
Graph Transformation and
Intuitionistic Linear Logic

Paolo Torrini

pt95@mcs.le.ac.uk

University of Leicester

CISA – p. 1

Work on Graph Transformation

project SENSORIA (with Reiko Heckel), work package
on model-driven development

validation techniques for graph transformation systems
— verification and simulation

modelling of transition systems
Petri net: markings and transitions
Graph Transformation: graphs and transformation
rules (higher level)
— may use attributes, types, negative conditions

Different approaches: algebraic (SPO and DPO),
logic-based (monadic 2nd-order logic), operational

Models of concurrency

CISA – p. 2

Application of GT

Model-driven development: generation of
object-oriented code from models (e.g. UML class
diagrams) through model transformation (refinement,
refactoring), also automatically (e.g. Fujaba)

Modelling of discrete event systems by transition rules:
concurrent, interactive, reactive systems (e.g.
simulation of P2P networks)

model properties: shapes in graphs, invariants in
unfolding

Verification of model properties: model-checking (LTL,
CTL, CSL, modal logic), theorem-proving (HOL,
1st-order temporal logic), critical pair analysis

CISA – p. 3

Concurrent/reactive systems

Validation of whole systems by model-checking or
stochastic simulation

in case of large models, soft targets — e.g. quality of
service agreements

Verification of digital components — code satisfying
model properties, including low-level ones (e.g. use of
memory)

Graph transformation — intuitive, general modelling
paradigm

CISA – p. 4

Typed hypergraphs

Hypergraph G = 〈V,E, s〉
V nodes (vertices), E (hyper)-edges
assignment s : E→ V∗

graph morphism — 〈φV : V1 → V2, φE : E1 → E2〉

assignment-preserving

type h-graph TG = 〈V,E,ar〉
V set of node types, E set of edge types
ar(l) : E → V∗

TG-typed graph (G, t), with t : G→ TG

TG-typed graph morphism f : (G1, t1)→ (G2, t2)
f : G1 → G2 graph morphism, with t2 ◦ f = t1

CISA – p. 5

Graph Transformation

Double-Pushout approach (DPO)

Transformation rule p : L
l
←− K

r
−→ R

span of injective graph morphisms (l, r), matched to a
graph G by morphism d up to iso
L/K deleted, R/K created, K is the interface (read-only)

L

(1)m
��

K

(2)

loo r //

d
��

R

m∗

��

G Dg
oo

h
// H

m|L/K and m∗|R/K are injective

img(d) and img(m|L/K) are disjoint

no dangling edges

CISA – p. 6

Logic translation

Operational characterisation of DPO-GTS — monoidal
structure with restriction over node names

node names can be bound by restriction (ν),
edges as relations over nodes,
parallel composition ⊗ (1 for the empty graph)

Translation to quantified extension of ILL

easy translation of monoidal operations

linear implication⊸ to represent transformation

universal quantifier: abstraction of interface elements

restriction: more problematic — linear quantifier

dependent-typing approach: linear λ-proof terms

CISA – p. 7

List reverse

typedef struct node {

struct node *nxt;

int data;

} *List

List reverse(List x) {

List y, t;

y = NULL;

while (x!=NULL) {

t = y;

y = x;

x = x->nxt;

y->nxt = t;

}

}

CISA – p. 8

L1 L2

x

y

pt
t L3

pt

pt

nx

L1 L2

x

y

pt
t L3

pt

pt

nx

pt nx

pt

nx
l[0] NULLx

x

y

L1

L3L1y

x L2
pt

pt nx

L3

L2

y

nxpt

pt

pointer

cell nx

pt

INITIAL STATE TYPE GRAPH

RULE 1

RULE 2
CISA – p. 9

ILL representation

Definitions

ptlist(x, l)�pt(x,Hd(l)) ⊗ list(l)

list(h#l)�nx(h,Hd(l)) ⊗ list(l)

list([])�1, Hd([]) = null

Initial state
ptlist(x, l) ⊗ pt(y, null)

Final state

ptlist(x, []) ⊗ ptlist(y, rev(l))

CISA – p. 10

ILL representation

Transformation rules
∀b, c.∃̂a.pt(x, a) ⊗ nx(a, b) ⊗ pt(y, c)⊸

∃̂a, t.pt(t, c) ⊗ pt(x, b) ⊗ nx(a, b) ⊗ pt(y, a)

∀b, c.∃̂a, t.pt(t, c) ⊗ pt(x, b) ⊗ nx(a, b) ⊗ pt(y, a)⊸

∃̂a.pt(x, b) ⊗ pt(y, a) ⊗ nx(a, c)

Refinement 1
∀l1, l2.∃̂h.ptlist(x, h#l1) ⊗ ptlist(y, l2)⊸

∃̂h, t.pt(y, h) ⊗ ptlist(x, l1) ⊗ ptlist(t, l2)

∀l1, l2.∃̂h, t.pt(y, h) ⊗ ptlist(x, l1) ⊗ ptlist(t, l2)⊸

∃̂h.ptlist(x, l1) ⊗ ptlist(y, h#l2)

Refinement 2
ptlist(x, h#l1) ⊗ ptlist(y, l2)⊸ ptlist(x, l1) ⊗ ptlist(y, h#l2)

CISA – p. 11

General idea

specification of an imperative program, turned into a
more declarative, functional one

ILL can make it easier to represent declaratively
imperative programs

however, in the example we have assumed there is a
binder that can be used to turn variables into local
constants (names)

names can be replaced equivariantly (α-renaming), but
cannot be identified by instantiation

∃̂ is neither existential nor universal

some analogy with freshness quantification

CISA – p. 12

Renaming

not a question of nominal logic, but of preserving
isomorphically a structure of components

renaming = injective morphisms
— important, as a rule may be matched by different
subgraphs

components might be identified by complex terms (e.g.
a list), hence also complex terms might be local
constants

general criterion: separate name spaces

different names depend on disjoint (non-empty)
subsets of the name space

introducing new names extends the name space

CISA – p. 13

Linearity

related to linearity, but not quite the same

linearity is about system components that occur
exactly once — e.g. graph components

rules — can be used many times, therefore declared
as unbounded with !

each name may occur many times, still is linearly
associated to a subset of the name space

makes little sense to consider the closure ! of a
name-space — connection with separation logic more
natural than with linear logic

CISA – p. 14

Axioms and RB-quantifier

Γ; ·; u :: α ⊢ u :: α LId
Γ, x :: α; ·; · ⊢ x :: α UId

Conditions: one-side freshness, name-space separation

FV(D) ∩ FV(Σ) = ∅ Γ2, x :: β; ·; · ⊢ N :: α⊸ α

Γ1; ·; · ⊢ D :: β Γ1, Γ2;Σ;∆ ⊢M :: α[D/x]

Γ1, Γ2;Σ, n :: β⇂D;∆ ⊢ ε̂D.M :: ∃̂x : β.α
∃̂R

Γ, z :: β;Σ, n :: β⇂z;∆, v :: α ⊢ N :: γ

Γ;Σ;∆, u :: ∃̂z : β. α ⊢ let ε̂z.v = u in N :: γ
∃̂L

CISA – p. 15

Universal quantifier

Γ, x :: β;Σ;∆ ⊢M :: α

Γ;Σ;∆ ⊢ λx.M :: ∀x : β. α
∀R

Γ; ·, · ⊢ D :: β Γ;Σ;∆, v :: α[D/x] ⊢ N :: γ

Γ;Σ;∆, u :: ∀x : β.α ⊢ let v = uD in N :: γ
∀L

CISA – p. 16

Tensor

Γ;Σ1;∆1 ⊢M :: α Γ;Σ2;∆2 ⊢ N :: β FV(Σ1) ∩ FV(Σ2) = ∅

Γ;Σ1,Σ2;∆1,∆2 ⊢M ⊗N :: α ⊗ β
⊗R

Γ;Σ;∆, u :: α, v :: β ⊢ N :: γ

Γ;Σ;∆,w :: α ⊗ β ⊢ let u ⊗ v = w in N :: γ
⊗L

CISA – p. 17

Linear implication

Γ;Σ;∆, u :: α ⊢M :: β

Γ;Σ;∆ ⊢ λ̂u : α.M :: α⊸ β
⊸ R

Γ;Σ1;∆1 ⊢M :: α Γ;Σ2;∆2, u :: β ⊢ N :: γ

FV(Σ1) ∩ FV(Σ2) = ∅

Γ;Σ1,Σ2;∆1,∆2, v :: α⊸ β ⊢ let u = vˆM in N :: γ
⊸ L

CISA – p. 18

GTS translation

(closed) h-graph as (closed) formula

∃̂x : A.γ

x : A sequence of typed variables,
either γ = 1 or γ = L1 (x1) ⊗ . . . ⊗ Lk (xk)

Adequacy of h-graph representation

Transformation rule as closed formula

∀x : A.α⊸ β

with α, β graph formulas

CISA – p. 19

Transformation rules

Consequence relation as transformation:
∀ for interface nodes,
∃̂ for deleted/created nodes (matches injective

morphisms components)

⊢ αG� αG′ αG′ = ∃̂y.αL[y
d
←− x] ⊗ αC

⊢ αH� αH′ αH′ = ∃̂y.αR[y
d
←− x] ⊗ αC

∀x.αL ⊸ αR ⊢ αG ⊸ αH
p,m
=⇒

CISA – p. 20

Quantifier and congruence

∃̂ satisfies properties of renaming, exchange and
distribution over ⊗

⊢ (∃̂x : α.β(x))� (∃̂y : α.β(y))

⊢ (∃̂xy : α.γ)� (∃̂yx : α.γ)

⊢ (∃̂x : α.β ⊗ γ(x))� (β ⊗ ∃̂x : α.γ(x)) (x not in α)

Equivalence between α and ∃̂x. α generally fails in both
directions, even when x does not occur free in α

CISA – p. 21

Incorrect DPO matches — examples

L

L

L

K

CISA – p. 22

... duly falsified

0 (∃̂x : β. α(x, x)) ⊸ ∃̂xy : β. α(x, y)
the resource for x is not enough for x and y.

0 ∀x : β. (∃̂y : β. α(y, y)) ⊸ ∃̂y : β.α(y, x)
y and x should be instantiated with the same term —
against the freshness condition in ∃̂ introduction

0 (∃̂yx : β. α1(x) ⊗ α2(x)) ⊸ (∃̂x : β.α1(x)) ⊗ ∃̂x : β.α2(x)
the two bound variables in the consequence require
distinct resources and refer to distinct occurrences

CISA – p. 23

Reachability

Transformation — G0,G1 closed h-graphs, G0 initial,
P1, . . . ,Pk rules

G1 reachable from by some application of the rules

!P1, . . . , !Pk,G0 ⊢ G1

G1 reachable by applying each rule once

P1, . . . ,Pk,G0 ⊢ G1

Translation complete with respect to reachability
(sequent provable if graph reachable)

CISA – p. 24

Conclusion and further work

Proof theory-driven approach to GT

uses resource logic

resource-bound quantifier to deal with restriction

theorem proving: work in progress on shallow
embedding in higher-order logic (HOL, CIC)

CISA – p. 25

	Work on Graph Transformation
	Application of GT
	Concurrent/reactive systems
	Typed hypergraphs
	Graph Transformation
	Logic translation
	List reverse
	ILL representation
	ILL representation
	General idea
	Renaming
	Linearity
	Axioms and RB-quantifier
	Universal quantifier
	Tensor
	Linear implication
	GTS translation
	Transformation rules
	Quantifier and congruence
	Incorrect DPO matches --- examples
	... duly falsified
	Reachability
	Conclusion and further work

