Graph Transformation and
Intuitionistic Linear Logic

Paolo Torrini

pt95@mncs.le.ac.uk

University of Leicester

CISA-p.1

Work on Graph Transformation

project SENSORIA (with Reiko Heckel), work package
on model-driven development

validation technigues for graph transformation systems
— verification and simulation

modelling of transition systems

Petri net: markings and transitions

Graph Transformation: graphs and transformation
rules (higher level)

— may use attributes, types, negative conditions

Different approaches: algebraic (SPO and DPO),
logic-based (monadic 2nd-order logic), operational

Models of concurrency

CISA-p.2

Application of GT

Model-driven development: generation of
object-oriented code from models (e.g. UML class
diagrams) through model transformation (refinement,
refactoring), also automatically (e.g. Fujaba)

Modelling of discrete event systems by transition rules:
concurrent, interactive, reactive systems (e.g.
simulation of P2P networks)

model properties: shapes in graphs, invariants in
unfolding

Verification of model properties: model-checking (LTL,
CTL, CSL, modal logic), theorem-proving (HOL,
1st-order temporal logic), critical pair analysis

CISA-p.3

Concurrent/reactive systems

Validation of whole systems by model-checking or
stochastic simulation

In case of large models, soft targets — e.g. quality of
service agreements

Verification of digital components — code satisfying
model properties, including low-level ones (e.g. use of
memory)

Graph transformation — intuitive, general modelling
paradigm

CISA —p. 4

Typed hypergraphs

Hypergraph G = (V,E,s)
V nodes (vertices), E (hyper)-edges
assignments: E — V*

graph morphism — {(¢y : V1 = V,, ¢ : E; — Ey)
assignment-preserving

type h-graph TG = (V, &, ar)

V set of node types, & set of edge types

ar() : & > V*

TG-typed graph (G,), witht: G - TG

TG-typed graph morphism f : (G1,t1) = (G, 1)
f : G1 = Gy graph morphism, witht; o f =13

CISA-p.5

°

Graph Transformation

Double-Pushout approach (DPO)

Transformation rule p : L «— K - R

span of injective graph morphisms (I, r), matched to a
graph G by morphism d up to iso

L/K deleted, R/K created, K is the interface (read-only)

L' K—>R
ml (1) ld (2) lm*
G <~y D——H
m|p/x and m*|gr,x are injective
img(d) and img(m|; /) are disjoint
no dangling edges

CISA-p.6

°

© o o o o 0o

Logic translation

Operational characterisation of DPO-GTS — monoidal
structure with restriction over node names

node names can be bound by restriction (v),
edges as relations over nodes,
parallel composition ® (1 for the empty graph)

Translation to quantified extension of ILL

easy translation of monoidal operations

linear implication — to represent transformation
universal quantifier: abstraction of interface elements
restriction: more problematic — linear quantifier
dependent-typing approach: linear A-proof terms

CISA-p.7

LISt reverse

typedef struct node {
struct node *nxt;
int data;

} *List

List reverse(List x) {

List y, t;

y = NULL;

while (x!=NULL) {
Lt =Y,
y = X,
X = X->nhXxt;
y->nxt = t,

¥

CISA-p.8

=G

CISA-p.9

ILL representation

Definitions
ptlist(x, [)o—opt(x, HA(I)) ® list(])

list(h#l)o—onx(h, Hd(])) ® list(l)
list([])o—o1, Hd([]) = null

Initial state
ptlist(x,) ® pt(y, null)

® Final state

ptlist(x, []) ® ptlist(y, rev(l))

CISA - p. 10

ILL representation

o Transjormation rules
Vb, c.da.pt(x,a) ® nx(a, b) ® pt(y,c) —o

da, t.pt(t, c) ® pt(x, b) ® nx(a, b) ® pt(y,a)

Vb, c.da, t.pt(t, c) ® pt(x,b) ® nx(a,b) ® pt(y,a) —o
Ja.pt(x, b) ® pt(y,a) ® nx(a, c)

Refinement 1

Y1y, . dh.ptlist(x, hitly) ® ptlist(y, l) —o
3h, t.pt(y, h) @ ptlist(x,) @ ptlist(t,)

Vi1, 1.3k, t.pt(y, h) ® ptlist(x, ;) @ ptlist(t,) —o
ﬁh.ptlist(x, l1) ® ptlist(y, hi#ly)

Refinement 2
ptlist(x, h#ly) ® ptlist(y, Ip) —o ptlist(x, l1) ® ptlist(y, h#ly)

CISA - p. 11

General Idea

specification of an imperative program, turned into a
more declarative, functional one

ILL can make it easier to represent declaratively
Imperative programs

however, in the example we have assumed there is a
binder that can be used to turn variables into local
constants (names)

names can be replaced equivariantly (a-renaming), but
cannot be identified by instantiation

J is neither existential nor universal
some analogy with freshness quantification

CISA - p. 12

Renaming

not a guestion of nominal logic, but of preserving
Isomorphically a structure of components

renaming = injective morphisms
— Important, as a rule may be matched by different
subgraphs

components might be identified by complex terms (e.g.
a list), hence also complex terms might be local
constants

general criterion: separate name spaces

different names depend on disjoint (non-empty)
subsets of the name space

Introducing new names extends the name space

CISA - p. 13

°

Linearity

related to linearity, but not quite the same

linearity is about system components that occur
exactly once — e.g. graph components

rules — can be used many times, therefore declared
as unbounded with !

each name may occur many times, still is linearly
associated to a subset of the name space

makes little sense to consider the closure ! of a
name-space — connection with separation logic more
natural than with linear logic

CISA - p. 14

Axioms and RB-quantifier

Lid Uid

Icustsabru:a I''xza5-Fx o

Conditions: one-side freshness, name-space separation

FVID)NFV(X)=0 Iy x=B;5-+Nua—oa
I';;5-FDf I',I;2,A+M::a[D/x]

I',I0;2,n:BlD; A+ ED.M Jx : B.a

A

AR

IzuBXlnafBlz;A,bviar Ny
;2 A,u:: :ilz:,B. atrletézo=uin Ny

A

L

CISA - p. 15

Universal guantifier

x5, A M«
AR Ax. M Vx B«

YR

I;o-rDafp IE,AvzalD/x]FN 2y
Y, AucVx:farleto=uDInN vy

YL

CISA - p. 16

Tensor

DEZy,AFMaea Xy, AFN=zB FV(E)NFV(XE) =0
29,205 A1, Ao F M®N :: CK@,B

®R

,Aucza,0o:B Ny
Y,Aw:a@Brletu®u=winN vy

®L

CISA -p. 17

Linear implication

;5 AuarM:f
F,‘Z;AI—/A\u:oc.M::oc—olB

—o R

XA Mo I 20, A0, u: BEN iy
FV(Z1)NFV(X) =0

o — L
529,20, A1,Ar,0 5« —0‘8 - let u ZUMIaniy

CISA - p. 18

GTS translation

(closed) h-graph as (closed) formula

dx: Ay

x : A sequence of typed variables,
eithery=1o0ory ="L; (x1)®...® L (x)

Adequacy of h-graph representation
Transformation rule as closed formula

Vx:Aa —of

with a, B graph formulas

CISA - p. 19

Transformation rules

Conseguence relation as transformation:
¥ for interface nodes,

3 for deleted/created nodes (matches injective
morphisms components)

A — d _
Fag oo ag ag =dy.arly «— x| ®ac

A — d _
- ag oo ag ap = dy.arly «— x]®ac
p,m

Vx.af — ar F ag — ay

CISA - p. 20

Quantifier and congruence

3 satisfies properties of renaming, exchange and
distribution over ®

o +(Ax: a.B(x)) o—o (fly :a.f(y))
o+ (ﬁxy L (y) o—o (?Iyx L aLy)
o +(Ax: a.f®y(x)) oo (f® Ax : a.y(x)) (x not in)

Equivalence between a and Jx. a generally fails in both
directions, even when x does not occur free in o

CISA - p. 21

Incorrect DPO matches — examples

~<>
H—C

I
e

... duly falsified

® ¥ (Ax: B. a(x,x)) —o ﬁxy : B. a(x,y)
the resource for x is not enough for x and v.

® ¥Vx:B.QAy:B.aly,y) — Ay:p.aly,x)
y and x should be instantiated with the same term —
against the freshness condition in 3 introduction

® ¥(@Ayx:f. a(x) ®ax(x)) — (Ix:f.ai(x)) @ Ax : B.az(x)

the two bound variables in the consequence require
distinct resources and refer to distinct occurrences

CISA - p. 23

Reachabillity

Transformation — Gy, G; closed h-graphs, Gy initial,
Pq,..., P, rules

s G4 reachable from by some application of the rules
IP1,...,!1Px, Go F 1

» G4 reachable by applying each rule once
Pi,..., P, Gy F Gy

Translation complete with respect to reachability
(sequent provable if graph reachable)

CISA - p. 24

e o o o

Conclusion and further work

Proof theory-driven approach to GT
uses resource logic
resource-bound guantifier to deal with restriction

theorem proving: work in progress on shallow
embedding in higher-order logic (HOL, CIC)

CISA - p. 25

	Work on Graph Transformation
	Application of GT
	Concurrent/reactive systems
	Typed hypergraphs
	Graph Transformation
	Logic translation
	List reverse
	ILL representation
	ILL representation
	General idea
	Renaming
	Linearity
	Axioms and RB-quantifier
	Universal quantifier
	Tensor
	Linear implication
	GTS translation
	Transformation rules
	Quantifier and congruence
	Incorrect DPO matches --- examples
	... duly falsified
	Reachability
	Conclusion and further work

