Graph Transformation and Intuitionistic Linear Logic

Paolo Torrini

pt95@mcs.le.ac.uk

University of Leicester

Work on Graph Transformation

- project SENSORIA (with Reiko Heckel), work package on model-driven development
- validation techniques for graph transformation systems - verification and simulation
- modelling of transition systems

Petri net: markings and transitions
Graph Transformation: graphs and transformation rules (higher level)

- may use attributes, types, negative conditions
- Different approaches: algebraic (SPO and DPO), logic-based (monadic 2nd-order logic), operational
- Models of concurrency

Application of GT

- Model-driven development: generation of object-oriented code from models (e.g. UML class diagrams) through model transformation (refinement, refactoring), also automatically (e.g. Fujaba)
- Modelling of discrete event systems by transition rules: concurrent, interactive, reactive systems (e.g. simulation of P2P networks)
- model properties: shapes in graphs, invariants in unfolding
- Verification of model properties: model-checking (LTL, CTL, CSL, modal logic), theorem-proving (HOL, 1st-order temporal logic), critical pair analysis

Concurrent/reactive systems

- Validation of whole systems by model-checking or stochastic simulation
- in case of large models, soft targets - e.g. quality of service agreements
- Verification of digital components - code satisfying model properties, including low-level ones (e.g. use of memory)
- Graph transformation - intuitive, general modelling paradigm

Typed hypergraphs

- Hypergraph $G=\langle V, E, \mathbf{s}\rangle$
V nodes (vertices), E (hyper)-edges assignment s: $E \rightarrow V^{*}$
- graph morphism - $\left\langle\phi_{V}: V_{1} \rightarrow V_{2}, \phi_{E}: E_{1} \rightarrow E_{2}\right\rangle$ assignment-preserving
- type h-graph $T G=\langle\mathcal{V}, \mathcal{E}$, ar \rangle
\mathcal{V} set of node types, \mathcal{E} set of edge types $\operatorname{ar}(l): \mathcal{E} \rightarrow \mathcal{V}^{*}$
- TG-typed graph (G, t), with $\mathrm{t}: G \rightarrow T G$
- TG-typed graph morphism $f:\left(G_{1}, \mathrm{t}_{1}\right) \rightarrow\left(G_{2}, \mathrm{t}_{2}\right)$ $f: G_{1} \rightarrow G_{2}$ graph morphism, with $\mathrm{t}_{2} \circ f=\mathrm{t}_{1}$

Graph Transformation

- Double-Pushout approach (DPO)
- Transformation rule $p: L \stackrel{l}{\longleftarrow} K \xrightarrow{r} R$ span of injective graph morphisms (l, r), matched to a graph G by morphism d up to iso L / K deleted, R / K created, K is the interface (read-only)

$$
\begin{aligned}
& L \stackrel{l}{L} K \xrightarrow{r} R \\
& m\left|{ }^{(1)}\right| d{ }^{(2)} \mid m^{*} \\
& G \underset{g}{\leftarrow} D \underset{h}{\longrightarrow} H
\end{aligned}
$$

- $\left.m\right|_{L / K}$ and $\left.m^{*}\right|_{R / K}$ are injective
- $\operatorname{img}(d)$ and $i m g\left(\left.m\right|_{L / K}\right)$ are disjoint
- no dangling edges

Logic translation

- Operational characterisation of DPO-GTS - monoidal structure with restriction over node names
- node names can be bound by restriction (v), edges as relations over nodes, parallel composition \otimes (1 for the empty graph)
- Translation to quantified extension of ILL
- easy translation of monoidal operations
- linear implication \rightarrow to represent transformation
- universal quantifier: abstraction of interface elements
- restriction: more problematic - linear quantifier
- dependent-typing approach: linear λ-proof terms

List reverse

typedef struct node \{ struct node *nxt; int data;
\} *List
List reverse(List x) \{
List y, t;
y = NULL;
while (x!=NULL) \{
$\mathrm{t}=\mathrm{y}$;
$\mathrm{y}=\mathrm{x}$;
$\mathrm{x}=\mathrm{x}->\mathrm{nxt}$;
$y->n x t=t ;$
\}
\}

INITIAL STATE

TYPE GRAPH

$$
\mathrm{P}
$$

RULE 1

$$
\text { (} \mathrm{P}
$$

ILL representation

- Definitions

$$
\begin{aligned}
& p t l i s t(x, l) 0-\infty p t(x, H d(l)) \otimes \operatorname{list}(l) \\
& \text { list }(h \# l) \backsim \multimap n x(h, H d(l)) \otimes \operatorname{list}(l) \\
& \operatorname{list}([]) \multimap \mathbf{1}, \quad H d([])=\text { null }
\end{aligned}
$$

- Initial state

$$
p t l i s t(x, l) \otimes p t(y, n u l l)
$$

- Final state
$\operatorname{ptlist}(x,[]) \otimes \operatorname{ptlist}(y, \operatorname{rev}(l))$

ILL representation

- Transformation rules
$\forall b, c . \mathcal{\exists} a . p t(x, a) \otimes n x(a, b) \otimes p t(y, c) \multimap$

$$
\hat{\exists} a, t . p t(t, c) \otimes p t(x, b) \otimes n x(a, b) \otimes p t(y, a)
$$

$\forall b, c . \hat{\exists} a, t . p t(t, c) \otimes p t(x, b) \otimes n x(a, b) \otimes p t(y, a) \multimap$

$$
\hat{\exists} a . p t(x, b) \otimes p t(y, a) \otimes n x(a, c)
$$

- Refinement 1
$\forall l_{1}, l_{2}$. \exists h.ptlist $\left(x, h \# l_{1}\right) \otimes p t l i s t\left(y, l_{2}\right) \multimap$

$$
\hat{\mathrm{g} h} h, \text { t.pt }(y, h) \otimes p t l i s t\left(x, l_{1}\right) \otimes p t l i s t\left(t, l_{2}\right)
$$

$\forall l_{1}, l_{2} . \hat{\exists} h, t . p t(y, h) \otimes p t l i s t\left(x, l_{1}\right) \otimes p t l i s t\left(t, l_{2}\right) \multimap$
$\hat{\exists} h . p t l i s t\left(x, l_{1}\right) \otimes p t l i s t\left(y, h \# l_{2}\right)$

- Refinement 2
$\operatorname{ptlist}\left(x, h \# l_{1}\right) \otimes \operatorname{ptlist}\left(y, l_{2}\right) \multimap \operatorname{ptlist}\left(x, l_{1}\right) \otimes p t l i s t\left(y, h \# l_{2}\right)$

General idea

- specification of an imperative program, turned into a more declarative, functional one
- ILL can make it easier to represent declaratively imperative programs
- however, in the example we have assumed there is a binder that can be used to turn variables into local constants (names)
- names can be replaced equivariantly (α-renaming), but cannot be identified by instantiation
- $\hat{\exists}$ is neither existential nor universal
- some analogy with freshness quantification

Renaming

- not a question of nominal logic, but of preserving isomorphically a structure of components
- renaming = injective morphisms
- important, as a rule may be matched by different subgraphs
- components might be identified by complex terms (e.g. a list), hence also complex terms might be local constants
- general criterion: separate name spaces
- different names depend on disjoint (non-empty) subsets of the name space
- introducing new names extends the name space

Linearity

- related to linearity, but not quite the same
- linearity is about system components that occur exactly once - e.g. graph components
- rules - can be used many times, therefore declared as unbounded with!
- each name may occur many times, still is linearly associated to a subset of the name space
- makes little sense to consider the closure! of a name-space - connection with separation logic more natural than with linear logic

Axioms and RB-quantifier

$$
\overline{\overline{\Gamma ; \cdot ; u:: \alpha \vdash u:: \alpha}} \text { LId } \overline{\overline{\Gamma, x:: \alpha ; \cdot ; \vdash x:: \alpha}} \text { UId }
$$

Conditions: one-side freshness, name-space separation

$$
\begin{array}{ll}
F V(D) \cap F V(\Sigma)=\emptyset & \Gamma_{2}, x:: \beta ; \because \cdot \vdash N:: \alpha \multimap \alpha \\
\frac{\Gamma_{1} ; ; \vdash D:: \beta}{} \quad \Gamma_{1}, \Gamma_{2} ; \Sigma ; \Delta \vdash M:: \alpha[D / x] \\
\Gamma_{1}, \Gamma_{2} ; \Sigma, n:: \beta l D ; \Delta \vdash \hat{\varepsilon} D \cdot M:: \hat{\exists} x: \beta . \alpha \\
\frac{\Gamma, z:: \beta ; \Sigma, n:: \beta l z ; \Delta, v:: \alpha \vdash N:: \gamma}{\Gamma ; \Sigma ; \Delta, u:: \hat{\exists} z: \beta . \alpha \vdash \operatorname{let} \hat{\varepsilon} z . v=u \text { in } N:: \gamma} \hat{\exists} L
\end{array}
$$

Universal quantifier

$$
\frac{\Gamma, x:: \beta ; \Sigma ; \Delta \vdash M:: \alpha}{\Gamma ; \Sigma ; \Delta \vdash \lambda x . M:: \forall x: \beta . \alpha} \forall R
$$

$\frac{\Gamma ; \cdot, \cdot+D:: \beta \quad \Gamma ; \Sigma ; \Delta, v:: \alpha[D / x]+N:: \gamma}{\Gamma ; \Sigma ; \Delta, u:: \forall x: \beta . \alpha+\text { let } v=u D \text { in } N:: \gamma} \forall L$

Tensor

$$
\frac{\Gamma ; \Sigma_{1} ; \Delta_{1} \vdash M:: \alpha \quad \Gamma ; \Sigma_{2} ; \Delta_{2} \vdash N:: \beta \quad F V\left(\Sigma_{1}\right) \cap F V\left(\Sigma_{2}\right)=\emptyset}{\Gamma ; \Sigma_{1}, \Sigma_{2} ; \Delta_{1}, \Delta_{2} \vdash M \otimes N:: \alpha \otimes \beta} \otimes R
$$

$$
\frac{\Gamma ; \Sigma ; \Delta, u:: \alpha, v:: \beta \vdash N:: \gamma}{\Gamma ; \Sigma ; \Delta, w:: \alpha \otimes \beta \vdash \text { let } u \otimes v=w \text { in } N:: \gamma} \otimes L
$$

Linear implication

$$
\frac{\Gamma ; \Sigma ; \Delta, u:: \alpha \vdash M:: \beta}{\Gamma ; \Sigma ; \Delta \vdash \hat{\lambda} u: \alpha \cdot M:: \alpha \multimap \beta} \multimap R
$$

$\Gamma ; \Sigma_{1} ; \Delta_{1} \vdash M:: \alpha \quad \Gamma ; \Sigma_{2} ; \Delta_{2}, u:: \beta \vdash N:: \gamma$
$F V\left(\Sigma_{1}\right) \cap F V\left(\Sigma_{2}\right)=\emptyset$
$\Gamma ; \Sigma_{1}, \Sigma_{2} ; \Delta_{1}, \Delta_{2}, v:: \alpha \multimap \beta+$ let $u=v^{\wedge} M$ in $N:: \gamma$

GTS translation

- (closed) h-graph as (closed) formula

$$
\hat{\exists} \overline{x: A} \cdot \gamma
$$

$\overline{x: A}$ sequence of typed variables, either $\gamma=\mathbf{1}$ or $\gamma=L_{1}\left(\bar{x}_{1}\right) \otimes \ldots \otimes L_{k}\left(\bar{x}_{k}\right)$

- Adequacy of h -graph representation
- Transformation rule as closed formula

$$
\forall \overline{x: A} \cdot \alpha \multimap \beta
$$

with α, β graph formulas

Transformation rules

Consequence relation as transformation:
\forall for interface nodes,
$\hat{\exists}$ for deleted/created nodes (matches injective morphisms components)

$$
\begin{aligned}
& \vdash \alpha_{G} \circ \alpha_{G^{\prime}} \quad \alpha_{G^{\prime}}=\hat{\exists} \bar{y} \cdot \alpha_{L}[\bar{y} \stackrel{d}{\longleftrightarrow} \bar{x}] \otimes \alpha_{C} \\
& \vdash \alpha_{H} \circ \alpha_{H^{\prime}} \quad \alpha_{H^{\prime}}=\hat{\exists} \bar{y} \cdot \alpha_{R}[\bar{y} \stackrel{d}{\longleftrightarrow} \bar{x}] \otimes \alpha_{C} \\
& \forall \bar{x} \cdot \alpha_{L} \multimap \alpha_{R} \vdash \alpha_{G} \multimap \alpha_{H}
\end{aligned}
$$

Quantifier and congruence

$\hat{\exists}$ satisfies properties of renaming, exchange and distribution over \otimes

- $+(\hat{\exists} x: \alpha \cdot \beta(x)) \backsim(\hat{\exists} y: \alpha \cdot \beta(y))$
- $+(\hat{\exists} x y: \alpha \cdot \gamma) \sim(\hat{\exists} y x: \alpha \cdot \gamma)$
- $+(\hat{\exists} x: \alpha \cdot \beta \otimes \gamma(x)) \multimap(\beta \otimes \hat{\exists} x: \alpha \cdot \gamma(x)) \quad(x \operatorname{not} \operatorname{in} \alpha)$

Equivalence between α and $\hat{\exists} x . \alpha$ generally fails in both directions, even when x does not occur free in α

Incorrect DPO matches - examples

... duly falsified

- $\nVdash(\hat{\exists} x: \beta \cdot \alpha(x, x)) \multimap \hat{\exists} x y: \beta \cdot \alpha(x, y)$
the resource for x is not enough for x and y.
- $\nvdash \forall x: \beta \cdot(\hat{\exists} y: \beta \cdot \alpha(y, y)) \multimap \hat{\exists} y: \beta \cdot \alpha(y, x)$ y and x should be instantiated with the same term against the freshness condition in $\hat{\exists}$ introduction
- $\quad \nvdash\left(\hat{\exists} y x: \beta \cdot \alpha_{1}(x) \otimes \alpha_{2}(x)\right) \multimap\left(\hat{\exists} x: \beta \cdot \alpha_{1}(x)\right) \otimes \hat{\exists} x: \beta \cdot \alpha_{2}(x)$ the two bound variables in the consequence require distinct resources and refer to distinct occurrences

Reachability

- Transformation - G_{0}, G_{1} closed h-graphs, G_{0} initial, P_{1}, \ldots, P_{k} rules
- G_{1} reachable from by some application of the rules

$$
!P_{1}, \ldots,!P_{k}, G_{0} \vdash G_{1}
$$

- G_{1} reachable by applying each rule once

$$
P_{1}, \ldots, P_{k}, G_{0} \vdash G_{1}
$$

- Translation complete with respect to reachability (sequent provable if graph reachable)

Conclusion and further work

- Proof theory-driven approach to GT
- uses resource logic
- resource-bound quantifier to deal with restriction
- theorem proving: work in progress on shallow embedding in higher-order logic (HOL, CIC)

