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Abstract

Considering the current expansion of IT-infrastructure
the security of the data inside this infrastructure becomes
increasingly important. Therefore assuring certain security
properties of IT-systems by formal methods is desirable.
So far in security formal methods have mostly been used
to prove properties of security protocols. However, access
control is an indispensable part of security inside a given
IT-system, which has not yet been sufficiently examined us-
ing formal methods. The paper presents an example of a
RBAC security policy having the dual control property. This
is proved in a first-order linear temporal logic (LTL) that
has been embedded in the theorem prover Isabelle/HOL by
the authors. Thus the correctness of the proof is assured by
Isabelle/HOL. The authors consider first-order LTL a good
formalism for expressing RBAC authorisation constraints
and deriving properties from given RBAC security policies.
Furthermore it might also be applied to safety-related is-
sues in similar manner.

1. Introduction

1.1. General thoughts

Since IT-technology is pervading our daily life more and
more, data security has become a topic of increasing rele-
vance in our society. Unfortunately there is no general def-
inition of security for all scenarios. Consider e.g. an elec-
tronic transaction between a customer and a merchant. The
customer then may expect, that a secure transaction grants
him anonymity, while the merchant wishes, that it should
always be possible to identify any customer who ordered

some product in a way a court will accept as proof. A police
officer on the other hand will regard an electronic transac-
tion as secure if it allows him to trace electronic money. Ob-
viously it will be hard for these three parties to find a com-
mon definition of security for electronic transactions. Even
if all the involved partners agree on the desired properties of
security as e.g. email-provider and client, who both wish to
protect their communication against eavesdropping or other
manipulations by third parties, there may still remain some
details as for example the presumptions about the behaviour
of the clients to be settled. If one assumes, that any client
will always close his browser after leaving his email ac-
count, a logout procedure may not be necessary. But if this
precondition does not hold the provider should make sure,
that it is not possible to reactivate an email account which
has been left by its user via the backtracking function of the
browser without entering the password again. Otherwise the
service of the email-provider may no longer be regarded as
secure.

This illustrates, that security has first to be carefully de-
fined before one can reason about it. Thus formal meth-
ods can be a way to achieve an exact (and consistent)
definition of security for a given scenario. In fact var-
ious properties of some security protocols (SET, TLS,
etc.) (cf [15, 5]) have been proved using formal meth-
ods. This included of course an exact specification of these
protocols and resulted in precisely specified proven prop-
erties. Well-known formalisms for the examination of se-
curity protocols are e.g. the Spi Calculus or the BAN logic
(see [3, 7]).

The topic of this paper is the analysis of security poli-
cies for role-based access control (RBAC) by formal meth-
ods. A security policy for access control is a set of rules
determining the desired behaviour of the IT-system with re-
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spect to granting user requests for the application of access
operations (e.g. read, write, append, etc.) to relevant data.
RBAC is a particularly well-suited method of access con-
trol (cf [9]) for hierarchical organisations such as banks,
authorities, hospitals, etc. It is also apt for the use in dis-
tributed systems. The following subsection illustrates, why
this topic in our opinion is an important part of security.
Earlier approaches to the examination of access control us-
ing formal methods (e.g. the ABLP logic) can be found in
[2].

1.2. Practical relevance

One of the results of our inquiries was, that a hospital in
Bremen using SAP software with RBAC capability needed
already more than 25 different medical roles. It is rather ob-
vious, that the task of defining a sound security policy for
such IT-systems is most likely beyond the scope of the hu-
man mind just because of the amount of roles alone. Thus
automated support (based on formal methods) for this kind
of problem should be very welcome.

1.3. Structure of the paper

The paper consists of five sections (including the in-
troduction). In the following section we will explain
RBAC and give some information about the mentioned
LTL and Isabelle/HOL. You will also find some short re-
marks about the embedding of the LTL in Isabelle/HOL. At
the end of this section our encoding (cf RBAC.thy at [1])
of RBAC (using the LTL theory) in Isabelle/HOL is de-
scribed in detail.

The third section then gives a rather detailed presenta-
tion of an RBAC security policy encoded in Isabelle/HOL
that has the dual control property. The authors have man-
aged to find a proof for this which has been verified by Is-
abelle/HOL. The section closes with a short summary of
this proof, since the proof itself is easily understandable and
straightforward unlike the corresponding Isabelle file Ex-
ample.thy (see [1]).
In the fourth section the advantages of theorem provers
will be illustrated by a second example (Example2.thy at
[1]).The fifth section will present our conclusions and an
outlook. The files containing our proofs verified by Is-
abelle/HOL will soon be made available for download at
[1].

2. RBAC and LTL

Role-based access control (RBAC) has received con-
siderable attention as a promising alternative to traditional

discretionary and mandatory access control. One rea-
son for this increasing interest was an extensive field
study [9] carried out by the National Institute of Stan-
dards and Technology (NIST) which pointed out that
in practice permissions are assigned to users accord-
ing to their roles/functions in the organization (govern-
mental or commercial). In addition, the explicit representa-
tion of roles greatly simplifies the security management and
makes possible to use well-known and time-honored se-
curity principles like separation of duty and least privi-
lege [16]. Furthermore an RBAC standard [10] has been
proposed, which is based on the RBAC96 model intro-
duced by Sandhu et al. [16].
The RBAC96 model (adapted for our scenario) has the fol-
lowing components (see figure 1):

Users – set of users, Roles – set of roles, P – set of permis-
sions
UA ⊆ Users × Roles (user assignment)
RH ⊆ Roles × Roles is a partial order also called
the role hierarchy or role dominance relation writ-
ten as ≤. We will not use role hierarchies in our exam-
ples.
PA ⊆ Roles× P (permission assignment)

P is the set of ordered pairs of operations and ob-
jects. In the context of security and access control all
resources accessible in an IT-system (e.g. files , database ta-
bles, etc.) are named by the notion object. An operation is
an active process applicable to objects (e.g. read, write, ap-
pend, etc.). The relation PA assigns to each role a sub-
set of P. So PA determines for each role the operation(s)
it may execute and the object(s) to which the opera-
tion in question is applicable for the given role. Thus
any user having assumed this role can apply an opera-
tion to an object if the corresponding ordered pair is an ele-
ment of the subset assigned by PA to the role.

Furthermore we omit the session concept, which is a part
of the RBAC96 model, for reasons of simplicity.

Permissions

User

Assignment

Permission

Assignment

Users Roles

Authorisation Constraints

Figure 1. The RBAC model
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The authorisation constraints depicted in figure 1 are ad-
ditional conditions imposed on RBAC (e.g. restrictions on
the relations UA or PA, temporal constraints, mutually ex-
clusive roles, etc.).

2.1. LTL for RBAC

To express these authorisation constraints we define a
single-sorted (in contrast to [12] first-order LTL with infi-
nite future and finite past. The axiomatisation of this LTL
is based on the one given by Goldblatt in [11] for proposi-
tional LTL. Our first-order LTL is an extension of this pre-
serving the usual semantics.
Function and predicate symbols are partitioned into rigid
and flexible symbols: the former do not change over time,
while the latter may vary. Sentences are the usual first-
order sentences built from equations, predicate applications
and logical connectives and quantifiers ∀, ∃. Additionally,
we have the modalities BOX (always in the future), DMD
(sometimes in the future), NEXTA (in the next world, if
a such exists) and NEXTE (in the next world). The cor-
responding past modalities are PBOX, PDMD, PNEXTA
and PNEXTE. From the literature the reader may be fa-
miliar with the symbols � (for BOX), � (for DMD) and
so on. Our choice is due to the intention to have a conve-
nient encoding of the first-order LTL for the theorem prover
Isabelle/HOL.The encoding is based on previous work by
Torrini [18]. Thus first-order LTL is particularly well-suited
to express temporal dependencies of e.g. workflows explic-
itly. Thus it may be regarded as an improvement of the
formalism given in [6]. An extensive documentation of Is-
abelle/HOL [14] is available via the Internet. Having done
this we can encode RBAC (without sessions and role hier-
archies) in Isabelle/HOL as follows:

theory RBAC = LTL :

2.1.1. Predicates for sorts, operations and relations be-
tween users, roles and operations
consts
"Role" :: "’a => ’a wff"
"User" :: "’a => ’a wff"
"Object" :: "’a => ’a wff"
"Operation" :: "’a => ’a wff"

"DOMAIN" :: "’a => ’a => ’a wff"
"RANGE" :: "’a => ’a => ’a wff"
"Eval" :: "’a => ’a => ’a => ’a wff"

"PA" :: "’a => ’a => ’a => ’a
wff"
"UA" :: "’a => ’a => ’a wff"
"AUTH" :: "’a => ’a => ’a => ’a

wff"

"EXEC" :: "’a => ’a => ’a => ’a
wff"
"ACTIVE_FOR" :: "’a => ’a => ’a wff"

axioms
DOM_ax : "H |- AL1 x y. (DOMAIN x y ->

(Operation x && Object y)) "
RAN_ax : "H |- AL1 x y. (RANGE x y ->

(Operation x && Object y)) "
EVAL_ax: "H |- AL1 x y z. (Eval x y z ->

(Operation x && Object y && Object z &&
DOMAIN x y && RANGE x z))"
PA_ax : "H |- AL1 x y z. (PA x y z ->

(Role x && Operation y && Object z &&
DOMAIN x z)) "
UA_ax : "H |- AL1 x y. (UA x y -> (User x

&& Role y)) "
AUTH_ax : "H |- AL1 x y z. (AUTH x y z

-> (User x && Operation y && Object z &&
DOMAIN y z))"
EXEC_ax : "H |- AL1 x y z. (EXEC x y z

-> (User x && Operation y && Object z &&
DOMAIN y z)) "
ACTIVE_FOR_ax : "H |- AL1 x y. (ACTIVE_FOR

x y -> (User x && Role y)) "

As already mentioned our LTL is a single-sorted logic
(sort ′a). Predicates are then defined as functions mapping
arguments of type ′a to well-formed formulae of type ′a
wff. In contrast to many functional programming languages
Isabelle insists on explicit declaration of all functions (key-
word consts). The unary predicate User (see above) is then
defined as unary function from ′a to ′a wff and so on. Now
we define the predicate User applied to a term t to be true
if and only if t is a user (we assume t to be a constant).
Thus the “sorts” users, roles, operations and objects are de-
fined by unary predicates of the same name. DOMAIN and
RANGE are binary predicates, Eval is a predicate with three
arguments. If now the predicate DOMAIN is true for a pair
(x,y), then it is ensured by the axiom DOM ax, that x is
an operation and y is an object, because the ”sorts” opera-
tions and objects are defined by the unary predicates Oper-
ation resp. Object (the arrow symbol ”−>” denotes logical
implication). The same holds also for the predicate RANGE
(cf. RAN ax). According to axiom EVAL ax the predicate
Eval being true for a triple (x,y,z) implies the following:

• x is an operation

• y is an object

• z is an object

• the predicate DOMAIN is true for the pair (x,y)

• the predicate RANGE is true for the pair (x,z)

As the reader may already have suspected, the pur-
pose of the predicates DOMAIN, RANGE, Eval is to
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describe the behaviour of operations. If there is e.g. an op-
eration “append” whose domain are pairs of writable files
and strings (f,s), then the predicate DOMAIN will be true
for the pair (append,(f,s)) if and only if the pair (f,s) is in
the domain of the operation “append”. The range of this op-
eration are then writable files g, i.e. the predicate RANGE
is true if and only if the file g is in the range of the opera-
tion “append”. Finally the predicate Eval shall be true for a
triple (append,(f,s),g) if and only if g is the result of apply-
ing the operation “append” to the pair (f,s), i.e. the file ob-
tained by appending the string s to the file f.
The predicates PA and UA define relations between roles,
operations and objects resp. between users and roles. PA
is true for a triple (r,op,obj) if and only if the role r is al-
lowed to apply the operation op to the object obj. UA as-
sumes the value true for a pair (u,r) if and only if the user
u is assigned to the role r. The predicate ACTIVE FOR
is true for such a pair if and only if the user u has acti-
vated the role r.
The truth values of the predicate AUTH indicate if for
a given triple (u,op,obj) the user u is allowed to ap-
ply the operation op to the object obj. If AUTH is true
for a triple (u,op,obj), then the truth value of the predi-
cate EXEC tells if the user exercises this permission .
For the sake of simplicity we demand, that UA and PA
are rigid predicates. In general the truth values of pred-
icates need not be fixed, i.e. a predicate may have dif-
ferent truth values at various points of time, even if
it is applied to the same argument(s). But rigid pred-
icates will have the same truth values at all points of
time as long as they are applied to the same argu-
ment(s). Consequently a conjunction of rigid predicates be-
ing true at some point of time will hold at any point of
time (for the same arguments). Thus a user u who is as-
signed to a role r at some point of time is assigned to this
role at all point of times. In the following axioms the sym-
bols UP, RP, OpP and ObP denote arbitrary rigid unary
predicates applicable to users, roles, operations and ob-
jects.

2.1.2. Axioms for rigid predicates
axioms
rigid_PA : " H |- ((PA r operat obj) &&
((RP::’a => ’a wff) r) && ((OpP::’a => ’a
wff) operat) &&((ObP::’a => ’a wff) obj))

-> ((PBOX ( (PA r operat obj)
&& (RP r) && (OpP operat) && (ObP obj) ))

&& (BOX ( (PA r operat obj)
&& (RP r) && (OpP operat) && (ObP obj) )) )
"

rigid_UA : " H |- ((UA usr r) && ((UP::’a
=> ’a wff) usr) && ((RP::’a => ’a wff) r))

-> ( (PBOX ( (UA usr r) &&

(UP usr) && (RP r) ))
&& (BOX ( (UA usr r) &&

(UP usr) && (RP r) )) ) "

Since we want operations to be deterministic, the next
axiom ensures the functional character of operations. This
means, that the application of any operation to an ar-
bitrary object in the domain of this operation can have
one and only one definite result. In other words any op-
eration will always deliver an unambiguous result when
applied to an object in its domain, i.e. if the predi-
cate Eval is true for the triples (x,y,z) and (x,y,w), then w
and z have to be identical.

2.1.3. Functional character of operations
axioms
eval_ax:
"H |- AL1 x y. (Operation x && Object y ->
(AL1 z. (Object z && Eval x y z ->
(AL1 w. (Object w && Eval x y w ->
w === z)))))"

The following axioms are the actually important ones en-
suring the RBAC properties. The axiom spec1 says, that
AUTH being true for a triple (usr,operat,obj) implies, that
there is a role r having the permission to apply the oper-
ation operat to the object obj and the user usr has acti-
vated role r.
The axiom spec2 demands, that EXEC(usr,operat,obj) im-
plies AUTH(usr,operat,obj) (compare remarks at 2.1).
And finally spec3 enforces, that ACTIVE FOR(usr,r) at an
arbitrary point of time implies, that UA(usr,r) is true at the
present point of time. In the familiar notation of tempo-
ral logic spec3 might approximately look as follows:
∀usr, r :
((�- ACTIV E FOR(usr, r))∨(�ACTIV E FOR(usr, r)))
⇒ UA(usr, r))

2.1.4. Basic axioms
axioms
spec1 : "H |- (AUTH usr operat obj)
-> (EX1 r. Role r && ((UA usr r) && ((PA r
operat obj) && (ACTIVE_FOR usr r))))"
spec2 : "H |- (EXEC usr operat obj)
-> (AUTH usr operat obj) "
spec3 : "H |- ( (PDMD ((ACTIVE_FOR
usr r) && ((RP::’a => ’a wff) r) &&
((UP::’a => ’a wff) usr)))

|| (DMD ((ACTIVE_FOR
usr r) && ((RP::’a => ’a wff) r) &&
((UP::’a => ’a wff) usr))) )

-> ( (UA usr r) && (RP
r) && (UP usr) ) "

end
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The symbols RP and UP in spec3 denote rigid predicates
as in the preceding axioms. Thus we have encoded RBAC in
Isabelle/HOL based on the previously encoded theory LTL.
Having done this we could then use the above RBAC theory
(RBAC.thy at [1]) as formalism to express an RBAC secu-
rity policy as a first example presented in the next section.
A further example designed to demonstrate the first-order
properties of the employed LTL will be introduced in the
subsequent section.

3. Dual control as example

In this section we will briefly introduce dual con-
trol and functional separation of duty as two general prin-
ciples for separation of duty (see [4]). Then we will
give a compact introduction to the famous secret shar-
ing scheme of Adi Shamir, that we will use to estab-
lish dual control in an IT-system with RBAC.

3.1. Dual control and functional separation

Dual control (cf [4]) is a well-known and frequently
used separation of duty principle. It is applied to operations
which are considered too critical to leave their control to one
person or entity. Of course dual control as principle has al-
ready been known for a long time. Opening banks safes for
example often requires the use of two ore more keys con-
trolled by different persons at the same time.
Another old and well-known security measure is functional
seperation (see also [4]), whose purpose is the protection
processes consisting of at least two stages. This is achieved
by making sure, that every stage is performed by another
person or entity. Thus the process cannot be controlled by
one person alone. This is a quite familiar principle for finan-
cial issues in the economy (cf [13]).

3.2. Shamir’s secret sharing scheme

Let us assume a bank wants to implement dual control
for a safe using an IT-system. The safe shall be opened by
a combination, i.e. a secret number, generated by the sys-
tem instead of a material key. To implement dual control
the system applies the secret sharing scheme of Shamir [17]
to the combination that opens the safe, i.e. it chooses a ran-
dom 2 degree polynomial q(x) = a0 + a1x + a2x

2, a2 �= 0
where a0 is the combination for the safe. A share is then a
pair (xi, q(xi)) with i ∈ N, 0 ≤ i ≤ n. Furthermore xi �= 0
for all 0 ≤ i ≤ n and xi �= xj for all 0 ≤ i, j ≤ n with
i �= j hold. Thus a person having 3 shares can compute the
combination (a0) for the safe by polynomial interpolation.
On the other hand for any number c and 2 arbitrarily cho-
sen shares (y, q(y)) and (z, q(z)) there is a 2 degree polyno-

mial p(x) such that p(y) = q(y), p(z) = q(z) and p(0) = c.
For further details see [17].

3.3. An example for dual control

The IT-system of the bank shall have RBAC and meet
the following demands (security properties) :

Any user entitled to assume the bank role director shall be
able to have two different shares but no more, any user en-
titled to assume the bank role cashier is allowed to have
one share but no more (we assume, that no two users get
the same share and no user gets the same share twice). Fur-
thermore no user shall be able to get a share without be-
ing entitled to assume the role director or cashier.

Let k be the number of users entitled to assume the
role director and l the number of users entitled to as-
sume the role cashier, then our scenario is a (3,n) threshold
scheme with n = 2k + l according to the terminology in-
troduced by Shamir in [17].
So it is assured by the properties of this scheme and RBAC,
that opening the safe takes the cooperation of no less than
two users of which at least one is assigned to the role di-
rector, unless one user or an adversary manages to guess
or eavesdrop a sufficient number of shares or the combi-
nation itself. If three or more users cooperate, it is suffi-
cient, that three of them are assigned to the role cashier.
The remaining part of this section introduces an RBAC se-
curity policy and gives then a brief sketch of our Is-
abelle/HOL verified proof, that this policy has the required
security properties.

3.4. RBAC security policy

The security policy can be expressed using the RBAC
theory given in this paper. It is encoded in Isabelle/HOL as
follows:

theory Example = RBAC + Adv_Op_Rules :

3.4.1. Predicates for roles, sorts, etc.
consts
Director :: "’a => ’a wff"
Cashier :: "’a => ’a wff"
Key :: "’a => ’a wff"
Share :: "’a => ’a wff"
GetShare :: "’a => ’a wff"
usr :: "’a"

3.4.2. The share predicates
consts
share_1 :: "’a => ’a => ’a wff"
share_2 :: "’a => ’a => ’a wff"
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share_3 :: "’a => ’a => ’a wff"

axioms
SHARE_1_ax : " H |- AL1 x y. share_1 x y ->
(User x && Key y)"
SHARE_2_ax : " H |- AL1 x y. share_2 x y ->
(User x && Key y)"
SHARE_3_ax : " H |- AL1 x y. share_3 x y ->
(User x && Key y)"
usr_ax : "H |- (User usr)"

Similar to RBAC theory the roles director and cashier, the
sorts key (key being a synonym for combination) and share
and the operation for getting a share are defined by pred-
icates of the same name (Director, Cashier, Key, Share,
GetShare). We may assume, that the operation is associ-
ated with a state which is altered each time the operation
is executed and prevents the result of the present execu-
tion from being equal to a share obtained from any pre-
vious execution. Additionally we introduce a constant
usr of sort User (see user ax). The predicate User is de-
fined in 2.1.1.
The predicate share 1 is true for a pair (u,k) if and only
if the user u has (at least) one share of the combination
(resp. key) k. The meaning of share 2 resp. share 3 is ob-
vious.
The following (auxiliary) axioms should be self-explaining
(except maybe the last two). AUX5c basically makes sure,
that the operation for getting a share is unique. AUX6 en-
forces, that a share of a combination can only be computed
by this operation. The symbol ”<−−>” denotes logi-
cal equivalence.

3.4.3. Connection with RBAC
axioms
AUX1: "H |- Director x -> Role x"
AUX2: "H |- Cashier x -> Role x"
AUX3: "H |- Key x -> Object x"
AUX4: "H |- Share x -> Key x"
AUX5: "H |- GetShare x -> Operation x"
AUX5a: "H |- (GetShare x) -> ((DOMAIN x y)
<--> Key y)"
AUX5b: "H |- (GetShare x) -> ((RANGE x y)
<--> Share y)"
AUX5c: "H |- AL1 x y.(GetShare x) &&
(GetShare y) -> x === y"
AUX6: "H |- Key y && Eval x y z ->
GetShare x && Share z"

Finally we mention some of the axioms to determine the
temporal behaviour of the share predicates and the opera-
tion for getting shares, etc. For reasons of convenience we
will present them in a notation more similar to that in lit-
erature. Therefore we replace PNEXTE by the symbol �- ,
BOX by the symbol � and PDMD by the symbol �- . For

this and other reasons our presentation may look quite dif-
ferent from that for Isabelle.
∀usr, k, op :
A1) share 1(usr, k) ⇒ �- (∃op1 : GetShare(op1) ∧
EXEC(usr, op, k) ∧ �- (¬share 1(usr, k)))

A2)
(GetShare(op)∧EXEC(usr, op, k)∧�- (¬share 1(usr, k)))
⇒ ((�share 1(usr, k)) ∧ ¬share 2(usr, k))

A3) share 2(usr, k) ⇒
�- (∃op1 : GetShare(op1) ∧ EXEC(usr, op, k) ∧
�- ((¬share 2(usr, k)) ∧ share 1(usr, k)))

...
Additionally we demand:

B1) ∀usr, op, k :
(GetShare(op) ∧ EXEC(usr, op, k)) ⇒
(∀u : (EXEC(u, op, k) ⇒ u = usr))

B2) ∀op, obj1, obj2 :
(Eval(op, obj1, obj2) ⇒ ¬Key(obj2))

B1 assures that no two users can get a share for the
same key at the same time. B2 excludes the exis-
tence of a user who can choose a combination for the safe,
since this user then could open the safe alone.
Finally we introduce the essential authorisation con-
straint:

C1) ∀usr, op, k, c, d :
(AUTH(usr, op, k) ∧ GetShare(op)) ⇔

(ACTIV E FOR(usr, c) ∧ Cashier(c) ∧
�- (¬share 1(usr, k))) ∨ (ACTIV E FOR(usr, d)
∧ Director(d) ∧ �- (¬share 2(usr, k)))

3.5. Security properties

Thus we have at last gathered the necessary con-
straints for our RBAC security policy. Many of those
are rather technical, but necessary for a correct specifi-
cation. So we are now in the position to deduce some
properties for an arbitrarily chosen user (remind the previ-
ously defined constant usr).
Using the axioms for the share predicates (A1, etc.) we can
deduce the following lemma:

lemma share2_imp_1 : "H |- share_2 usr k ->
share_1 usr k"

Making use of C1 and the axioms for the share predi-
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cates we conclude:

lemma share_3 : " H |- NOT (share_3 usr k) "

Thus our security policy prevents any user from acquiring
three shares within the system, which is one of our desired
security properties (see 3.3)
In order to prove the remaining security properties we now
combine lemma share2 imp 1, the axioms for the share
predicates, the basic axioms of RBAC (spec1, spec2 and es-
pecially spec3) and the axiom C1, we can deduce the fol-
lowing two lemmata:
lemma l1 : " H |- (share_1 usr k) -> ( ((UA
usr c) && (Cashier c)) || ((UA usr d) &&
(Director d)) ) "
lemma l2 : " H |- (share_2 usr k) -> ((UA
usr d) && (Director d)) "

By the lemmata share 3, l1 and l2 the security properties de-
fined in 3.3 are fulfilled by the given security policy. As al-
ready mentioned the proofs for these lemmata have been
verified by Isabelle/HOL (cf Example.thy at [1]).

4. Why use a theorem prover?

Considering the somewhat tedious work of the last sec-
tion the readers may wonder, if it would not have been eas-
ier to use model checking instead of a theorem prover. Of
course model checking is known as a valiant method espe-
cially with respect to propositional LTL (cf [8]). Unfortu-
nately first-order LTL as any first-order logic is generally
undecidable and thus not so apt for model checking. Fur-
thermore there are known security policies like operational
dynamic separation of duty (see [12]) which cannot be ex-
pressed without first-order properties. Under these circum-
stances theorem proving may be a good option as illustrated
in the following (theoretic) example.
Suppose we have a predicate PREDEC applicable to users
indicating, that till the present time any operation which has
been applied to an object by the user in question has also
been applied to the same object by a different user coevally
or at an earlier point of time:
∀usr, op, obj :
PREDEC(usr) ⇔ �- (EXEC(usr, op, obj) ⇒ (∃u :
�- (¬(u = usr) ∧ EXEC(u, op, obj))))
Let there also be another predicate ONLY for users being
equivalent to the statement, that there is an operation for
whose application to any object till now only the consid-
ered user could have been authorised. Furthermore at the
present time there is an object, such that the user is autho-
rised to apply this operation to it:
∀usr, obj :
ONLY (usr) ⇔ ∃op : ((∀u : �- (AUTH(u, op, obj) ⇒
u = usr)) ∧ ∃obj1 : AUTH(usr, op, obj1))

Suppose now, that the predicate PREDEC is true for a user
and additonally every operation for which there is at least
one object such that the user is authorised to apply this op-
eration to it is in fact applied to some object by the user. The
reader then (remembering spec2) may suspect, that in this
case the predicate ONLY cannot be true for the same user,
which is correct:
∀usr :
((∀op : ((∃obj : AUTH(usr, op, obj)) ⇒ (∃obj1 :
EXEC(usr, op, obj1)))) ∧ PREDEC(usr))
⇒ ¬ONLY (usr)
But proving this (again for an arbitrarily chosen user usr)
by model checking seems quite difficult. On the other hand
it can be done in first-order LTL. The authors have verified
such a proof by Isabelle/HOL (cf Example2.thy at [1]).

5. Conclusion and future work

We have demonstrated, how a simple RBAC security
policy based on first-order LTL can be encoded in Is-
abelle/HOL. Furthermore we have given proofs for some
properties of this policy, that have been verified by Is-
abelle/HOL. In a second example we have demonstrated the
advantages of a theorem prover for first-order LTL. The ax-
iomatisation of the first-order LTL itself was not a topic of
this paper and shall be described elsewhere.
For the future we intend to extend our temporal calculus to
handle role hierarchies. Furthermore UA and PA shall be-
come flexible predicates in order to allow the addition of
administrative roles. In the long term we intend to employ
also model checking for policy analysis especially with re-
spect to consistency checking of security policies. We hope
to find further inspiration with respect to consistency check-
ing in the work of Bertino (cf [6]).
It remains future work to apply our calculus in the domain
of clinical information systems in order to analyse real-
world policies in an area with high security and privacy de-
mands. Due to the fact that we consider a temporal calcu-
lus, safety properties (e.g., for railway control systems or in
the avionics domain) can also be investigated.
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