Encoding Graph Transformation in Linear Logic

Paolo Torrini

joint work with Reiko Heckel

pt95@mcs.le.ac.uk

University of Leicester

Graph Transformation

- Graph Transformation Systems (GTS) high-level approach to system modelling, UML, model-driven development, stochastic simulation
- Existing formalisations algebraic-categorical (SPO, DPO), 2nd-order predicate logic
- High-level character, strong mathematical foundation
- Double-pushout (DPO) mature approach, based on category theory

Encoding GT in LL — why?

- LL close to process algebras (Abramsky, Pfenning, Cervesato)
- Parallel composition $(\alpha \otimes \beta)$, choice $(\alpha \& \beta)$, reachability (⊢ $\alpha \multimap \beta$), replication (!)
- Semantic motivation: taking closer graph transformation and process algebra
- Existing approach: hyperedge replacement
- What we do: logic-based hyperedge replacement
- Practical motivation: making proofs about GTS easier

Typed hypergraphs

- Hypergraph $G = \langle V, E, s \rangle$ V set of nodes, E set of hyperedges assignment $s : E \to V^*$
- H-graph morphism $\langle \phi_V : V_1 \rightarrow V_2, \ \phi_E : E_1 \rightarrow E_2 \rangle$ assignment-preserving
- Type h-graph $TG = \langle \mathcal{V}, \mathcal{E}, \text{ar} \rangle$ \mathcal{V} set of node types, \mathcal{E} set of h-edge types $\text{ar}(l) : \mathcal{E} \to \mathcal{V}^*$
- **●** TG-typed h-graph (G, t), with $t: G \to TG$
- TG-typed h-graph morphism $f: (G_1, t_1) \rightarrow (G_2, t_2)$ is h-morphism $f: G_1 \rightarrow G_2$ with $t_2 \circ f = t_1$

DPO diagram

- Graph transformation rule $p: L \stackrel{l}{\longleftarrow} K \stackrel{r}{\longrightarrow} R$ span of typed h-graph morhisms (l,r), K interface, L/K to be deleted, R/K to be created, rule application determined by match morphism m, m determined up to iso by interface morphism d
- DPO conditions (1) Identification condition:
 (a) m never identifies distinct L/K elements
 (b) m never identifies L/K elements with K ones
 (2) Dangling condition: for each node n ∈ L/K, all edges connected to n are in L/K, too

$$L \stackrel{l}{\longleftarrow} K \stackrel{r}{\longrightarrow} R$$

$$m \downarrow \qquad (1) \qquad \downarrow d \qquad (2) \qquad \downarrow m^*$$

$$G \stackrel{g}{\longleftarrow} D \stackrel{h}{\longrightarrow} H$$

Overall plan

- Algebraic characterisation of DPO-GTS monoidal structure with restriction over node names (hyperedge replacement)
- edges as relations (predicates) over nodes, parallel composition (tensor), α -renaming of nodes (restriction, or *hiding*)
- Translation to a quantified extension of ILL
- maps graph algebraic components to derivations, hence proof terms and linear λ-calculus
- terms represent identity of nodes and edges
- formulas represent type and connectivity enough for reasoning about graphs up to iso

QILL

- $M = x \mid p \mid u \mid \text{nil} \mid N_1 \otimes N_2 \mid \lambda x.N \mid \hat{\lambda} u.N \mid N_1 \hat{N}_2 \mid N_1 N_2 \mid M \mid \langle N_1, N_2 \rangle \mid \text{fst } N \mid \text{snd } N$
- Sequent calculus proof rules
- **●** Double-entry sequents linear premises (Δ) and non-linear ones (Γ , equivalent to ! Γ)

$$\Gamma$$
; $\Delta \vdash N :: \alpha$

Encoding graphs

- Graph constructors: edge predicates, Nil (empty graph), ⊗ (parallel composition), ∃ (linearly resource-bound quantifier) to type restriction
- (closed) h-graph as (closed) formula

$$\hat{\exists} \overline{x : A}.\gamma$$

x:A sequence of typed variables, either $\gamma=\mathbf{1}$ (empty graph) or $\gamma=L_1(\overline{x}_1)\otimes\ldots\otimes L_k(\overline{x}_k)$ (a multiset of edge components)

Adequate graph representation

Encoding rules (node only interfaces)

- → for transformation, ∀ for interface nodes
- Transformation rule (α, β) graph formulas)

$$\forall \overline{x : A}.\alpha \multimap \beta$$

rule application schema

$$\Gamma; \cdot \Vdash \alpha_{G} \triangleq \alpha_{G'} \qquad \Gamma; \cdot \Vdash \alpha_{H} \triangleq \alpha_{H'} \\
\alpha_{G'} = \hat{\exists} \overline{z} : \overline{A}.\alpha_{L} [\overline{z} : \overline{A} \xleftarrow{d_{n}} \overline{x} : \overline{A}] \otimes \alpha_{C} \\
\alpha_{H'} = \hat{\exists} \overline{z} : \overline{A}.\alpha_{R} [\overline{z} : \overline{A} \xleftarrow{d_{n}} \overline{x} : \overline{A}] \otimes \alpha_{C} \\
\Gamma; \forall \overline{x} : \overline{A}.\alpha_{L} \multimap \alpha_{R} \Vdash \alpha_{G} \multimap \alpha_{H}$$

rules I

$$\overline{\Gamma; u :: \alpha \vdash u :: \alpha} \ Id \qquad \overline{\Gamma, x :: \alpha; \cdot \vdash x :: \alpha} \ UId$$

$$\frac{\Gamma; \Delta_1 \vdash M :: \alpha \quad \Gamma; \Delta_2 \vdash N :: \beta}{\Gamma; \Delta_1, \Delta_2 \vdash M \otimes N :: \alpha \otimes \beta} \otimes R$$

$$\frac{\Gamma; \Delta, u :: \alpha, v :: \beta \vdash N :: \gamma}{\Gamma; \Delta, w :: \alpha \otimes \beta \vdash \text{let } u \otimes v = w \text{ in } N :: \gamma} \otimes L$$

$$\frac{\Gamma; \Delta, u :: \alpha \vdash M :: \beta}{\Gamma; \Delta \vdash \hat{\lambda}u :: \alpha \cdot M :: \alpha - \beta} \rightarrow R$$

$$\frac{\Gamma; \Delta_1 \vdash N :: \alpha \quad \Gamma; \Delta_2, u :: \beta \vdash M :: \gamma}{\Gamma; \Delta_1, \Delta_2, w :: \alpha - \beta \vdash \text{let } u = w \hat{N} \text{ in } M :: \gamma} \rightarrow L$$

RBQ rules I

```
\Gamma; \Delta \vdash M :: \alpha[N_{\Delta}/x] \quad \Gamma; \cdot \vdash N_{\Delta} :: \beta
\Gamma; \Delta' \vdash n :: \beta \mid N_{\Delta} \qquad \Gamma, x :: \beta; \cdot \vdash \text{nil} :: (\alpha[N_{\Delta}/x])[x/N_{\Delta}] = \alpha
\Gamma; \Delta, \Delta' \vdash !N_{\Delta} \otimes n \otimes M :: \hat{\exists} x : \beta.\alpha
\hat{\exists} R
```

$$\frac{\Gamma, x :: \beta; \Delta, n :: \beta \mid x, v :: \alpha \vdash N :: \gamma}{\Gamma; \Delta, w :: \hat{\exists} x : \beta.\alpha \vdash N[w/(!x \otimes n \otimes v)] :: \gamma} \hat{\exists} L$$

RBQ right intro

$$\Gamma; \Delta \vdash M :: \alpha[N_{\Delta}/x] \quad \Gamma; \cdot \vdash N_{\Delta} :: \beta$$

$$\Gamma; \Delta' \vdash n :: \beta \mid N_{\Delta} \qquad \Gamma, x :: \beta; \cdot \vdash \mathrm{id}_{\alpha} :: (\alpha[N_{\Delta}/x])[x/N_{\Delta}] = \alpha$$

$$\Gamma; \Delta, \Delta' \vdash (!N_{\Delta} \otimes n) \otimes M :: \hat{\exists} x : \beta.\alpha$$

$$\hat{\exists} I$$

- standard hips. (1) α[N/x] graph with N in place of free
 x
 (2) N well-typed
- (3) there has to be a node (linear resource) named by $N \longrightarrow \bot$ denotes naming reference to term
- (4) N does not occur free in α (unless x = N) a freshness condition, expressed using type equality and substitution
- $N(N_{\Delta})$ depends on the derivation of $\alpha[N_{\Delta}/x]$

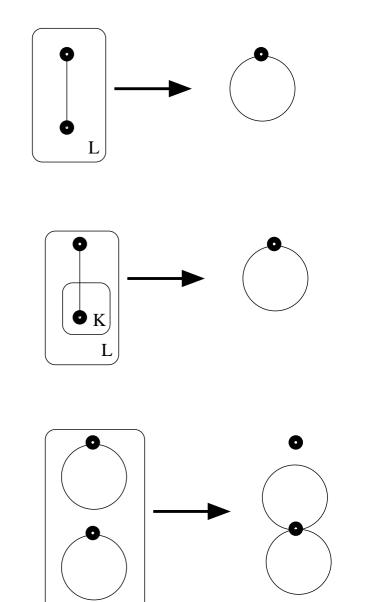
RBQ left intro

$$\frac{\Gamma, x :: \beta; \Delta, n :: \beta \mid x, v :: \alpha \vdash N :: \gamma}{\Gamma; \Delta, w :: \hat{\exists} x : \beta. \alpha \vdash \text{let } (!x \otimes n \otimes v) = w \text{ in } N :: \gamma} \hat{\exists} L$$

- (almost) standard rule
- \bullet $\hat{\exists}$ can be used to type restriction in graph expressions
- introduction by axiom

$$\frac{\Gamma; \cdot \vdash N :: \alpha}{\Gamma; n :: \alpha \mid N \vdash n :: \alpha \mid N} \mid A$$

Incorrect matches



Quantifier and DPO conditions

- $(\exists x : \beta. \ \alpha(x, x)) \rightarrow \exists xy : \beta. \ \alpha(x, y)$ the resource for x cannot suffice for x and y.
- $f(\exists yx : \beta. \ \alpha_1(x) \otimes \alpha_2(x)) \rightarrow (\exists x : \beta.\alpha_1(x)) \otimes \exists x : \beta.\alpha_2(x)$ the two bound variables in the consequence require distinct resources and refer to distinct occurrences

Examples I

$$\frac{x \vdash x \quad x, \alpha(x, x) \vdash \hat{\exists} y.\alpha(x, y)}{x, \alpha(x, x) \vdash \hat{\exists} xy.\alpha(x, y)} \quad \hat{\exists} R \quad fails$$

$$\frac{x, \alpha(x, x) \vdash \hat{\exists} xy.\alpha(x, y)}{\hat{\exists} x.\alpha(x, x) \vdash \hat{\exists} xy.\alpha(x, y)} \quad \hat{\exists} L$$

$$\frac{x \vdash x \quad x, \alpha(x, x) \vdash \alpha(x/y, x)}{x, \alpha(x, x) \vdash \hat{\exists} y. \alpha(y, x)} \; \hat{\exists} R \; fails$$

$$\frac{x,\alpha(x) \vdash \hat{\exists} x.\alpha(x)}{x, \alpha(x) \vdash \hat{\exists} x.\alpha(x)} \hat{\exists} R \quad \frac{1}{y,\alpha(x) \vdash \hat{\exists} x.\alpha(x)} \otimes R \\ \frac{x,y,\alpha(x),\alpha(x) \vdash (\hat{\exists} x.\alpha(x)) \otimes \hat{\exists} x.\alpha(x)}{\hat{\exists} xy.\alpha(x) \otimes \alpha(x) \vdash (\hat{\exists} x.\alpha(x)) \otimes \hat{\exists} x.\alpha(x)} \hat{\exists} L(2)$$

Examples II — problem with Cut

$$\frac{\Gamma; \alpha \mid x, \alpha \vdash \hat{\exists} x. \alpha(x)}{\Gamma; \alpha \mid x, \alpha \vdash \hat{\exists} x. \alpha(x)} \xrightarrow{\Gamma; \alpha \mid x, \alpha \vdash \hat{\exists} x. \alpha(x)} \otimes R$$

$$\frac{\Gamma; \alpha \mid x, \alpha \mid x, \alpha, \alpha \vdash (\hat{\exists} x. \alpha(x)) \otimes \hat{\exists} x. \alpha(x)}{\Gamma; \alpha \mid x, \alpha, \alpha \vdash (\hat{\exists} x. \alpha(x)) \otimes \hat{\exists} x. \alpha(x)}$$

$$\Gamma$$
; $(\hat{\exists} x.\alpha(x)) \otimes \hat{\exists} x.\alpha(x) \vdash \hat{\exists} xy.\alpha(x) \otimes \alpha(y)$

$$\Gamma; \alpha \mid x, \alpha \mid x, \alpha, \alpha \not\vdash \hat{\exists} xy.\alpha(x) \otimes \alpha(y)$$

Solution:

$$\frac{\Gamma_{1};\alpha \mid x,\alpha \vdash \hat{\exists} x.\alpha(x)}{\Gamma_{1};\alpha \mid x,\alpha \vdash \hat{\exists} x.\alpha(x)} \frac{\Gamma_{2};\alpha \mid x,\alpha \vdash \hat{\exists} x.\alpha(x)}{\Gamma_{2};\alpha \mid x,\alpha \vdash \hat{\exists} x.\alpha(x)} \otimes R$$

$$\frac{\Gamma_{1};\alpha \mid x,\alpha \mid y,\alpha,\alpha(x)}{\Gamma_{1};\alpha \mid x,\alpha \mid y,\alpha,\alpha(y) \vdash (\hat{\exists} x.\alpha(x)) \otimes \hat{\exists} x.\alpha(x)} \otimes R$$

rules II

$$\overline{\Gamma; u :: \alpha \vdash u :: \alpha} \ Id$$

$$\overline{\Gamma, x :: \alpha; \cdot \vdash x :: \alpha} \ UId$$

$$\frac{\Gamma_1; \Delta_1 \vdash M :: \alpha \quad \Gamma_2; \Delta_2 \vdash N :: \beta}{\Gamma_1, \Gamma_2; \Delta_1, \Delta_2 \vdash M \otimes N :: \alpha \otimes \beta} \otimes R$$

$$\frac{\Gamma; \Delta, u :: \alpha, v :: \beta \vdash N :: \gamma}{\Gamma; \Delta, w :: \alpha \otimes \beta \vdash \text{let } u \otimes v = w \text{ in } N :: \gamma} \otimes L$$

$$\frac{\Gamma; \Delta, u :: \alpha \vdash M :: \beta}{\Gamma; \Delta \vdash \hat{\lambda}u :: \alpha \cdot M :: \alpha \multimap \beta} \multimap R$$

$$\frac{\Gamma_1; \Delta_1 \vdash N :: \alpha \quad \Gamma_2; \Delta_2, u :: \beta \vdash M :: \gamma}{\Gamma_1, \Gamma_2; \Delta_1, \Delta_2, w :: \alpha \multimap \beta \vdash \text{let } u = w \upharpoonright N \text{ in } M :: \gamma} \multimap L$$

RBQ rules II

$$\Gamma; \Delta \vdash M :: \alpha[N/x] \qquad \Gamma; \cdot \vdash N :: \beta
\Gamma; \Delta' \vdash n :: \beta \downarrow
\Gamma, x :: \beta; \cdot \vdash \text{nil} :: (\alpha[N/x])[x/N] = \alpha
\hline
\Gamma, x :: \beta; \Delta, \Delta' \vdash !N \otimes n \otimes M :: \hat{\exists} x : \beta.\alpha$$

$$\frac{\Gamma, x :: \beta; \Delta, n :: \beta \downarrow, v :: \alpha \vdash N :: \gamma}{\Gamma; \Delta, w :: \hat{\exists} x : \beta.\alpha \vdash N[w/(!x \otimes n \otimes v)] :: \gamma} \hat{\exists} L$$

Reachability

- **■** Tansformation G_0 , G_1 closed h-graphs, G_0 initial, P_1 , . . . , P_k rules
 - G_1 reachable from by some application of the rules

$$!P_1, \ldots, !P_k, G_0 \vdash G_1$$

• G_1 reachable by applying each rule once

$$P_1, \ldots, P_k, G_0 \vdash G_1$$

- Translation complete with respect to reachability (sequent provable if graph reachable)
- Soundness work in progress, general idea — logically valid implications are "read-only" transformations

Conclusion and further work

- Proof theory-driven approach to GT
- uses resource logic
- new quantifier to deal with restriction
- Extension to generalised interfaces $(\hat{\forall})$
- two-level embedding approach
- Interest in mechanised theorem proving

Other rules

$$\overline{\Gamma; \cdot \vdash \mathsf{nil} :: \mathbf{1}} \ \mathbf{1}^{I}$$

$$\frac{\Gamma; \Delta \vdash M :: \mathbf{1} \quad \Gamma; \Delta' \vdash N :: \alpha}{\Gamma; \Delta, \Delta' \vdash \text{let nil} = M \text{ in } N :: \alpha} \mathbf{1}E$$

$$\frac{\Gamma; \Delta \vdash M :: \alpha \quad \Gamma; \Delta \vdash N :: \beta}{\Gamma; \Delta \vdash \langle M, N \rangle :: \alpha \& \beta} \& I$$

$$\frac{\Gamma; \Delta \vdash M :: \alpha \& \beta}{\Gamma; \Delta \vdash \text{fst } M :: \alpha} \& E1$$

$$\frac{\Gamma; \Delta \vdash M :: \alpha \& \beta}{\Gamma; \Delta \vdash \mathsf{snd}\ M :: \beta} \& E2$$

$$\frac{\Gamma; \cdot \vdash M :: \alpha}{\Gamma; \cdot \vdash !M :: !\alpha} ! I \quad \frac{\Gamma; \Delta_1 \vdash M :: !\alpha \quad \Gamma, p :: \alpha; \Delta_2 \vdash N :: \beta}{\Gamma; \Delta_1, \Delta_2 \vdash \mathbf{let} \ p = M \ \mathbf{in} \ N :: \beta} ! E$$

$$\frac{\Gamma, x :: \beta; \Delta \vdash M :: \alpha}{\Gamma; \Delta \vdash \lambda x. M :: \forall x : \beta. \alpha} \forall I \quad \frac{\Gamma; \Delta \vdash M :: \forall x : \beta. \alpha \quad \Gamma; \cdot \vdash N :: \beta}{\Gamma; \Delta \vdash MN :: \alpha[N/x]} \forall E$$

Encoding rules II

- for transformation, \forall (first order, standard) for interface nodes, $\hat{\forall}$ (second order, non-linearly resource bound) for interface edges
- Transformation rule as closed formula

$$\forall \overline{x : A}. \hat{\forall} \overline{y : \gamma_i}. \alpha \multimap \beta$$

with α , β , γ_i graph formulas

• applying a rule gives a transformation where α is deleted (consumed), β is created, after instantiating first nodes \overline{x} and then edges \overline{y} — the rule interface

Rule application schema

$$\Gamma; \cdot \Vdash \alpha_{G} \triangleq \alpha_{G'} \qquad \Gamma; \cdot \Vdash \alpha_{H} \triangleq \alpha_{H'}$$

$$\alpha_{G'} = \hat{\exists} \overline{z} : \overline{A}. (\alpha_{L} \otimes (\bigotimes [\overline{\gamma_{i}} \stackrel{d_{e}}{\longleftarrow} \overline{v} : \gamma_{i}])) [\overline{z} : \overline{A} \stackrel{d_{n}}{\longleftarrow} \overline{x} : \overline{A}] \otimes \alpha_{C}$$

$$\alpha_{H'} = \hat{\exists} \overline{z} : \overline{A}. (\alpha_{R} \otimes (\bigotimes [\overline{\gamma_{i}} \stackrel{d_{e}}{\longleftarrow} \overline{v} : \gamma_{i}])) [\overline{z} : \overline{A} \stackrel{d_{n}}{\longleftarrow} \overline{x} : \overline{A}] \otimes \alpha_{C}$$

$$\Gamma; \forall \overline{x} : \overline{A}. \hat{\forall} \overline{v} : \gamma_{i}. \alpha_{L} \multimap \alpha_{R} \Vdash \alpha_{G} \multimap \alpha_{H}$$

$$p, m$$

$$\Gamma; \forall \overline{x} : \overline{A}. \hat{\forall} \overline{v} : \gamma_{i}. \alpha_{L} \multimap \alpha_{R} \Vdash \alpha_{G} \multimap \alpha_{H}$$

For rules with node-only interfaces

$$\Gamma; \cdot \Vdash \alpha_{G} \triangleq \alpha_{G'} \qquad \Gamma; \cdot \Vdash \alpha_{H} \triangleq \alpha_{H'}$$

$$\alpha_{G'} = \hat{\exists} \overline{z} : \overline{A}.\alpha_{L} [\overline{z} : \overline{A} \xleftarrow{d_{n}} \overline{x} : \overline{A}] \otimes \alpha_{C}$$

$$\alpha_{H'} = \hat{\exists} \overline{z} : \overline{A}.\alpha_{R} [\overline{z} : \overline{A} \xleftarrow{d_{n}} \overline{x} : \overline{A}] \otimes \alpha_{C}$$

$$\Gamma; \forall \overline{x} : \overline{A}.\alpha_{L} \multimap \alpha_{R} \Vdash \alpha_{G} \multimap \alpha_{H}$$

$$p, m$$

$$\Gamma; \forall \overline{x} : \overline{A}.\alpha_{L} \multimap \alpha_{R} \Vdash \alpha_{G} \multimap \alpha_{H}$$

Translation — I

Constituents

Translation — II

Graph interfaces

Graph expressions

$$\llbracket X \models C \rrbracket =_{df} \otimes I \llbracket \llbracket X \rrbracket_I; \llbracket C \rrbracket \rrbracket$$

Graph derivations

- **●** graph formulas $1, \otimes, \hat{\exists}, \downarrow$ fragment of the logic containing only primitive graph types (node and edge types)
- graph context multiset of typed nodes and typed edge components.
- **●** graph derivation derivable sequent Γ ; Δ \vdash N :: γ , where γ is a graph formula, Δ is a graph context, Γ the environment, N a normal derivation.
- **●** Uses only axioms and the introduction rules $\mathbf{1}I$, $\otimes I$, $\hat{\exists}I$.

Quantifier and congruence

 $\hat{\exists}$ satisfies properties of renaming, exchange and distribution over \otimes

Equivalence between α and $\exists x$. α generally fails in both directions, even when x does not occur free in α

Graphs and types — adequacy

- Isomorphism between graph expressions and graph derivations
- Isomorphism between graphs (congruence classes of graph expressions) and graph formulas modulo linear equivalence
- Curry-Howard style correspondence
- Possibility to implement hypergraphs and to reason about them

Graph transformation

- Less interested in component identity, higher-level translation, based on logic formulas
- Linear implication as transformation
- Standard quantifier for interface nodes
- Rule names as non-linear resources (unlimited application)

$$[\![M \Longrightarrow N]\!]^T =_{df} [\![M]\!]^T \multimap [\![N]\!]^T$$
$$[\![\Lambda x : A.N]\!]^T =_{df} \forall x : A.[\![N]\!]^T$$

$$\llbracket \pi(p) \rrbracket =_{df} FId \llbracket \Gamma;; \quad p :: \forall \overline{x : A_x}. \llbracket L \rrbracket^T \multimap \llbracket R \rrbracket^T \rrbracket$$

Completeness and soundness

Let $\Gamma_P = \Sigma \cup [\rho | \rho = [\pi(p)]]^T, p \in P]$, then for each reachable h-graph G

$$\Gamma_P$$
; $[\![G_0]\!]^T \vdash [\![G]\!]^T$

Let R be a multiset of transformations, $\Delta_R = [\tau | \tau = [\![t]\!]^T, t \in R]$, then for each h-graph G reachable from G_0 by executing R

$$\Sigma$$
; $\llbracket G_0 \rrbracket^T$, $\Delta_R \vdash \llbracket G \rrbracket^T$

- This is for completeness
- Soundness requires more work on the interpretation of linear implication