VIATRA/GRASS: Graph Transformation-based Stochastic Simulation

(1) Paolo Torrini, Reiko Heckel, (2) Istvan Rath

pt95,reiko@mcs.le.ac.uk, rath@mit.bmi.hu

(1) University of Leicester,(2) Budapest University of Technology and Economics

Stochastic graph transformation

- Modelling: graph transformation
- Validation: stochastic simulation
 - runs depends on random numbers
 - useful when models are too large for model checking
- Generalised stochastic graph transformation: events associated with general probability distributions
- Discrete event system semantics
- Implementation based on incremental pattern matching

Some history

- 2004-07: Heckel, Lajios, Menge seminal work on stochastic graph transformation
- rules associated with exponential distributions, translated to labelled transition systems, analysed as Markov chains (probabilistic model checking)
- 2007: Heckel: application to P2P networks
- 2007: Lajos, Kosiuczenko outline extension, rules with general distributions, semi-Markov processes, unfolding semantics (global name-space needed)

... and more recently

- 2009: Heckel, Torrini rule matches with general distributions, concrete semantics (numbered graphs) and extensions
- Torrini, Rath implementation based on VIATRA
- Ajab Kahn application to Skype (PhD topic)
- Kahn, Torrini, Heckel ICGT 2008 Doctoral Symposium
- Torrini, Heckel, Rath paper submitted at FASE 2010

GTS with probability

- Stochastic Graph Transformation: rules associated with exponential probability distributions
- Generalised Stochastic Graph Transformation: rule matches associated with general probability distributions
- Rule matches as equivalence classes identity through transformation — cardinality restrictions to ensure they are a proper set (numbered graphs)
- Probabilistic rather than indeterministic actions
- Continuous time: waiting times as independent random variables no parallelism

Probability distributions

- Possible rule application associated with expected delay D
- D (waiting time) random variable associated to a probability distribution function $F_D(x) = P(D ≤ x)$ F_D determines the probability of the delay being less than *x*
- Markov property process depends on present state only, P(D > x + z|D > z) = P(D > x)
 Semi-Markov process: next state may depend on time spent in current state
- Exponential distribution: determined by a rate, can express how "fast" is a Markov process.
- Normal distribution: mean and variance process with meaningful average value and deviation

GSMS

Discrete event systems semantics — stochastic models based on Generalised Semi-Markov Schemes (more general than Markov chains, general distributions)

 $GSMS = \langle States \\ Events \\ ActiveEvents : State \rightarrow \wp Event \\ Transition : State \times Event \rightarrow State \\ DistrAssign : Event \rightarrow Distribution \\ InitState : State \rangle$

where Distribution = $\mathcal{R} \rightarrow [1, 0]$

GSGTS as GSMS

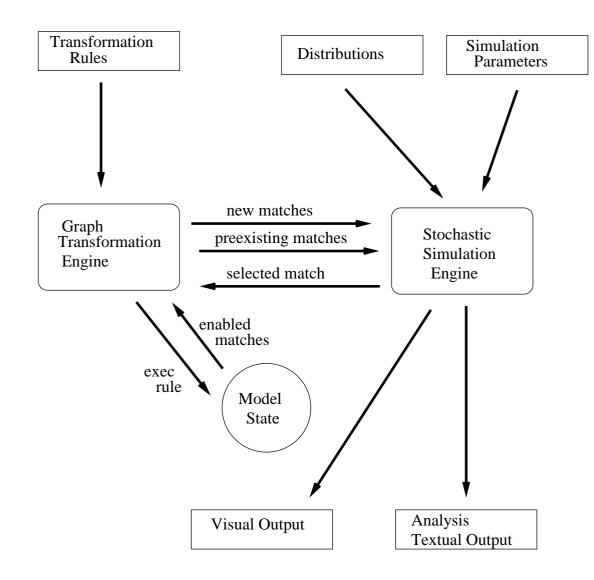
A Generalised Stochastic GTS defines a GSMS, where $\Delta(\langle r, m \rangle)(d)$ is the probability that the waiting time for rule r at match m is less than d

 $GSGTS = \langle ReachGraphs \\ RuleMatches (equivalence classes) \\ EnabledMatches : ReachGraph \rightarrow \&RuleMatch \\ GraphTrans : \\ ReachGraph \times RuleMatch \rightarrow ReachGraph \\ \Delta : RuleMatch \rightarrow (\mathcal{R} \rightarrow [1,0]) \\ InitialGraph : ReachGraph \rangle$

GSMS-based simulation

- GSMS execution based on event scheduling scheme
- At each step
 - the event with the shortest waiting time is executed
 - the simulation time is updated
 - enabled matches are computed
 - scheduling times of new matches are determined by random number generator given Δ
 - waiting times of old matches decrease

Computational aspect

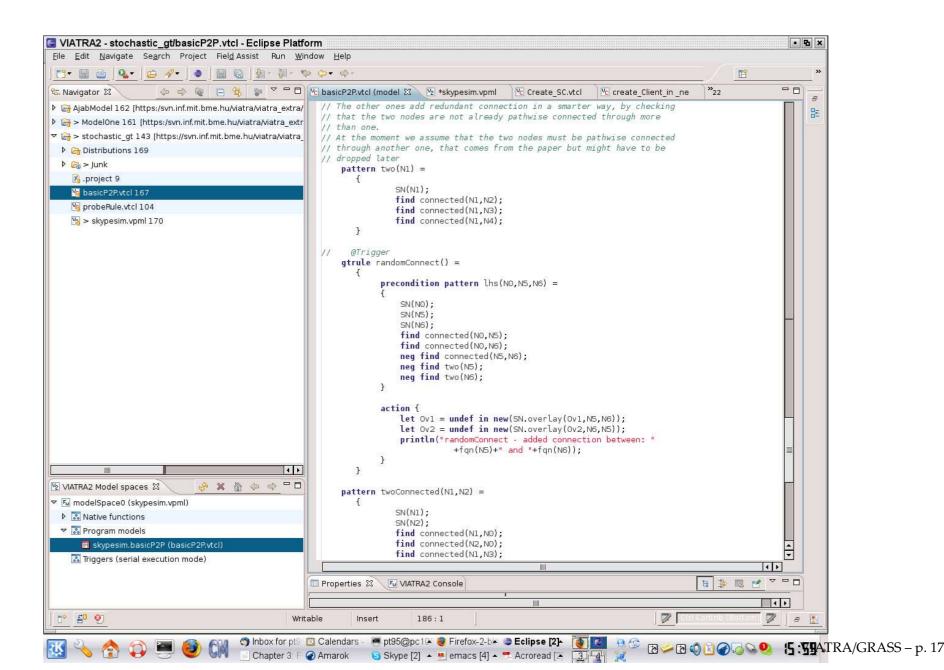

- Substantial problem: computing all matches at each step, needed because
 - not enough to know that a rule is enabled number of matches makes difference in actual probability of rule application
 - waiting times may depend on local values of attributes
- Moreover, we need to retain identity of matches so we cannot recompute the matches at each step

Incremental Pattern Matching

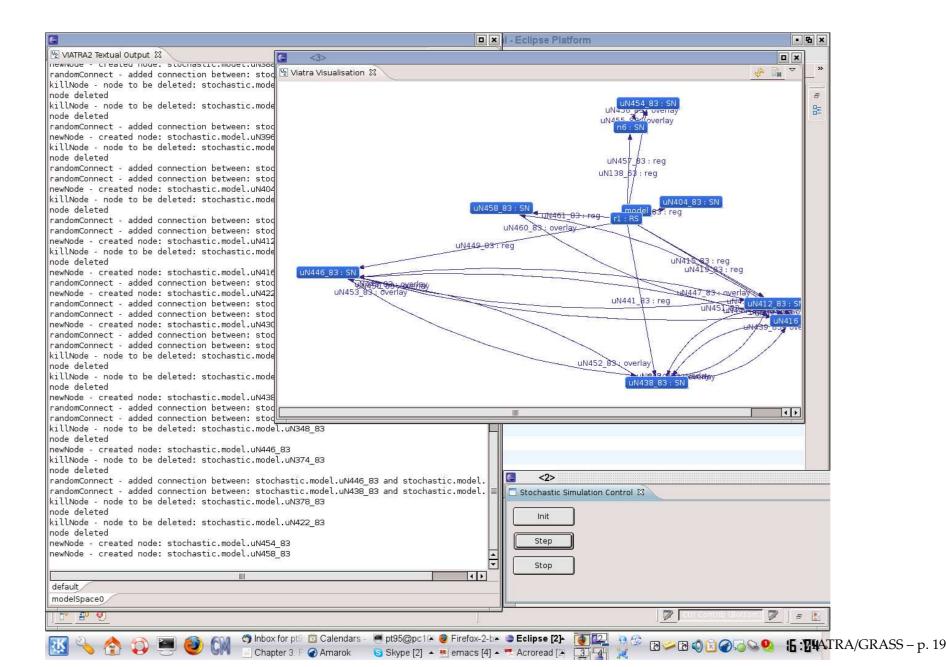
- Incremental approach (RETE algorithm): pattern-matching problem constant in model size, polynomial in rule number — after initialisation phase, which can be hard (subgraph homomorphism problem known to be NP-complete)
- Standard approach: update constant in model size and rule number
- IPM useful when rules have complex LHS and when all matches are needed
- VIATRA (Eclipse plugin) graph transformation engine that implements IPM

Architecture of the tool

- Graph transformation engine
 - computes matches
 - executes selected rule match
- Simulation engine
 - determines waiting time, relying on SSJ random number generation
 - manages waiting times
 - selects rule matches for execution
 - extracts statistics, relying on SSJ tally classes
 - controls textual and visual output

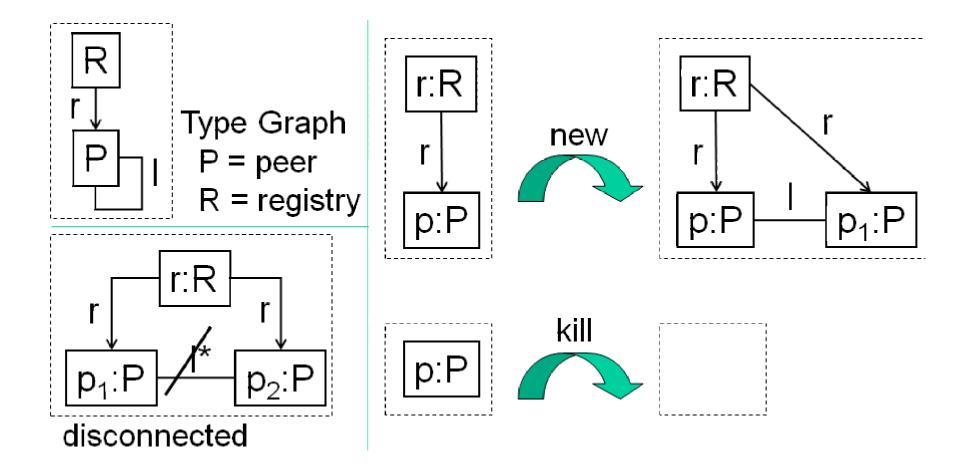


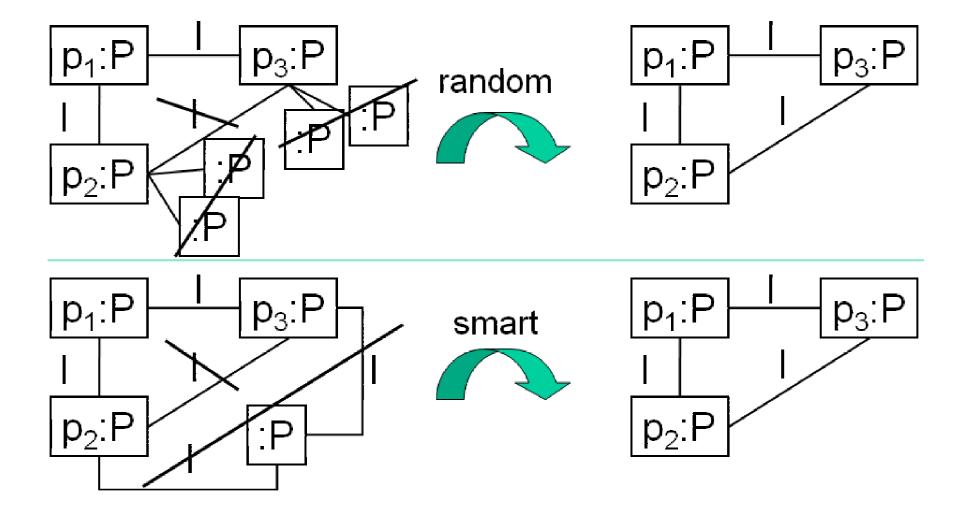
VIATRA/GRASS


- Stochastic simulation implemented in Java on top of VIATRA — uses Java-SSJ libraries
- inputs: G (GTS), Δ (distribution assignment)
- G: loaded in VIATRA model-space (vpml) and rules (vtcl)
- Δ : case-defined in an XML file, automatically translated to a model-space entity
- probe rules: extract information for stochastic analysis
 collected in tally class objects, displayed as textual output
- additional simulation parameters: e.g. number of runs, max depth of each run (steps or time)
- visualisation for staged execution

VIATRA2 - /var/autofs/home/home/pt95/runtime-Eclip		clipse Platform			ß×
<u>File Edit Navigate Search Project Field Assist Run W</u>					
📬 🔛 🌰 🏊 🖉 😥 🛷 🖌 🕘 🔛 🔞 🌆 🖓 🖓 🖓 👘				_ / 🖻	»
😚 Navigator 🕄 🛛 🗇 🕸 🖹 🗧 🍃 🍸 🗖 🗖	🕑 basicP2P.vtcl (model 🛛 💆 *skypesim.vpml 🕴 🖉	Create_SC.vtcl	Create_Client_in _ne	» ₂₂ □ □	
AjabModel 162 [https:/svn.inf.mit.bme.hu/viatra/viatra_extra/	▼ E root			1. 1929	- 8
Giran States - ModelOne 161 [https:/svn.inf.mit.bme.hu/viatra/viatra_extr	▶ E DSM				
stochastic_gt 143 [https://svn.inf.mit.bme.hu/viatra/viatra]	▼ 🗈 StoSimPars				
Distributions 169	E Machine {skypesim.basicP2P}				
🕨 📴 > Junk	E ModelPath {stochastic}				
👔 .project 9	✓ E parameters				
basicP2P.vtcl 167	E depth {20}				
Mg probeRule.vtcl 104	E level {adv}				
🙀 > skypesim.vpml 170	E mode {steps}				
	E rate {1000}				
	I ruleSet {random}				
	E runs {3}				
	sdbFile {/var/autofs/home/}				
	E time {10}				
	E datatypes : entity				
	▼ E stochastic				
	▼ E distributions				
	▶ 🗊 random				
	▶ 🖬 random7				
	▶ 🗉 randomUC				
	▶ E randomUC7				
	▶ 🗉 smart				
	▶ 🗉 smart7				
	▶ 🗊 smartUC				
	▶ 🗉 smartUC7				
	▼ E model				
	▶ 🗈 n1 : SN				
VIATRA2 Model spaces 🛛 🛛 🤣 🏀 🗱 🏠 🧼 🗢 🗖 🗖	▶ ፪ n2 : SN				
🐨 modelSpace0 (skypesim.vpml)	▶ 🗊 n3 : SN				
Native functions	▶ ፪ n5 : SN				
🔻 🔜 Program models	E n6 : SN				
🕅 skypesim.basicP2P (basicP2P.vtcl)	▶ E r1 : RS				
Triggers (serial execution mode)	▶ ፪ vpm				
	Properties 😫 🕞 VIATRA2 Console			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
🔯 🚰 💇 stochastic_gt/skypesim.vpml				contrib (Bottom)	F 🔝
🛐 🔧 🏫 😱 🚬 🥹 🕅 🗳 Inbox for pt9 🔄 Chapter 3: F	12 Calendars -	clipse [2]- 🚺	e 200 a > 6 4	1000000	:58AT

VIATRA2 - stochastic_gt/Distributions/rules1.xml - Ec							砧 ×
ile <u>E</u> dit <u>N</u> avigate Se <u>a</u> rch <u>P</u> roject Fiel <u>d</u> Assist <u>R</u> un <u>D</u> e							
				~			
ଦ୍ର Navigator 🛿 🧄 🧔 🤹 🔽 🗖 🗇	🗠 basicP2P.vtcl (model	2 *skypesim.vpml	Create_SC.vtcl	🗴 rules1.xml 🛛	^w 22	- 0	8
🖞 🚰 AjabModel 162 [https:/svn.inf.mit.bme.hu/viatra/viatra_extra/	° ° xml		version="1.0" encoding	="UTF-8"			8
🔓 > ModelOne 161 [https:/svn.inf.mit.bme.hu/viatra/viatra_extr	▼ e allrules						
🖙 🔓 > stochastic_gt 143 [https://svn.inf.mit.bme.hu/viatra/viatra_	🗢 🖻 ruleset						
🗢 🔄 Distributions 169	(® name		random				
🔏 rules1.xml 169	⊽ e rule						
👂 🔁 > Junk	(a) name		killNode				
👔 .project 9	(@ type		action				
🔓 basicP2P.vtcl 167	🗢 🖻 event						
😼 probeRule.vtcl 104	(3) name		default				
🖄 > skypesim.vpml 170	(@ type		ехр				
	⊽ 🖻 rate						
	③ value		1.0				
	▶ e rule						
	Þ e rule						
	▶ e rule						
	▶ e rule						
	▶ e rule						
	▶ e ruleset						
	▶ 🖻 ruleset						
	▶ e ruleset						
	▶ e ruleset						
	▶ e ruleset						
	▶ 🖻 ruleset						
	▶ e ruleset						
₩ • • • • • • • • • • • • • • • • • • •							
Fw modelSpace0 (skypesim.vpml)							
Rative functions							
▼ 💀 Program models							
🕅 skypesim.basicP2P (basicP2P.vtcl)							
Triggers (serial execution mode)	Design Source						
	Properties 🕄 🕟 VIA	TRA2 Console			년 🗄 🌻 🗔	₩ ▽ □ □	
	Property		Value				
e≎ <u>20 on</u>		101			🔊 Ictelstande (Bath		(0)
			G <	2>			




@ JabModel 162 [https:/svn.infmit.bme.huwdf @ > ModelOne 161 [https:/svn.infmit.bme.huwdf @ > Stochasti.gt 143 [https:/svn.infmit.bme.huwdf @ = Stochasti.gt 143 [https:/svn.infmit.bme.huwdf @ = Stochasti.gt 143 [https:/svn.infmit.bme.huwdf @ = Stochasti.gt 143 [https:/svn.infmit.bme.huwdf] & Stochasti.gt 143 [ht	* *
Image: Standard Size Size Size Size Size Size Size Size	
<pre>* Avagebr 3</pre>	- 8
<pre>implement of the product is default ==xp) null randomConnect: {default ==xp) rull randomConnect: {default ==xp) rull randomConnect: {default ==xp) rull randomConnect: {default ==xp) rull rum randomConnect: {default ==xp) rull rum rundomConnect: {default ==xp) rull rum rundom rum ruly stat. collector ==> null rum rum rundom rumber: [9.0, 20.0, 20.0] Report on tainsry probe: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: [5.0, 8.0, 6.0] Report on rum rude rumber: [5.0, 8.0, 6.0] Report on rum rude rumber: [5.0, 8.0, 0.14772222222222223] Rum rum rude rumber: [5.0, 8.0, 0.0, 0.144 0.065 Rum rud rude rumber: [5.0, 0.042 0.042 rude</pre>	
<pre>implement of the product is default ==xp) null randomConnect: {default ==xp) rull randomConnect: {default ==xp) rull randomConnect: {default ==xp) rull randomConnect: {default ==xp) rull rum randomConnect: {default ==xp) rull rum rundomConnect: {default ==xp) rull rum rundom rum ruly stat. collector ==> null rum rum rundom rumber: [9.0, 20.0, 20.0] Report on tainsry probe: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: REPORT on Tally stat. collector ==> null rum rum rum rude rumber: [5.0, 8.0, 6.0] Report on rum rude rumber: [5.0, 8.0, 6.0] Report on rum rude rumber: [5.0, 8.0, 0.14772222222222223] Rum rum rude rumber: [5.0, 8.0, 0.0, 0.144 0.065 Rum rud rude rumber: [5.0, 0.042 0.042 rude</pre>	20
imposed bisinbutions 169 Probing predicate: disconnected Main input rate: 1000.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 1000.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 1000.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 1000.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 100.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 100.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 100.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 100.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 100.0 Number of runs: 3 imposed piect 9 Probing predicate: disconnected Main input rate: 100.0 Number of runs: 100.2236717755151142, 0.9499432982158652, 1.3549671085677006] Report on depth: REPORT on Tally stat. collector => null num. obs. min max average standard dev. 3 0.250 imposed piect 9 Probing probe values: [0.625, 0.25, 0.39999999999999997] Probing piect 9 Report on max node number: REPORT on Tally stat. collector => null num. obs. min max average standard dev. 3 0.250 imposed piect 9 S.000 6.333 1.528 </td <td></td>	
<pre>b B₀ > Junk Number of runs: 3 Run maximum depth: 20 Report on time: REPORT on Tally stat. collector =⇒ null num. obs. min max average standard dev. S probeBulextcl104 Peport on time: REPORT on Tally stat. collector =⇒ null num. obs. min max average standard dev. 3 9.000 20.000 16.333 6.351 Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector =⇒ null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.185 Run avg binary probe values: [0.625, 0.25, 0.339999999999997] Run avg binary probe values: [0.625, 0.25, 0.339999999999997] Report on max node numbers: REPORT on Tally stat. collector =⇒ null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.185 Run avg binary probe values: [0.625, 0.25, 0.339999999999997] Report on max node numbers: REPORT on Tally stat. collector =⇒ null num. obs. min max average standard dev. 3 5.000 8.000 6.333 1.528 Run max node numbers: [5.0, 8.0, 6.0] Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector =⇒ null num. obs. min max average standard dev. 3 0.078 0.207 0.144 0.065 Run avg probe values: [0.2063750000000003, 0.077888888888888888, 0.147722222222222223]</pre>	
P is junk Number of runs: 3 R project 9 Number of runs: 3 W pass/P2PXct167 Peport on time: REPORT on Tally stat. collector ==> null M probeBule.xtcl104 num.obs. min max average standard dev. 3 0.223 1.355 Run sim.time values: [0.22336717755151142, 0.9499432982158652, 1.3549671085677006] Report on depth: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 9.000 20.000 16.333 Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.250 0.625 0.425 0.425 Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 5.000 8.000 6.333 1.528 Pun max node number: [5.0, 8.0, 6.0] Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.078 0.078 0.207 0.144	
Run maximum depth: 20 No basicP2PXxL167 No probeRule.xL104 Run simtime values: No depth: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.425 Run avg binary probe values: [0.625, 0.25, 0.39999999999999999999999999997] Report on max node number: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev.	
Ki basicP2Pxtcl167 Mi probeRule.xtcl104 Mi probeRule.xtcl104 Mi > skypesim.vpml170 Run sim-time values: [0.22336717755151142, 0.94994329292158652, 1.3549671085677006] Report on depth: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 9.000 20.000 16.333 6.351 Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.189 Run avg binary probe values: [0.625, 0.25, 0.3999999999999997] Report on max node number: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.189 Run avg binary probe values: [0.625, 0.25, 0.399999999999997] Report on probe values: [5.0, 8.00 6.33 1.528 Run max node number: [5.0, 8.00 6.33 1.528 Run max node numbers: [5.0, 8.0, 6.0] Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.078 0.207 0.144 0.055 Run avg probe values: [0.2068750000000003, 0.07788888888888888, 0.147722222222222223]	
Mg probeNule.xtcl 104 num. obs. min max average standard dev. Mg probeNule.xtcl 104 3 0.223 1.355 0.843 0.573 Run sim-time values: [0.22336717755151142, 0.9499432982158652, 1.3549671085677006] Report on depth: REPORT on Tally stat. collector => null num. obs.	
Report on depth: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 9.000 20.000 16.333 6.351 Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.189 Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
Report on depth: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 9.000 20.000 16.333 6.351 Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.189 Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
num. obs. min max average standard dev. 3 9.000 20.000 16.333 6.351 Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.425 Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
3 9.000 20.000 16.333 6.351 Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.189 Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
Run depth values: [9.0, 20.0, 20.0] Report on binary probe: REPORT on Tally stat. collector =⇒ null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.189 Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
Report on binary probe: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.250 0.625 0.425 0.189 Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
num. obs. min max average standard dev. Image: standard dev. 3 0.250 0.625 0.425 0.189 Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
num. obs. min max average standard dev. average standard dev. 3 0.250 0.625 0.425 0.189 average standard dev. Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	1
Run avg binary probe values: [0.625, 0.25, 0.3999999999999999999999999999999999999	
Report on max node number: REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 5.000 8.000 6.333 1.528 Run max node numbers: [5.0, 8.0, 6.0] Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.078 0.207 0.144 0.065 ■ Run avg probe values: [0.20687500000000003, 0.077888888888888888888, 0.147722222222222223]	
num. obs. min max average standard dev. 3 5.000 8.000 6.333 1.528 Run max node numbers: [5.0, 8.0, 6.0] Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.078 0.207 0.144 0.065 []	
num. obs. min max average standard dev. 3 5.000 8.000 6.333 1.528 Run max node numbers: [5.0, 8.0, 6.0] Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.078 0.207 0.144 0.065 []	
Run max node numbers: [5.0, 8.0, 6.0] Report on probe value (weighted wrt nodes): REPORT on Tally stat. collector ==> null num. obs. min max average standard dev. 3 0.078 0.207 0.144 0.065	
Image: Constraint of the system of the sy	
num. obs. min max average standard dev. standard dev. standard standard dev. standard standard dev. standard	
Image: Num. obs. min max average standard dev. min max	Ē
2 VATRA2 Model spaces ☎	
Hun avg probe values. [0.2008/50000000005, 0:0//8888888888888888888888888888888888	
🖬 modelSpace0 (skypesim.vpml)	
Image: Native functions Confidence level: 0.95	
▼ 🗟 Program models Elapsed run-time: 190	
skypesim.basicP2P (basicP2P.vtcl)	
Triggers (serial execution mode)	
	_
	_
trik (Bottom)	_
	_

Case study: P2P

- Simulation of P2P network
- Basic example rules with exponential distributions
- Two behavioural rules: create node, kill node
- Two alternative reconfiguration rules: randomly/smartly create redundant connection
- Stochastic analysis based on number of pathwise disconnected nodes at each step, on varying the rate of reconfiguration
- Small model, few seconds execution time

VIATRA/GRASS – p. 22

```
pattern pathEx(N1,N2) = {
        SN(N1);
        SN(N2);
        find connected(N1,N2); }
        or { SN(N1);
        SN(N2);
        SN(N0);
        find connected(N1,N0);
        find pathEx(N0,N2); }
```

```
pattern noPathEx(N1,N2) = {
       SN(N1);
               SN(N2);
               neg find pathEx(N1, N2); }
 gtrule disconnected() = {
       precondition pattern lhs(N1, N2) = \{
            SN(N1);
            SN(N2);
            find noPathEx(N1, N2); }
       action {println("..."+fqn(N1)+fqn(N2));}}
```

Stochastic analysis

- Program can execute given number of simulation runs up to given depth value, expressed either as sim-time or step number
- returns average number of probe matches, max number of nodes, number of steps, and simulation time for each run
- average, min, max and deviation over all the runs
- more specific wrt to the P2P probe: statistics on M/N² with M number of probe matches, N number of nodes
- Basic method: run many simulations long enough, until similar results for probe matches are obtained
- Hypothesis on behaviour tested by changing reconfiguration rates, comparing models, etc...

Sample results

Model: P2P	Disconnected	Number of steps	Max number of peers	Runtime
random:1	0.46	33	6	5
random:10	0.62	71	8	8
random:100	0.55	86	8	7
random:1000	0.89	284	20	10
random:10,000	0.46	116	8	9
smart:1	1.33	18	5	1
smart:10	0.01	90	8	4
smart:100	0.00	3561	48	10
smart:1000	0.00	998	24	10
smart:10,000	0.00	62	8	3

Extending the model

- Distributions may depend on attributes of match elements
- global variables e.g. simulation time
- Derived attributes, computed when needed

 depending on global variables,
 depending on local information incoming/outgoing edges
- Distributions depending on derived attributes
- Spatial dependencies matches "in the same region"
- Distributions depending on attributes of nearby matches
- trying to take advantage of incremental pattern matching

Further work

- Handling general distributions (beyond exponential and normal ones)
- Refining stochastic analysis
- Improving scalability
- Modelling VoIP networks (with Ajab Khan)
- Synchronisation of textual and visual output
- Comparison with other tools/approaches