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Stochastic graph transformation

Modelling: graph transformation

Validation: stochastic simulation
runs depends on random numbers
useful when models are too large for model
checking

Generalised stochastic graph transformation:
events associated with general probability distributions

Discrete event system semantics

Implementation based on incremental pattern
matching
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Some history

2004-07: Heckel, Lajios, Menge — seminal work on
stochastic graph transformation

rules associated with exponential distributions,
translated to labelled transition systems,
analysed as Markov chains (probabilistic model
checking)

2007: Heckel: application to P2P networks

2007: Lajos, Kosiuczenko — outline extension,
rules with general distributions,
semi-Markov processes,
unfolding semantics (global name-space needed)
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... and more recently

2009: Heckel, Torrini — rule matches with general
distributions,
concrete semantics (numbered graphs) and extensions

Torrini, Rath — implementation based on VIATRA

Ajab Kahn — application to Skype (PhD topic)

Kahn, Torrini, Heckel — ICGT 2008 Doctoral
Symposium

Torrini, Heckel, Rath — paper submitted at FASE 2010
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GTS with probability

Stochastic Graph Transformation:
rules associated with exponential probability
distributions

Generalised Stochastic Graph Transformation:
rule matches associated with general probability
distributions

Rule matches as equivalence classes — identity
through transformation
— cardinality restrictions to ensure they are a proper
set (numbered graphs)

Probabilistic rather than indeterministic actions

Continuous time: waiting times as independent
random variables — no parallelism
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Probability distributions

Possible rule application associated with expected
delay D

D (waiting time) — random variable associated to a
probability distribution function FD(x) = P(D ≤ x)
FD determines the probability of the delay being less
than x

Markov property — process depends on present state
only, P(D > x + z|D > z) = P(D > x)
Semi-Markov process: next state may depend on time
spent in current state

Exponential distribution: determined by a rate, can
express how “fast” is a Markov process.

Normal distribution: mean and variance — process
with meaningful average value and deviation
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GSMS

Discrete event systems semantics — stochastic models
based on Generalised Semi-Markov Schemes (more
general than Markov chains, general distributions)

GSMS = 〈 States

Events

ActiveEvents : State→ ℘Event

Transition : State × Event→ State

DistrAssign : Event→ Distribution

InitState : State 〉

where Distribution = R → [1, 0]
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GSGTS as GSMS

A Generalised Stochastic GTS defines a GSMS, where
∆(〈r,m〉)(d) is the probability that the waiting time for rule r
at match m is less than d

GSGTS = 〈 ReachGraphs

RuleMatches (equivalence classes)

EnabledMatches : ReachGraph→ ℘RuleMatch

GraphTrans :

ReachGraph × RuleMatch→ ReachGraph

∆ : RuleMatch→ (R → [1, 0])

InitialGraph : ReachGraph 〉
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GSMS-based simulation

GSMS execution based on event scheduling scheme

At each step
the event with the shortest waiting time is executed
the simulation time is updated
enabled matches are computed
scheduling times of new matches are determined
by random number generator given ∆
waiting times of old matches decrease

VIATRA/GRASS – p. 9



Computational aspect

Substantial problem: computing all matches at each
step, needed because

not enough to know that a rule is enabled —
number of matches makes difference in actual
probability of rule application
waiting times may depend on local values of
attributes

Moreover, we need to retain identity of matches — so
we cannot recompute the matches at each step
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Incremental Pattern Matching

Incremental approach (RETE algorithm):
pattern-matching problem constant in model size,
polynomial in rule number — after initialisation phase,
which can be hard (subgraph homomorphism problem
known to be NP-complete)

Standard approach: update constant in model size and
rule number

IPM useful when rules have complex LHS and when all
matches are needed

VIATRA (Eclipse plugin) — graph transformation
engine that implements IPM
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Architecture of the tool

Graph transformation engine
computes matches
executes selected rule match

Simulation engine
determines waiting time, relying on SSJ random
number generation
manages waiting times
selects rule matches for execution
extracts statistics, relying on SSJ tally classes
controls textual and visual output
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VIATRA/GRASS

Stochastic simulation implemented in Java on top of
VIATRA — uses Java-SSJ libraries

inputs: G (GTS), ∆ (distribution assignment)

G: loaded in VIATRA — model-space (vpml) and rules
(vtcl)

∆: case-defined in an XML file, automatically
translated to a model-space entity

probe rules: extract information for stochastic analysis
— collected in tally class objects, displayed as textual
output

additional simulation parameters: e.g. number of runs,
max depth of each run (steps or time)

visualisation for staged execution
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Case study: P2P

Simulation of P2P network

Basic example — rules with exponential distributions

Two behavioural rules: create node, kill node

Two alternative reconfiguration rules:
randomly/smartly create redundant connection

Stochastic analysis based on number of pathwise
disconnected nodes at each step, on varying the rate
of reconfiguration

Small model, few seconds execution time
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pattern pathEx(N1,N2) = {

SN(N1);

SN(N2);

find connected(N1,N2); }

or { SN(N1);

SN(N2);

SN(N0);

find connected(N1,N0);

find pathEx(N0,N2); }
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pattern noPathEx(N1,N2) = {

SN(N1);

SN(N2);

neg find pathEx(N1, N2); }

gtrule disconnected() = {

precondition pattern lhs(N1, N2) = {

SN(N1);

SN(N2);

find noPathEx(N1, N2); }

action {println("..."+fqn(N1)+fqn(N2));}}
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Stochastic analysis

Program can execute given number of simulation runs
up to given depth value, expressed either as sim-time
or step number

returns average number of probe matches, max
number of nodes, number of steps, and simulation time
for each run

average, min, max and deviation over all the runs

more specific — wrt to the P2P probe: statistics on
M/N2 with M number of probe matches, N number of
nodes

Basic method: run many simulations long enough, until
similar results for probe matches are obtained

Hypothesis on behaviour tested by changing
reconfiguration rates, comparing models, etc..
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Sample results

Model: P2P Disconnected Number of steps Max number of peers Runtime

random:1 0.46 33 6 5

random:10 0.62 71 8 8

random:100 0.55 86 8 7

random:1000 0.89 284 20 10

random:10,000 0.46 116 8 9

smart:1 1.33 18 5 1

smart:10 0.01 90 8 4

smart:100 0.00 3561 48 10

smart:1000 0.00 998 24 10

smart:10,000 0.00 62 8 3
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Extending the model

Distributions may depend on attributes of match
elements

global variables — e.g. simulation time

Derived attributes, computed when needed
— depending on global variables,
depending on local information — incoming/outgoing
edges

Distributions depending on derived attributes

Spatial dependencies — matches “in the same region”

Distributions depending on attributes of nearby
matches

trying to take advantage of incremental pattern
matching
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Further work

Handling general distributions (beyond exponential and
normal ones)

Refining stochastic analysis

Improving scalability

Modelling VoIP networks (with Ajab Khan)

Synchronisation of textual and visual output

Comparison with other tools/approaches
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