VIATRA/GRASS:. Graph
Transfor mation-based Stochastic
Simulation

(1) Paolo Torrini, Reiko Heckel, (2) Istvan Rath

pt95,reiko@mcs.le.ac.uk, rath@mit.bmi.hu

(1) University of Leicester,
(2) Budapest University of Technology and Economics

VIATRA/GRASS - p. 1

°

°

Stochastic graph transfor mation

Modelling: graph transformation

Validation: stochastic simulation
s runs depends on random numbers

s useful when models are too large for model
checking

Generalised stochastic graph transformation:
events associated with general probability distributions

Discrete event system semantics

Implementation based on incremental pattern
matching

VIATRA/GRASS - p. 2

°

Some history

2004-07: Heckel, Lajios, Menge — seminal work on
stochastic graph transformation

rules associated with exponential distributions,
translated to labelled transition systems,
analysed as Markov chains (probabilistic model
checking)

2007: Heckel: application to P2P networks

2007: Lajos, Kosiuczenko — outline extension,
rules with general distributions,

semi-Markov processes,

unfolding semantics (global name-space needed)

VIATRA/GRASS - p. 3

o o

... and morerecently

2009: Heckel, Torrini — rule matches with general
distributions,
concrete semantics (numbered graphs) and extensions

Torrini, Rath — implementation based on VIATRA
Ajab Kahn — application to Skype (PhD topic)

Kahn, Torrini, Heckel — ICGT 2008 Doctoral
Symposium

Torrini, Heckel, Rath — paper submitted at FASE 2010

VIATRA/GRASS - p. 4

°

GTSwith probability

Stochastic Graph Transformation:
rules associated with exponential probability
distributions

Generalised Stochastic Graph Transformation:
rule matches associated with general probability
distributions

Rule matches as equivalence classes — identity
through transformation

— cardinality restrictions to ensure they are a proper
set (hnumbered graphs)

Probabilistic rather than indeterministic actions

Continuous time: waiting times as independent
random variables — no parallelism

VIATRA/GRASS - p. 5

Probability distributions

Possible rule application associated with expected
delay D

D (walting time) — random variable associated to a
probabillity distribution function Fp(x) = P(D < x)

Fp determines the probability of the delay being less
than x

Markov property — process depends on present state
only, P(D >x+z|D >z)=P(D > x)

Semi-Markov process: next state may depend on time
spent in current state

Exponential distribution: determined by a rate, can
express how “fast” is a Markov process.

Normal distribution: mean and variance — process
with meaningful average value and deviation

VIATRA/GRASS - p. 6

GSM S

Discrete event systems semantics — stochastic models
based on Generalised Semi-Markov Schemes (more
general than Markov chains, general distributions)

GSMS = (States
Events
ActiveEvents : State — @FEvent
Transition : State X Event — State
DistrAssign : Event — Distribution

InitState : State)

where Distribution = R — [1,0]

VIATRA/GRASS —p. 7

GSGTSasGSM S

A Generalised Stochastic GTS defines a GSMS, where
A((r,m))(d) is the probability that the waiting time for rule r
at match m is less than d

GSGTS = ReachGraphs

RuleMatches (equivalence classes)
EnabledMatches : ReachGraph — pRuleMatch
GraphTrans :

ReachGraph X RuleMatch — ReachGraph
A : RuleMatch — (R — [1,0])
InitialGraph : ReachGraph)

VIATRA/GRASS - p. 8

GSM S-based ssmulation

#® GSMS execution based on event scheduling scheme

#® At each step
s the event with the shortest waiting time is executed
s the simulation time is updated
s enabled matches are computed
9

scheduling times of new matches are determined
by random number generator given A

waiting times of old matches decrease

°

VIATRA/GRASS -p. 9

Computational aspect

Substantial problem: computing all matches at each
step, needed because

» not enough to know that a rule is enabled —
number of matches makes difference in actual
probability of rule application

s Wwalting times may depend on local values of
attributes

Moreover, we need to retain identity of matches — so
we cannot recompute the matches at each step

VIATRA/GRASS - p. 10

|ncremental Pattern Matching

Incremental approach (RETE algorithm):
pattern-matching problem constant in model size,
polynomial in rule number — after initialisation phase,
which can be hard (subgraph homomorphism problem
known to be NP-complete)

Standard approach: update constant in model size and
rule number

IPM useful when rules have complex LHS and when all
matches are needed

VIATRA (Eclipse plugin) — graph transformation
engine that implements IPM

VIATRA/GRASS - p. 11

Architecture of thetool

Graph transformation engine
s computes matches
s executes selected rule match

Simulation engine

s determines waiting time, relying on SSJ random
number generation

manages waiting times

selects rule matches for execution

extracts statistics, relying on SSJ tally classes
controls textual and visual output

e o o o

VIATRA/GRASS - p. 12

Transformation
Rules

Graph

Transformation

Engine

Distributions

Simulation
Parameters

new matches

preexisting matches

-

selected match

enabled
matches
exec
rule

Model
State

Visual Output

\/

Stochastic
Simulation
Engine

Y

Analysis
Textual Output

VIATRA/GRASS - p. 13

VIATRA/GRASS

Stochastic simulation implemented in Java on top of
VIATRA — uses Java-SSJ libraries

Inputs: G (GTS), A (distribution assignment)

G: loaded in VIATRA — model-space (vpml) and rules
(vtcl)

A: case-defined in an XML file, automatically
translated to a model-space entity

probe rules: extract information for stochastic analysis
— collected In tally class objects, displayed as textual
output

additional simulation parameters: e.g. number of runs,
max depth of each run (steps or time)

visualisation for staged execution

VIATRA/GRASS - p. 14

VIATRAZ - [varlautofsihomelhomelpt95iruntime-EclipseApplication/stochastic_gtiskypesim.vpml - Eclipse Platform - [= =] [x]
File Edit Mavigate Search Project Field Assist Run Window Help
rHala- e BB v e [XxXdw B E
g Navi‘ga’:gr'_z’;. : G o & @ 5 % ¥ = 0|¥ basicPzRytel (model ‘f.T’_EI *skypesim.vpml 23 % create_scvtel | [create_Client_in_ne |22 =/ =
b =3 AjabMadel 162 [https:/svn.infmit.bme.hujviatrafiviatra_estra/| = E root ox
P =% = Modelone 161 [https:/svn.inf.mit.bme.hufviatrafviatra_sxtr b [E DSM %
¥ I=% = stochastic_gt 143 [https://sun.inf.mit,bme. huiviatrafviatra_ = [E stoSimPars
b [Distributions 169 [E Machine {skypesim.basicP2P}
b > Junk [E] ModelPath {stochastic}
J’u .project 9 = [El parameters
i basicP2Pvtel 167 [El depth {20}
e probeRule.tel 104 &l level {adv}
mode {steps}
rate {1000}
ruleSet {random}
runs {3}
[E sdbFile {ivar/autofs/home/...}
El time {10}
b [El datatypes : entity
+ [E] stochastic
= [E] distributions
2 random
[random7
b randomUC
b randomUcC7?
b [El smart
b [El smart7?
b [E] smartuc
b [E] smartuc?
| = [E model
\ I} I [«]v] b Enl:sh
[%| VIATRA2 Madel spaces 9 ; oK & ¢ o= 50 b Enz:sN
= [Rl modelSpaced (skypesim.vpml) b Eln3: SN
b [& Native functions b Elns: SN
~ [@ Program models Elns:sN
> Elrl:Rs
= Triggers (serial execution mode) b Evpm
| = Properties 52 . IRl VIATRAZ Console | m 2l L =)
I| : I [Tal¥]
‘ 7% &0 @] stochastic_gt/skypesim.upml |]El—g | s [

B om0

9 Inbax for ptt [¥] Calendars - ™ pt35@pc|> @ Firefox-2-bs = Eclipse [2} ma A
| Chapter 3 | @ Amarak '

) Skype [2] ~ *= emacs [4] ~ * Acroread [= .G—ji% i

L BB @ 0% §:YBATRA/GRASS - p. 15

VIATRAZ - stochastic_gt/Distributionsirules1.xml - Eclipse Platform
| File Edit Mavigate Search Project Field Assist Run Design Window Help
rE&|la- ey |92 B8R |EG[E 5 ® o9 = =
5 Navigator 3% S & @l Bsl e T 8| g basicPzPatel (model %] *skypesim.vpml [EI Create SCatel | (X] 2 i =
b =% AjabMadel 162 [https:/svn.infmit.bme.hujviatrafviatra_estra/ _-VEFSi0n="1-U" encoding="UTF-8" o
b 1% = ModelOne 161 [https:/svn.inf.mit. bme. hufviatrafviatra_extr - [#] allrules %
= I = stochastic_gt 143 [https:/sun.inf mit. bme. hufiatrafiatra_ | ~ [g] ruleset
= [Distributions 16 ' name random
165 = [g] rule
b 5 > Junk @ name killMode
[¥ .project 9 type action
¥ basicP2Pvtel 167 v [g] event
Hi probeRule.vtcl 104 name default
[l > skypesim.wpml 170 type Exp
= [g] rate
value 1.0
b €] rule
b [g] rule
b [g] rule
b [g] rule
b [&] rule
P [€] ruleset
b [e] ruleset
P [e] ruleset
P [e] ruleset
P [e] ruleset
P [g] ruleset
P [e] ruleset
\ 1l [[«Iv]|
-IE]V]ATRAZ Model spaces 9 O R = |
= [Ful modelSpace0 (skypesim.vpml) .
b Native functions
- Program models
Triggers (serial execution mode) Design| Source!
| £ Properties EX.\.___ VIATRAZ Console] i} m L E ® 750
| Property I\mlue]

EHedoD@

9 Inbax for ptt [F] Calendars - ™ ptS5@pc > @ Firefox-2-bs 2 Eclipse [2} .
 |Chapter 3 | @ Amarok [

) Skype [2] ~ = emacs [4] ~ ™ Acraread [~

VIATRAZ - stochastic_gtlbasicP2P.vtcl - Eclipse Platform
File Edit Mavigate Search Project Field Assist Run Window Help
DrEc % |ley | EBE & B B 0@ = >
&5 Navigator 5T S & owp g B 5 ¥ = 0% basiePzrytel (model B [%2] *skypesimvpml | M| create scovtcl | [l create_client in_ne | e = 8| =
b =% AjabModel 162 [https:/fsvn.infmit.bme.hujviatrafviatra_estra/ 1 T.Ihe or?er ones add redundant connection in a smarter way, by checking i =
that the two node re not alread) thwise connected through more o=
b =% > ModelOne 161 [https:/svn.infmit.bme.huiviatraiviatra_extr {{ ,_..-:n '\HZ RO RO e O ERRESE
¥ It = stochastic_gt 143 [https:/fsun.inf.mit.bme. hujviatrajviatra // At the moment we assume that the two nodes must be pathwise connected
b (= Distributions 169 // through another one, that comes from the paper but might have to be
e P // dropped later
_z@:-Jun pattern two(M1) =
¥, .project 9 {
SN(NL);
— find connected(N1,N2);
U probeRule.vtcl 104 find connected(n1,N3);
M > skypesim.uprl 170 find connected(n1,N4);
i
/t @rigger
gtrule randomConnect() =
i
precondition pattern lhs(N3,NS,NE) =
i
SN(NO) ;
SNNS) ; =
SN(NB) ;
find connected(No,NS) ;
find connected(NO,NB) ;
neg find connected(NS,NS);
neq find two(Ns);
neg find two(ng);
1
action {
let Ovl = undef in new(SN.overlay(0Ovl,NS,N5)); —
let OvZ = undef in new(SN.overlay(0vz,NG,NS));
println("randomConnect - added connection between: "
+fgniNs)+" and "+fgniNE)); =
1
\ I I [4]»] by
) 3 B & owp T o
el VIATRA2 Model spaces 2 S X @ e = pattern twoConnected(N1,N2) =
= [Ful modelSpace0 (skypesim.vpml) {
b [& Native functions gsm;g'
~ (% Program models find connected(N1,NO);
find connected(N2,NO); = |
[Tiggers (serial execution mode) Bing cenriactAciy.Nak: L
[[[+]]
| = Properties 52 . IRl VIATRAZ Console | 5% = o« ¥ =0
r ¥ I
[I [TaIr]
|7 & 9 Writable Insert 18611 | | 2 s &

FE T

9 Inbax for ptt [¥] Calendars - ™ pt35@pc|> @ Firefox-2-bs = Eclipse [2} MH
| Chapter 3 | @ Amarak 4]

A A
) Skype [2] ~ *|emacs [4] « = Acroread [= [I]74} &

~BO @ 0%® 1§ BIATRA/GRASS - p. 17

P % = ModelOne 161 [https:/svn.inf.mit. bme. hufvig
¥ I=f = stochastic_gt 143 [https:i/svn.inf.mit.bme. h|
b [Distributions 169

P& > Junk

¥ .project 9

i probeRule.vtcl 104
M > skypesim.uprl 170

newhode: {default=exp} null
randomConnect: {default=exp} null

Probing predicate: disconnected
Main input rate: 1000.0

Number of runs: 3

Run maximum depth: 20

Report on time: REPORT on Tally stat. collector ==> null
num. obs. min max average standard dev.
3 0.223 1,355 0.843 0.573
Run sim-time values: [0.22336717755151142, 0.9409432082158652, 1.3540671085677006]
Report on depth: REPORT on Tally stat. collector === null

num. obs. min max average standard dev.
3 9.000 20. 000 16.332 6.351

Run depth values: [9.0, 20.0, 20.0]
Report on binary probe: REPORT on Tally stat. collector === null
num. obs. min max average standard dev.
3 0.250 0.625 0.425 0.188
Run avg binary probe values: [0.625, 0.25, 0.39559999595055097]
Report on max node number: REPORT on Tally stat. collector === null
num. obs. mLn max average standard dev.
3 5.000 8.000 6.333 1.528
[5.0, 8.0, 6.0]

Run max node numbers:

Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector === null
num. obs. mLn max average standard dev.

3 0.078 0.207 0.144 0.085

:| VIATRA2 Model spaces 23 T
= [f modelSpaced (skypesim.vpml)

I E Native functions

=
¥ &% Program models

IRun avg probe values: [0.20687500000000003, 0.07788888888888888, 0.14772222222222223]
Confidence level: 0.95

Elapsed run-time: 190

END REPORT

K1

VIATRAZ - stochastic_gtlbasicP2P.vtcl - Eclipse Platform G []]
File Edit Mavigate Search Project Field As =8 = = 7
G . EE ,,
[%2] VIATRAZ Textual Output 22 = B B @ :
(e Navigator 23' “ mULE SEL. | diugnl ey -»22 = E EV
| b 1% AjabModel 162 [httpsi/svn.inf mit.bme.hujviatd{k11LNode: {default=exp} null il | oo
o=

1

[«I»]

default
modelSpace0.

9

Ini)oxfor pt [Calendars - ™ pt95@pciix @ Firefox-2-ba = Eclipse [2+ @2 3 él;] @BQQ =E EEATRA/GRASS “p 18

Chapter 3 | @ Amarak & Skype [2] ~ *=|emacs[4] « = Acroread [= [T]T41 &

[[=] E"FI - Eclipse Platform

NEWNUUE - Ul dled NUUe. S LOLTTES CLL - D0 L iS5 S0 - “E”E =
randomConnect - added connection between: stod) (%l Viatra Visualisation 23 - S
killhode - node to be deleted: stochastic.modd .) s
node deleted =
killNode - node to be deleted: stochastic.modd o=
node deleted e i =
y cLoverlay
randomConnect - added connection between: stod i
newNode - created node: stochastic.model.unN39q
killNode - node to be deleted: stochastic.modd
node deleted reg
randomConnect - added connection between: stod
randomConnect - added connection between: stod
newhode - created node: stochastic.model.und40d
killhode - node to be deleted: stochastic.modq
node deleted &¥ reqg i
randomConnect - added connection between: stod i
randomConnect - added connection between: stod
newNode - created node: stochastic.model.unN41d
killhode - node to be deleted: stochastic.modd
node deleted
newNode - created node: stochastic.model.unN4dld
randomConnect - added connection between: stod "
newNode - created node: stochastic.model.unN42d uN453 Pt
randomConnect - added connection between: stod
randomConnect - added connection between: stod g gl
newNode - created node: stochastic.model.unN43d -
randomConnect - added connection between: stod -
randomConnect - added connection between: stod
killhode - node to be deleted: stochastic.modg
node deleted
killhode - rode to be deleted: stochastic.modd
node deleted
newNode - created node: stochastic.model.unN43g
randomConnect - added connection between: stod m ER|
randomConnect - added connection between: stogi= :
killhode - node to be deleted: stochastic.model.uN348 83
node deleted
newNode - created node: stochastic.model.unN44s 83
killMode - node to be deleted: stochastic.model.un374 83
node deleted
randomConnect - added connection between: stochastic.model.uN445 83 and stochastic.model. <2> S
randomConnect - added connection between: stochastic.model.uN438 83 and stochastic.medel. |S|||l = stochastic Simulation Contral 53
killnode - node to be deleted: stochastic.model.uN378 83 -
node deleted
killnode - node to be deleted: stochastic.model.undz22 83
node deleted
newNode - created node: stochastic.model.un4s4 83
newNode - created node: stochastic.model.un4ss 83 B
-
[il [«]+]
default
modelSpace0 -
I | | Z |

FAEN

Ao @CW

&9 Inbox for ptt [1] Calendars
| Chapter 3 | @ Amarak

| pto5@pc | @ Firefox-2-be 2= Eclipse [2} m@_l A
& Skype [2] ~ *=|emacs[4] « = Acroread [= [T]T4l &

Y BB U@ 0%9 (RPYATRA/GRASS -p. 19

© o o o

°

Case study: P2P

Simulation of P2P network
Basic example — rules with exponential distributions
Two behavioural rules: create node, kill node

Two alternative reconfiguration rules:
randomly/smartly create redundant connection

Stochastic analysis based on number of pathwise
disconnected nodes at each step, on varying the rate
of reconfiguration

Small model, few seconds execution time

VIATRA/GRASS - p. 20

v éType Graph
P P=peer !
R =registry |

__

disconnected

VIATRA/GRASS - p. 21

PP

P-: P

PP

i

Po: P

ﬂ« random

smart

& -

PP

P-: P

PP

P-: P

VIATRA/GRASS - p. 22

pattern pathEx(N1,N2) = {
SN(N1);
SN(N2);
find connected(N1,N2); }
or { SN(N1);
SN(N2);
SN(NO) ;
find connected(N1,NO®);
find pathEx(N®,N2); }

VIATRA/GRASS - p. 23

pattern noPathEx(N1,N2) = {
SN(N1);
SN(N2);
neg find pathEx(N1l, N2); }

gtrule disconnected() = {
precondition pattern lhs(N1l, N2) = {
SN(N1);
SN(N2);
find noPathEx(N1, N2); }
action {println("..."+fgn(N1)+fgn(N2));}}

VIATRA/GRASS - p. 24

°

Stochastic analysis

Program can execute given number of simulation runs
up to given depth value, expressed either as sim-time
or step number

returns average number of probe matches, max
number of nodes, number of steps, and simulation time
for each run

average, min, max and deviation over all the runs

more specific — wrt to the P2P probe: statistics on

M/N? with M number of probe matches, N number of
nodes

Basic method: run many simulations long enough, until
similar results for probe matches are obtained

Hypothesis on behaviour tested by changing
reconfiguration rates, comparing models, etc..

VIATRA/GRASS - p. 25

Sampleresults

Model: P2P Disconnected Number of steps Max number of peers Runtime
random:1 0.46 33 6 5
random:10 0.62 71 8 8
random:100 0.55 86 8 7
random:1000 0.89 284 20 10
random:10,000 0.46 116 9
smart:1 1.33 18

smart:10 0.01 90 4
smart:100 0.00 3561 48 10
smart:1000 0.00 998 24 10
smaurt:10,000 0.00 62 8 3

VIATRA/GRASS - p. 26

°

°

Extending the model

Distributions may depend on attributes of match
elements

global variables — e.g. simulation time

Derived attributes, computed when needed

— depending on global variables,

depending on local information — incoming/outgoing
edges

Distributions depending on derived attributes
Spatial dependencies — matches “in the same region”

Distributions depending on attributes of nearby
matches

trying to take advantage of incremental pattern
matching

VIATRA/GRASS - p. 27

°

© o o o 0

Further work

Handling general distributions (beyond exponential and
normal ones)

Refining stochastic analysis

Improving scalability

Modelling VoIP networks (with Ajab Khan)
Synchronisation of textual and visual output
Comparison with other tools/approaches

VIATRA/GRASS - p. 28

	Stochastic graph transformation
	Some history
	... and more recently
	GTS with probability
	Probability distributions
	GSMS
	GSGTS as GSMS
	GSMS-based simulation
	Computational aspect
	Incremental Pattern Matching
	Architecture of the tool
	VIATRA/GRASS
	Case study: P2P
	Stochastic analysis
	Sample results
	Extending the model
	Further work

