Encoding Graph Transformation in
Linear Logic

Paolo Torrini
joint work with Reiko Heckel

pt95@mcs.le.ac.uk

University of Leicester

GTLL-p.1



Graph Transformation

Graph Transformation Systems (GTS) — high-level
approach to system modelling, UML, model-driven
development, stochastic simulation

Existing formalisations — algebraic-categorical (SPO,
DPO), 2nd-order predicate logic

High-level character, strong mathematical foundation

Double-pushout (DPO) — mature approach, based on
category theory

GTLL -p. 2



o o

Encoding GT In LL — why?

LL close to process algebras (Abramsky, Pfenning,
Cervesato)

Parallel composition (a ® ), choice (a&p),
reachability (- a — ), replication (!)

Semantic motivation: taking closer graph
transformation and process algebra

Existing approach: hyperedge replacement
What we do: logic-based hyperedge replacement
Practical motivation: making proofs about GTS easier

GTLL-p.3



Typed hypergraphs

Hypergraph G = (V,E,s)
V set of nodes, E set of hyperedges
assignments:E — V*

H-graph morphism — (¢vy : Vi1 — V5, ¢ : E1 — Ey)
assignment-preserving

Type h-graph TG = (V, &, ar)

V set of node types, & set of h-edge types

ar() : & > V*

TG-typed h-graph (G,t), witht: G - TG

TG-typed h-graph morphism f : (G1,t1) = (G, 1)
IS h-morphism f: G; = Gy withty o f =1

GTLL - p. 4



DPO diagram

® Graph transformation rule p : L — K-5R
span of typed h-graph morhisms (I, r),
K interface, L/K to be deleted, R/K to be created,
rule application determined by match morphism m,
m determined up to iso by interface morphism d

# DPO conditions — (1) Identification condition:
(a) m never identifies distinct L/K elements
(b) m never identifies L/K elements with K ones
(2) Dangling condition: for each node n € L/K, all
edges connected to n are in L/K, too

g h GTLL-p.5



Overall plan

Algebraic characterisation of DPO-GTS — monoidal
structure with restriction over node names (hyperedge
replacement)

edges as relations (predicates) over nodes, parallel
composition (tensor), a-renaming of nodes (restriction,
or hiding)

Translation to a quantified extension of ILL

maps graph algebraic components to derivations,
hence proof terms and linear A-calculus

terms represent identity of nodes and edges

formulas represent type and connectivity — enough for
reasoning about graphs up to iso

GTLL-p. 6



°

QILL

06=A|L(£\71,---,Nn)|1|061®042|061—0062 oy | o1&y |
Vx:B.a|dx:BalalN|a=«a

M=x|p|lu|nil|Ny®N;|Ax.N|Au.N | N;"N; | N1N, |
M| {(N1,N>)|fst N | snd N

a=p =4 (a — f)&(f — a)
Sequent calculus proof rules

Double-entry sequents — linear premises (A) and
non-linear ones (I', equivalent to 'T")

["A+FN:a«a

GTLL-p.7



Encoding graphs

# Graph constructors: edge predicates, Nil (empty

graph), ® (parallel composition), 3 (linearly
resource-bound quantifier) to type restriction

#® (closed) h-graph as (closed) formula

dx: Ay

x : A sequence of typed variables,

either y =1 (empty graph) or y = L1 (x1) ® ... ® Ly (xx)
(a multiset of edge components)

# Adequate graph representation

GTLL-p. 8



Encoding rules (node only interfaces)

# —o for transformation, V for interface nodes
# Transformation rule («, 5 graph formulas)

Yx:Aa —of

# rule application schema

I IF ac=Eac I';- I+ ag=ay

aG :flz:A.ocL[z:AdH”x:A]@ac

Ay :élz:A.ocR[z:A<d—”x:A]®0cc

p,m
—

I'Vx:A.ap — ag Ik ag —o ay

GTLL -p. 9



rules |

Id Uld

Duszaru:a I''xza-Fx i«

AT Mea I,AFN B
AL, A FM@N ta®f @R
;A uza,v:BrENy
Aw:za®frletu®ou=winN vy

®L

;AuzarM:p
A —o R
ArAu:a. Mo —op
IbAMieENza IAusBrMay
;AL A,weia—oBrletu=wNINM:y

—o [,

GTLL - p. 10



RBQ rules |

IAFM:alNa/x] T;-+Nap
;A" Fno BN I,x:B;-Fnil (@l Na/x])[x/Na] = a

DA AN FINA®nQM :: ?Ix:ﬁ.oc

IR

I,xuB,AnzfBlx,v:arN:ay
A, w3 B.a+ Nlw/(Ix®n®uv)] =y

AL

GTLL-p. 11



RBQ right intro

IAFM:alNa/x] T;-+Na:p
;A" Fn BN, I',x:B;-Fidy = (@[Na/x])[x/Na] = a

A AN F(INA®N) QM :: ?Ix:ﬁ.oz Al

# standard hips. (1) a[N/x] graph with N in place of free
X

(2) N well-typed
#® (3) there has to be a node (linear resource) named by
N — | denotes naming reference to term

#® (4) N does not occur free in a (unless x = N)
— a freshness condition, expressed using type
equality and substitution

#® N (N,) depends on the derivation of a[Nx/x]

GTLL - p. 12



RBQ left intro

I'xufB,AnzfBlx,v:ar Ny
A w: ::Ix:,[%.oc Flet(Ix®n®uv)=win N vy

A

L

# (almost) standard rule

# dcan be used to type restriction in graph expressions
# | introduction by axiom

I"-FN =«
bne:alNvkn::alN

LA

GTLL -p. 13



Incorrect matches
—
—

O
e

.




Quantifier and DPO conditions

® ¥ (Jx: B. a(x,x)) —o ﬁxy : B. a(x,y)
the resource for x cannot suffice for x and y.

® ¢Vx:B.Blx®a(lx,x) —o fly : B.a(y, x)
y and x should be instantiated with the same term —
blocked by the freshness condition in 3 introduction

o ¥ (dyx: B. a1(x) ® ax(x)) —o (x : B.a1(x)) ® Jx B.az(x)

the two bound variables in the consequence require
distinct resources and refer to distinct occurrences

GTLL-p. 15



Examples |

AR fails

xFx  xaxx)F yakx,y)
Y 4 R

x, a(x,x) F flxy.oc(x, y) .

Ax.a(x, x) F Ixy.a(x, v)

xkx xa(xx)Falx/y,x) R fails

x, a(x, x) F ﬁy.a(y, X)

xR - ~ AR fails
x, a(x) F dx.a(x) R y, a(x) + dx.a(x) ®Rf

x, Yy, a(x), a(x) - (Ax.a(x)) ® Ix.a(x) 5100
Axy.a(x) ® a(x) F Qx.ax)) ® Jx.a(x) )

GTLL -p. 16



Examples Il — problem with Cut

[alx, ar ﬁx.a(x) Ialx,atb ﬁx.a(x)
Tialx, alx,a,aF (Ax.a(x)) @ Ix.a(x)

®R

I; (Ax.a(x)) ® x.ax) F ?lxy.oc(x) ® a(y)

Dialx, alx, a,a ¥ flxy.oc(x) ® a(y)

Solution:

I';alx, ok ?Ix.oc(x) Ialx, ot ﬁx.oc(x)
I',Ip;alx, aly, a,aly/x] + (ﬁx.oc(x)) ® ﬁx.oc(x)

GTLL -p. 17



rules I

F;u::ocl—u::ocld F,x::oc;-l—x::ocUId
I'vAiEMaa I,AEN :8 SR
I'(,I;A1,A o - M®N :: CY@,B
;A uta,v:BEN:y .
T;A,w::a@,@l—|etu®v=winN::y®
;AuzarM:p
A —o R
ArAu:a. M:a—of
I'yAMeENza I A,ucBrM:y
—o [,

', I, A, Ap,wa—ofrletu=wNinM:y

GTLL -p. 18



RBQ rules I

ITAFM: a|[N/x] I5-FN B

A Fn: Bl

I,x:B;- kil (ol N/x])[x/N] = «a
IxaB,AANFINO@n®M :: dx : p.a

IxuB,AnzfBl,ocarNay
A, w:: Jx: B.a+ Nlw/(Ix®n®0v)] =y

A

L

GTLL-p. 19



Reachabillity

# Tansformation — Gy, G closed h-graphs, Gy Initial,
Pq,..., Pk rules

» Gy reachable from by some application of the rules
IP1,...,!1P;, Go F 1

» G4 reachable by applying each rule once
Pi,..., P, GoF Gq

# Translation complete with respect to reachability
(sequent provable if graph reachable)

# Soundness — work In progress,
general idea — logically valid implications are
“read-only” transformations

GTLL - p. 20



© o o o o @

Conclusion and further work

Proof theory-driven approach to GT
uses resource logic
new quantifier to deal with restriction

Extension to generalised interfaces (V)
two-level embedding approach
Interest in mechanised theorem proving

GTLL - p. 21



Other rules

ICAFM::1 IAFN:a

1“;+ni|::111 I’;A,A’HetniI:MinN::oclE
LLARM:aa IDARNP

GAF(MN) = a&f &
I;AEM:: a&p IARM :: a&p
TAFfStMza SF1 ;A Fsnd M g &8
1",-.|_M;:a' AT M F,P a; N> F N :: :B

T riM:lal — T,A,Arletp=MinN:=pg
Ix:BARM CARMaVx:p.a 1;,-FN:p

VI YE

AFAX. M i Vx: B. « IAFMN :: a[N/x]

GTLL - p. 22



Encoding rules Il

# —o for transformation, V (first order, standard) for

interface nodes, Y (second order, non-linearly resource
bound) for interface edges

® Transformation rule as closed formula

Vx: ANy via — f

with «, B, v; graph formulas

# applying a rule gives a transformation where «a IS
deleted (consumed), j is created, after instantiating

first nodes x and then edges y — the rule interface

GTLL - p. 23



Rule application schema

I Ik ag=Eac I;- ||- A=A
ag =z A. (aL ® (X7 Ty yz]))[z A Sy Al®ac
ap = Az A(agr @ (X Ty yi]))[z A& Al®ac

p,m
—

I Vx: ANT: Vi.ap —© ar lkag —o ay
For rules with node-only interfaces

Ik ag=Eac Ik ag=ay

A

EIz:A.ocL[z:A<d—"x:A]®occ
ap = Az : AocR[z A<—x Al® ac

G

p,m
—

I’Vx:A.aqp — aglkag —o ay

GTLL - p. 24



Translation — |

Constituents

::ei(m, e ,n) : Li(Am, “o ,An)]] =df Id [F;; C; - Li(xm, “on ,xn)]
[Nil] =47 1 [IT]
IMIINT =4s @ IT[IMI;; [N
[vn: AANN] =47 AL[[IN];;
Uld [T';; x, :: Al;;
d|l;; n:Alx,];;
I,y A;-+id: MainType(IN)y/x,1#(y, x,)]

GTLL - p. 25



Translation — I

Graph interfaces

[n:A]l =4 Id[I,x::A;; n:Alx]
[{n: Al =45 [n:A]
[{n1: A} UX] =4 QI[[[{n:: Ar}l;; [X1]

Graph expressions

[XEC] =i I[[X]s;; [CI]

GTLL - p. 26



Graph derivations

graph formulas — 1, ®, q, | fragment of the logic
containing only primitive graph types (node and edge

types)

graph context — multiset of typed nodes and typed
edge components.

graph derivation — derivable sequent I'; A+ N :: y,
where y Is a graph formula, A is a graph context, I' the
environment, N a normal derivation.

Uses only axioms and the introduction rules 11, ®I, 3I.

GTLL - p. 27



Quantifier and congruence

3 satisfies properties of renaming, exchange and
distribution over ®

o +(Ax: a.B(x)) = (fly :a.6(y))
® +(Jxy:ay) 2 Ayx:ay)
® + (dx: af®y(x) =P dx a.y(x)) (x not In )

Equivalence between a and Jx. a generally fails in both
directions, even when x does not occur free in «a

GTLL - p. 28



Graphs and types — adequacy

Isomorphism between graph expressions and graph
derivations

Isomorphism between graphs (congruence classes of
graph expressions) and graph formulas modulo linear
equivalence

Curry-Howard style correspondence

Possibility to implement hypergraphs and to reason
about them

GTLL - p. 29



o o

Graph transformation

Less interested in component identity, higher-level
translation, based on logic formulas

Linear implication as transformation
Standard quantifier for interface nodes

Rule names as non-linear resources (unlimited
application)

[M = NJ' =4 [M]" — [N]"
[Ax : ANTT =4 ¥ : A[N]"

[n() =45 FIA[T;; pVx:A[L]" — [R]]

GTLL - p. 30



°

Completeness and soundness

Let Tpr = Z U [plp = [n(p)],p € P], then for each
reachable h-graph G

Tp; [Gol" + [GT"

Let R be a multiset of transformations,
Ar = [7|T = [t]',t € R], then for each h-graph G
reachable from Gy by executing R

G, Ax - IGT

This is for completeness

Soundness requires more work on the interpretation of
linear implication

GTLL - p. 31



	Graph Transformation
	 Encoding GT in LL --- why?
	Typed hypergraphs
	DPO diagram
	Overall plan 
	QILL
	Encoding graphs
	Encoding rules (node only interfaces)
	rules I
	RBQ rules I
	RBQ right intro
	RBQ left intro
	Incorrect matches
	Quantifier and DPO conditions
	Examples I
	Examples II --- problem with Cut
	rules II
	RBQ rules II
	Reachability
	Conclusion and further work
	Other rules
	Encoding rules II
	Rule application schema
	Translation --- I
	Translation --- II
	Graph derivations
	Quantifier and congruence
	Graphs and types --- adequacy
	Graph transformation
	Completeness and soundness

