lemma 38. 1. A term M ∈ Λ∞ has no top normal form if and only if M is
root-active.

2. A term M ∈ Λ∞ has no weak head normal form if and only if M reduces to
a strong head active form, or a strong infinite left spine form.



3. A term M ∈ Λ∞ has no head normal form if and only if M reduces to a
head active form, an infinite left spine form, or the ogre.

The reformulation of the set WN reveals that the terms without weak head
normal form in the lambda calculus are precisely the strong zero terms, terms
of which no instance can reduce to an abstraction. Strong zero terms can also
be characterised as those terms no reduct of which can overlap any redex, which
are exactly the terms that we called opaque in section 2.9.

Before we can define a partition of Λ∞ we need to define some notation.

Definition 39. We define the following subsets of Λ∞.

HA = {M ∈ Λ∞ |M →→β N and N is head active}
IL = {M ∈ Λ∞ |M →→→β N and N is an infinite left spine form}
O = {M ∈ Λ∞ |M →→→β O}
RA = {M ∈ Λ∞ |M is root-active}
SA = {M ∈ Λ∞ |M →→β N and N is strong active}
SIL = {M ∈ Λ∞ |M →→→β N and N is a strong infinite left spine form}

Theorem 40. Λ∞ is the disjoint union of HN , HA, IL and O.

With these components we can make the sets of undefined terms of Figure 3.

Theorem 41 ([23]). All eight sets of Figure 3 are sets of undefined terms.

Proof. The proofs for the three sets defined in Definition 33 can be found in [10].
The proofs for all other sets can be found in [23]. ut

There are many more sets of undefined terms besides the eight depicted in
Figure 3. Although we do not have a complete classification, we can say where
these other sets can be found in relation to those eight sets. In the figure we use
solid arrows X - Y to express that X ⊃ Y and there are NO other sets
of undefined terms in between X and Y . Dashed arrows X - Y indicate
that X ⊃ Y and that there are at least 2c many other sets of undefined terms
in between X and Y , where c is the cardinality of the continuum. To prove the
correctness of these arrows we will first prove a useful lemma.

Lemma 42. Let U be a set of undefined terms.

1. If λx.M ∈ U then M ∈ U .
2. If λx.M ∈ U for some M then HA ⊆ U .
3. If O ∈ U then HA ⊆ U .
4. If λx.M ∈ U and U ⊆ SA ∪ SIL then U ⊆ HA ∪ IL.
5. If SIL ⊆ U then SA ⊆ U .
6. If IL ⊆ U then HA ⊆ U .
7. If a head normal form is in U then U = Λ∞.

Proof. Proofs as in [23]. These are straightforward deductions from the axioms:
for example, to prove (1), λx.M ∈ U implies (λx.M)x ∈ U by indiscernability,
therefore M ∈ U by Closure. ut
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Fig. 3. The eight main sets of undefined terms

Theorem 43. The set HN is the largest set of undefined terms which is a
proper subset of Λ∞.

Proof. The first statement follows from Lemma 42(7). The second statement
follows directly from the axioms of undefinedness. ut

Definition 44. Let A ⊆ B be two sets of undefined λ-terms. The (open) interval
〈A,B〉 is the set {C | A ( C ( B and C is a set of undefined λ-terms}.

Theorem 45. 1. The interval 〈SA,HA∪O〉 contains only the element HA.
2. The interval 〈SA ∪ SIL,HA∪ IL ∪ O〉 contains only the element HA∪IL.

Proof. These follow from Lemma 42, parts (2) and (4) respectively. ut

Theorems 43 and 45 imply that the solid arrows in Figure 3 are correctly drawn.
From Theorem 45(2) it follows also that the collection of sets of undefined terms
is not closed under unions. The union of the sets of undefined terms SA ∪ SIL
and HA is SIL∪HA, which is not a set of undefined terms. The next theorem
will imply the correctness of the dashed arrows in Figure 3.

Definition 46. Let X ⊂ Λ∞.

1. We say that a term M is a strongly head active term relative to X if M
reduces to a term of the form RX1 . . . Xn, where R ∈ RA and X1, . . . , Xn ∈
X. We denote the set of strongly head active terms relative to X by SAX .



2. We say that a term M is a strong infinite left spine term relative to X if M
reduces to a term of the form . . . X3X2X1 where all Xi ∈ X. We denote the
set of strong infinite left spine terms relative to X by SILX .

3. We say that a term M is an almost strong infinite left spine term relative
to X if M reduces to a term of the form . . . X3X2X1Nk . . . N1 where all
Xi ∈ X and the Ni ∈ Λ∞⊥ . We denote the set of almost strong infinite left
spine terms relative to X by SIL+

X .
4. The set IL+

X of almost infinite left spine terms relative to X is defined
similarly.

Lemma 47. If X is a subset of closed normal forms in Λ∞ then SAX is a set of
undefined terms. Moreover if X does not contain subterms which are infinite left
spine forms. then also SAX ∪SILX , SA∪SIL+

X , HA∪IL+
X and HA∪IL+

X ∪O
are sets of undefined terms

Proof. In [23] we have shown that under their respective conditions SAX and
SAX ∪ SILX are sets of undefined terms. The proofs of the similar statements
for the other three sets are similar. ut

Theorem 48. The cardinality of each of the open intervals 〈RA,SA〉,
〈SA,SA ∪ SIL〉, 〈HA,HA∪ IL〉, and 〈HA ∪O,HA∪ IL ∪ O〉 is at least 2c.

Proof. There are at least 2c subsets X of closed normal forms in Λ∞ that do not
contain subterms which are infinite left spine forms. The sets SAX , SA∪SIL+

X ,
HA ∪ IL+

X and HA ∪ IL+
X ∪ O are element of the respective intervals listed in

the theorem. ut

3.5 Normal form models of the lambda calculus

By Theorem 31, each set U of undefined terms gives rise to a complete exten-
sion λ∞β⊥U of the finite lambda calculus λβ . From each λ∞β⊥U we can construct
a generalised Böhm model MU of the finite lambda calculus as follows. As un-
derlying set we take the set NFU (Λ∞⊥ ) of normal forms of terms in λ∞β⊥U . Let
NFU : Λ∞⊥ → NFU (Λ∞⊥ ) be the function that maps each M in Λ∞⊥ to its normal
form. On NFU (Λ∞⊥ ) we define application simply by:

NFU (M1) • NFU (M2) = NFU (M1M2)

The applicative structure MU = 〈NFU , •〉 extends readily to a syntactic model
of the finite lambda calculus along the lines of Definition 5.3.2 in [4]. The con-
struction works because of normalisation and confluence properties of λ∞β⊥U .

We will call these models normal form models. The three well-known models
of the Böhm trees [3, 4], the Lévy-Longo [15] trees and the Berarducci trees [5,
9] can be seen as examples of this construction and correspond respectively to
MHN , MWN and MT N .3 There are many different sets of undefined terms, and

3 The concept of a Berarducci tree also applies to orthogonal term rewriting, since
it is based on the concept of root-active term. Ketema asks in [11] whether the



so there are also many different normal form models. Note that MΛ∞⊥
degenerates

to the single element⊥. The construction provides non-trivial models for all other
sets of undefined terms. We will now examine some properties of these models.

Definition 49. Let M,N ∈ Λ∞⊥ . We say that M is a prefix of N (we write
M � N) if M is obtained from N by replacing some subterms of N by ⊥.

The pair (Λ∞⊥ ,�) is an algebraic cpo and its compact elements are the finite
λ-terms. As for term rewriting, the pair (NFU (Λ∞⊥ ),�) may not be a cpo:

Counterexample 50 ([22]) Consider the term (((. . .K)K)I. The set U =
RA ∪ {M ∈ Λ∞ | M →→β ((. . .K)K)I)} is a set of undefined terms. The term
((. . .K)K)I is a redex in λ∞β⊥U but none of its prefixes (((⊥K) . . .K)K)I contains
a redex. Let X be the set of prefixes of ((. . .K)K)I. Clearly

⋃
X 6= ((. . .K)K)I.

Hence (NFU ,�) is not a cpo.

Notwithstanding such counterexamples it is not hard to show that the eight
main sets of undefined terms give rise to models whose underlying set is a cpo.

Theorem 51. (NFU ,�) is a cpo for any U chosen from the main sets of unde-
fined terms of Figure 3.

Next we consider the properties continuity and monotony.

Definition 52. 1. Let v be a partial order on Λ∞⊥ . A function F : Λ∞⊥ → Λ∞⊥
is called monotone in (Λ∞⊥ ,v), if F (M) v F (N) for all M,N ∈ Λ∞⊥ such
that M v N .

2. Let (Λ∞⊥ ,v) be a cpo. A function F : Λ∞⊥ → Λ∞⊥ is called continuous in
(Λ∞⊥ ,v), if

⋃
i∈I F (Mi) = F (

⋃
i∈I Mi) for any directed set {Mi | i ∈ I} ⊆

Λ∞⊥ , where a subset X of Λ∞⊥ is directed if for any two elements M1,M2 ∈ X
there exists an M3 ∈ X such that M1 vM3 and M2 vM3.

The function NFU : Λ∞⊥ → Λ∞⊥ is not always continuous, or even monotone:

Counterexample 53 The map NFU : Λ∞⊥ → Λ∞⊥ is not continuous in the cpo
(Λ∞⊥ ,�) in the following cases:

1. Case U = T N : the Berarducci trees are not monotone in (Λ∞⊥ ,�). Take
M = ⊥y, N = (λx.⊥)y. Then M � N but NFT N (M) 6� NFT N (N).

2. Case U = HA ∪ IL. Now NFHA∪IL is monotone but not continuous. This
can be seen as follows. The infinite sequence of abstractions O = λx1x2 . . .
is in normal form but the truncations On = λx1 . . . xn.⊥ reduce to ⊥ for all
n. Hence

⋃
n∈ω On = O = NF(O) 6=

⋃
n∈ω NF(On) = ⊥.

The prefix relation behaves well with respect to continuity only for the cases of
Böhm and Lévy-Longo trees:

concepts of Böhm tree and Lévy-Longo tree also apply to term rewriting. Sections 2.9
and 3.4 answer this affirmatively for Lévy-Longo trees, because in lambda calculus,
the opaque terms are exactly the terms without weak head normal form.



Theorem 54 ([22]). NFU : Λ∞⊥ → Λ∞⊥ is continuous in (Λ∞⊥ ,�) if and only if
U = HN or U =WN .

Recall that Barendregt’s proof [4] of the fact that the Böhm trees form a model
for lambda calculus depends heavily on continuity. The previous theorem implies
that this proof technique does not generalise to models other than the Lévy-
Longo model.

Theorem 55 ([23]). NFU : Λ∞⊥ → Λ∞⊥ is monotone in (Λ∞⊥ ,�) for any U
chosen among the following: SA, HA, HA ∪ O, SA ∪ SIL, HA ∪ IL and
HA∪ IL ∪ O.

3.6 Another proof of incompleteness of the finite lambda calculus

In [23] we have shown that there are at least 2c many sets U of undefined terms
such that MU cannot be ordered by a partial order with a least element and
for which application and abstraction are monotone. The idea was to use sets of
undefined terms of the form U = SAX∪{O} for suitable X. Here we will improve
this result and use it to obtain another proof of incompleteness of the finite
lambda calculus.

Definition 56. We say that 〈MU ,v〉 is a po• model if v is a partial order on
NF(Λ∞⊥ ) with a least element (which may be different from ⊥), and application is
monotone wrt v, i.e. whenever M1 v N1 and M2 v N2 then M1 •M1 v N1 •N2.

Theorem 57. If 〈MU ,v〉 is a po• model then:

1. Either ⊥ is the least element of v and ⊥P →⊥ ⊥ for all P ∈ Λ∞⊥ , or
2. O is the least element of v.

Proof. Suppose that M ∈ NF(Λ∞⊥ ) is the least element. Then M v λx.M for
some x free in M . If application is monotone then M • P v (λx.M) • P =NF M
and hence MP =NF M for all P for all P ∈ NF(Λ∞⊥ ). Now either M = ⊥ in which
case ⊥P →⊥ ⊥ for all P ∈ Λ∞⊥ . Or M 6= ⊥ and then Mx = M for all x. Hence
M is the solution of the recursive equation M = λx.M and so M = O. ut

We can now strengthen Theorem 47 in [23]:

Theorem 58. The interval 〈RA,SA〉 contains at least 2c many sets U of un-
defined terms for which there exist no partial order such that 〈MU ,v〉 is a po•

model.

Proof. Take a non-empty subset X of closed terms in BerT(Λ∞⊥ ) without ⊥.
Clearly there are 2c many choices for this X. Let U be the set of terms
in Λ∞ with a beta reduction (not necessarily finite) to a term of the form
RN0N0N1N1 . . . NkNk where k ≥ 0, R ∈ RA and all Ni ∈ X.

Suppose there exists a partial order v on NF(U) such that 〈MU ,v〉 is a po•

model. By Theorem 57 we have that O is the least element of v. Choose M ∈ X



such that O 6= M . Then ΩMM ∈ U . Consider also ΩOO. Since O is the least
element wrt to v we have O vM .

On one hand, ⊥OO and ΩMM reduce both to ⊥, as they are elements of
U . On the other hand, ⊥MO does not reduce to ⊥, because ⊥MO 6∈ U . But
⊥ = ⊥OO v ⊥MO v ⊥MM = ⊥ implying that ⊥ = ⊥MO. Contradiction.

Hence there is no partial order such that 〈MU ,v〉 is a po• model.
ut

For each model MU there is a corresponding lambda theory, namely the
collection of pairs of closed finite lambda terms with the same interpretation in
the model. As a corollary we obtain an alternative proof for Salibra’s theorem
that any semantics of lambda calculus given in terms of a partially ordered model
with a bottom element is incomplete.

Corollary 59 (Salibra [19]). There are at least continuum many lambda the-
ories that cannot be ordered with a po• model.

Proof. Restrict in the previous proof the collection X to closed finite normal
forms in Λ. There are continuum many such X. Clearly for any two different
such sets, the corresponding lambda theories are different. ut

Salibra’s proof is different. He considers first the enumerable lambda theory Π
axiomatised by Ωxx = Ω to prove with the help of a nice idea by Plotkin that
any semantics of lambda calculus given in terms of po•-models with a bottom
element is incomplete (cf. [19]). Then he uses a theorem by Visser [26, 4] to obtain
a continuum of distinct unorderable enumerable lambda theories satisfying the
conditions: Ωxx = Ω and Ω(ΩKI)Ω 6= Ω. Note that in the proof of Theorem 58
none of the constructed models MU is a model of Salibra’s theory Π, because
they do not validate ΩΩΩ = Ω.

This section demonstrates that infinitary lambda calculus can be a convenient
tool for proving facts about finite lambda calculus.

3.7 Extensional infinite lambda calculus

Far less is known about extensional lambda calculus. The collection of normal
form models of extensional lambda calculus is still waiting to be explored. Our
earlier work [9] on infinite lambda calculus depended heavily on the Compression
property, which does not hold for extensional lambda calculus. An anonymous
referee of this paper suggested us an elegant counterexample, simpler than the
one we gave in [9].

Counterexample 60 Let M be λx.(λy.Kxy(Kxy(. . .)))x. Then neither M nor
its finite β-reducts contain any η-redexes. However, M can β-reduce in ω steps to
λx.(λy.y(y(. . .)))x, which can η-reduce further to (λy.y(y(. . .))). This reduction
clearly cannot be compressed to a shorter one.



The transfinite tiling diagram used in [7] to prove confluence of λ∞β⊥U opens the
way to confluence proofs of λ∞β⊥U extended with extensionality for certain U .
In [20, 21] we have shown confluence and normalisation of λ∞β⊥η and λ∞β⊥η! for
U = HN . Here η! is a strengthened version of the η rule, defined with the help
of the concept of strongly converging η-expansion:

x 6∈ FV (M)
(η)

λx.Mx→M

x 6∈ FV (M)
(η−1)

M → λx.Mx

x→→→η−1 N x 6∈ FV (M)
(η!)

λx.MN →M

In λ∞β⊥η and λ∞β⊥η! we also have that extensionality postpones over both β reduc-
tion and ⊥ reduction. Despite the above counterexample against the Compres-
sion lemma, there is still a weaker form of compression: any strongly converging
reduction in λ∞β⊥η and λ∞β⊥η! can be compressed to a strongly converging reduc-
tion of length at most ω + ω.

We are currently working to extend these results to other sets U and to other
forms of extensionality.

4 Summary and conclusions

The application of rewriting theory to functional languages leads naturally to
the consideration of infinite rewriting sequences and their limits. Our theory
of transfinite rewriting puts this intuitive concept on a sound footing through
the concept of a strongly convergent rewriting sequence, of which the crucial
property is that not only does the sequence of terms tend to a limit, but the
sequence of redex positions tends to infinite depth.

This notion allows us to demonstrate some classical results for orthogonal
systems. However, it transpires that the most important of these, confluence,
fails in certain cases. These cases can be precisely characterised, and confluence
can be re-established modulo the equality of the set of terms which obstruct
exact confluence. The offending terms are of a form that can reasonably be
viewed as representing infinite computations that produce no result, and in this
sense are undefined.

Further consideration of this set of terms reveals that any set which satisfies
certain natural axioms can serve as the class of undefined terms. Not only does
confluence hold relative to any such class, but we can immediately construct
a semantic model of the rewrite system in which the undefined terms are all
mapped to the same element.

For the lambda calculus this has yielded a new uniform characterisation of
several known models, and a construction of several classes of new ones.
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