
Encoding Graph Transformation in
Linear Logic

Paolo Torrini
joint work with Reiko Heckel

pt95@mcs.le.ac.uk

University of Leicester

GTLL – p. 1

Graph Transformation

Graph Transformation Systems (GTS) — high-level
approach to system modelling, UML, model-driven
development, stochastic simulation

Existing formalisations — algebraic-categorical (SPO,
DPO), 2nd-order predicate logic

High-level character, strong mathematical foundation

Double-pushout (DPO) — mature approach, based on
category theory

GTLL – p. 2

Linear Logic

Linear logic — can handle resources at the
propositional level, by dropping Weakening and
Contraction

Intuitionistic variant (ILL)

Linearity — each premise used exactly once in a
deduction, each argument used once by a function

Non-linearity recovered by means of !

Interesting proof theory (natural deduction, sequent
calculus), various implementations (declarative
languages, logical frameworks)

GTLL – p. 3

Encoding GT in LL — why?

LL close to process algebras (Abramsky, Pfenning,
Cervesato)

Parallel composition (α ⊗ β), choice (α&β),
reachability (⊢ α⊸ β), replication (!)

Semantic motivation: taking closer graph
transformation and process algebra

Existing approach: hyperedge replacement

What we do: logic-based hyperedge replacement

Practical motivation: making proofs about GTS easier

GTLL – p. 4

Typed hypergraphs

Hypergraph G = 〈V,E, s〉
V set of nodes, E set of hyperedges
assignment s : E→ V∗

H-graph morphism — 〈φV : V1 → V2, φE : E1 → E2〉

assignment-preserving

Type h-graph TG = 〈V,E, ar〉
V set of node types, E set of h-edge types
ar(l) : E → V∗

TG-typed h-graph (G, t), with t : G→ TG

TG-typed h-graph morphism f : (G1, t1)→ (G2, t2)
is h-morphism f : G1 → G2 with t2 ◦ f = t1

GTLL – p. 5

DPO diagram

Graph transformation rule p : L
l
←− K

r
−→ R

span of typed h-graph morhisms (l, r),
K interface, L/K to be deleted, R/K to be created,
rule application determined by match morphism m,
m determined up to iso by interface morphism d

DPO conditions — (1) Identification condition:
(a) m never identifies distinct L/K elements
(b) m never identifies L/K elements with K ones
(2) Dangling condition: for each node n ∈ L/K, all
edges connected to n are in L/K, too

L

(1)m
��

K

(2)

loo r //

d
��

R

m∗

��

G Dg
oo

h
// H

GTLL – p. 6

Graph expressions

Algebraic characterisation of DPO-GTS:
edge as predicates over nodes, empty graph, parallel
composition,
restriction for nodes

Graph constituent C = e(n1, . . . , nk) | Nil | C1 ‖ C2 | νn.C

Implicit typing — n : A, e(n1, . . . ,nk) : L(A1, . . . ,Ak)

Graph expression X � C
X ⊆ V is graph interface — generalisation of rule
interface, includes the free nodes of C and free
isolated nodes

closed GE has empty interface

GTLL – p. 7

Structural congruence

C ≡ C′

‖— associative, commutative
Nil — neutral element
νn. C ≡ νm. C[m/n], if m does not occur free in C.
νn.νm.C ≡ νm.νn.C
νn.(C1 ‖ C2) ≡ C1 ‖ (νn.C2)

if n does not occur free in C1

X�C ≡ Y�C′ iff X = Y and C ≡ C′

GTLL – p. 8

Transformation

E1 = K�L and E2 = K�R
GEs sharing no free isolated nodes

Λx.L
p
=⇒ R rule expression for p : L

l
←− K

r
−→ R

x = x1, . . . , xk represents K as sequence of variables

restriction to node interfaces (no edges in K)

Application of p at match m (G closed GE),
schema satisfies DPO conditions

Λx.L
p
=⇒ R G ≡ νn.L[n

d
←− x] ‖ C

H ≡ νn.R[n
d
←− x] ‖ C

G
p,d
=⇒ H

〈p,m〉
=⇒

GTLL – p. 9

Overall plan

Algebraic characterisation of DPO-GTS — hyperedge
replacement-style (difference: isolated nodes)

Translation to a quantified extension of ILL

up to iso (typing, connectivity): edge expressions
unvaried, Nil as 1, ‖ as ⊗, ν as ∃̂, =⇒ as⊸, Λ as ∀

Nodes: occur as non-linear terms in edge expressions,
but need linear treatment to meet DPO conditions

full translation maps expressions to derivations, and
involves proof terms (linear λ-calculus)

terms represent identity of nodes and edges

We translate individual graphs, then forget about terms
and reason up to isomorphism

GTLL – p. 10

Normal forms

(closed) h-graph as (closed) formula

∃̂x : A.γ

x : A sequence of typed variables,
either γ = 1 or γ = L1 (x1) ⊗ . . . ⊗ Lk (xk)

Adequacy of h-graph representation

Transformation rule as closed formula

∀x : A.α⊸ β

with α, β graph formulas

GTLL – p. 11

Reachability

Tansformation — G0,G1 closed h-graphs, G0 initial,
P1, . . . ,Pk rules

G1 reachable from by some application of the rules

!P1, . . . , !Pk,G0 ⊢ G1

G1 reachable by applying each rule once

P1, . . . ,Pk,G0 ⊢ G1

Translation complete with respect to reachability
(sequent provable if graph reachable)

Soundness — work in progress,
general idea — logically valid implications are
“read-only” transformations

GTLL – p. 12

QILL

ILL extended with 1st-order quantification

Labels attached to premises (identity of occurrences)

Double-entry sequents — linear premises (∆) and
non-linear ones (Γ, equivalent to !Γ)

Γ = x :: (α : term), . . . , p :: (β : f orm), . . .

∆ = u :: (α : f orm), . . .

Proof-terms based on linear λ-calculus

Sequents representing derivations

Γ;∆ ⊢ N :: (α : τ)

GTLL – p. 13

Proof system — language

α = A : term | L(N1, . . . ,Nn) | 1 | α1 ⊗ α2 | α1 ⊸ α2 |!α1 |

α1&α2 | ∀x : β.α | ∃̂x : β.α | α⇂N | α = α

M = x | p | u | nil | N1 ⊗N2 | λx.N | λ̂u.N | N1ˆN2 | N1N2 |

M | 〈N1,N2〉 | fst N | snd N | idα
α≡̂β =d f (α⊸ β)&(β⊸ α)

α#(x,N) =d f (α[N/x])[x/N] = α

meaning N does not occur free in ∃̂x.α

let P = N1 in N2 =d f (λP.N2)N1

where P is a term pattern (does not contain
abstractions)

ε̂(N1|N2).N3 =d f N1⊗!N2 ⊗N3

GTLL – p. 14

Application schema

Γ;∆ ⊢ ∀x : Ax.αL ⊸ αR
Γ; · ⊢ αG≡̂αG′

Γ; · ⊢ αH≡̂αH′

αG′ = ∃̂z : Az.αL[z : Az
d
←− x : Ax] ⊗ αC

αH′ = ∃̂z : Az.αR[z : Az
d
←− x : Ax] ⊗ αC

Γ;∆ ⊢ αG ⊸ αH
〈p,m〉
=⇒

GTLL – p. 15

Embedding h-graphs

H-graphs: edge components, empty graph Nil (1) and
parallel composition ‖ (⊗) — straightforward

restriction ν— more problematic

standard quantification (∀,∃) in ILL deals with
non-linear terms

at first sight — OK, nodes may have multiple
occurrences in edge expressions, all we need is to
handle edges linearly edge

we could map ν to ∃
— after all, ν distributes over ‖, ∃ over ⊗
not enough to meet DPO conditions

GTLL – p. 16

Quantifier and DPO conditions

0 (∃̂x : β. α(x, x)) ⊸ ∃̂xy : β. α(x, y)
the resource for x cannot suffice for x and y.

0 ∀x : β. β⇂x ⊗ α(x, x) ⊸ ∃̂y : β.α(y, x)
y and x should be instantiated with the same term —
blocked by the freshness condition in ∃̂ introduction

0 (∃̂yx : β. α1(x) ⊗ α2(x)) ⊸ (∃̂x : β.α1(x)) ⊗ ∃̂x : β.α2(x)
the two bound variables in the consequence require
distinct resources and refer to distinct occurrences

GTLL – p. 17

Incorrect matches

L

L

L

K

GTLL – p. 18

RBQ introduction

Γ;∆ ⊢M :: α[N/x] Γ; · ⊢ N :: β

Γ;∆′ ⊢ n :: β⇂N Γ, x :: β; · ⊢ idα :: (α[N/x])[x/N] = α

Γ;∆,∆′ ⊢ (!N ⊗ n) ⊗M :: ∃̂x : β.α
∃̂I

(1) α[N/x] graph with N in place of free x
(2) N well-typed — enough to restrict N by x? No!

to restrict (3) there has to be a node (linear resource)
named by N — ⇂ denotes lifting of type from term to
formula with naming reference to term

moreover (4) N does not occur in α (unless N = x)
— a freshness condition, here formalised using type
equality and substitution

GTLL – p. 19

RBQ elimination

Γ;∆1 ⊢M :: ∃̂x : β. α Γ, x :: β;∆2,n :: β⇂x, v :: α ⊢ N :: γ

Γ;∆1,∆2 ⊢ let (!x ⊗ n) ⊗ v =M in N :: γ ∃̂E

Standard elimination rule

since we restrict only introduction, normalisation
applies at least as with ∃

∃̂I and ∃̂E can be used to simulate
restriction/unrestriction operationally in the logic as
steps in the construction/destruction of graph
expressions

Γ; · ⊢ N :: α
Γ;n :: α⇂N ⊢ n :: α⇂N

⇂A

GTLL – p. 20

Conclusion and further work

Proof theory-driven approach to GT

uses resource logic

new quantifier to deal with restriction

two-level embedding approach

Interest in mechanised theorem proving

Extension to generalised interfaces

Stochastic GTS

GTLL – p. 21

rules I

Γ;u :: α ⊢ u :: α Id
Γ, x :: α; · ⊢ x :: α UId

Γ, p :: α; · ⊢ p :: α FId
Γ; · ⊢ idα :: α = α

Eq

Γ;∆1 ⊢M :: α Γ;∆2 ⊢ N :: β

Γ;∆1,∆2 ⊢M ⊗N :: α ⊗ β
⊗I

Γ;∆1 ⊢M :: α ⊗ β Γ;∆2,u :: α, v :: β ⊢ N :: γ

Γ;∆1,∆2 ⊢ let u ⊗ v =M in N :: γ
⊗E

Γ;∆, u :: α ⊢M :: β

Γ;∆ ⊢ λ̂u : α.M :: α⊸ β
⊸ I

Γ;∆1 ⊢M :: α⊸ β Γ;∆2 ⊢ N :: α

Γ;∆1,∆2 ⊢MˆN :: β
⊸ E

GTLL – p. 22

rules II

Γ; · ⊢ nil :: 1 1I
Γ;∆ ⊢M :: 1 Γ;∆′ ⊢ N :: α
Γ;∆,∆′ ⊢ let nil =M in N :: α

1E

Γ;∆ ⊢M :: α Γ;∆ ⊢ N :: β

Γ;∆ ⊢ 〈M,N〉 :: α&β
&I

Γ;∆ ⊢M :: α&β

Γ;∆ ⊢ fst M :: α
&E1

Γ;∆ ⊢M :: α&β

Γ;∆ ⊢ snd M :: β
&E2

Γ; · ⊢M :: α
Γ; · ⊢ !M :: !α

!I
Γ;∆1 ⊢M :: !α Γ, p :: α;∆2 ⊢ N :: β

Γ;∆1,∆2 ⊢ let p =M in N :: β
!E

Γ, x :: β;∆ ⊢M :: α

Γ;∆ ⊢ λx.M :: ∀x : β. α
∀I
Γ;∆ ⊢M :: ∀x : β. α Γ; · ⊢ N :: β

Γ;∆ ⊢MN :: α[N/x]
∀E

GTLL – p. 23

Translation — I

Constituents

~ei(m, . . . ,n) : Li(Am, . . . ,An)� =d f Id [Γ; ; ci :: Li(xm, . . . , xn)]

~Nil� =d f 1I [Γ]

~M ‖ N� =d f ⊗ I [~M�; ; ~N�]

~νn : A.N� =d f ∃̂I [~N�; ;

UId [Γ; ; xn :: A]; ;

Id [Γ; ; n :: A⇂xn]; ;

Γ, y :: A; · ⊢ id : MainType(~N�)[y/xn]#(y, xn)]

GTLL – p. 24

Translation — II

Graph interfaces

~n : A� =d f Id [Γ, x :: A; ; n :: A⇂x]

~{n : A}� =d f ~n : A�

~{n1 : A1} ∪ X� =d f ⊗ I [~{n1 : A1}�; ; ~X�]

Graph expressions

~X � C� =d f ⊗ I [~X�I; ; ~C�]

GTLL – p. 25

Graph derivations

graph formulas — 1,⊗, ∃̂, ⇂ fragment of the logic
containing only primitive graph types (node and edge
types)

graph context — multiset of typed nodes and typed
edge components.

graph derivation — derivable sequent Γ;∆ ⊢ N :: γ,
where γ is a graph formula, ∆ is a graph context, Γ the
environment, N a normal derivation.

Uses only axioms and the introduction rules 1I, ⊗I, ∃̂I.

GTLL – p. 26

Quantifier and congruence

∃̂ satisfies properties of renaming, exchange and
distribution over ⊗

⊢ (∃̂x : α.β(x)) ≡̂ (∃̂y : α.β(y))

⊢ (∃̂xy : α.γ) ≡̂ (∃̂yx : α.γ)

⊢ (∃̂x : α.β ⊗ γ(x)) ≡̂ (β ⊗ ∃̂x : α.γ(x)) (x not in α)

Equivalence between α and ∃̂x. α generally fails in both
directions, even when x does not occur free in α

GTLL – p. 27

Graphs and types — adequacy

Isomorphism between graph expressions and graph
derivations

Isomorphism between graphs (congruence classes of
graph expressions) and graph formulas modulo linear
equivalence

Curry-Howard style correspondence

Possibility to implement hypergraphs and to reason
about them

GTLL – p. 28

Graph transformation

Less interested in component identity, higher-level
translation, based on logic formulas

Linear implication as transformation

Standard quantifier for interface nodes

Rule names as non-linear resources (unlimited
application)

~M =⇒ N�T =d f ~M�
T ⊸ ~N�T

~Λx : A.N�T =d f ∀x : A.~N�T

~π(p)� =d f FId [Γ; ; p :: ∀x : Ax.~L�
T ⊸ ~R�T]

GTLL – p. 29

Completeness and soundness

Let ΓP = Σ ∪ [ρ|ρ = ~π(p)�T, p ∈ P], then for each
reachable h-graph G

ΓP; ~G0�
T ⊢ ~G�T

Let R be a multiset of transformations,
∆R = [τ|τ = ~t�T, t ∈ R], then for each h-graph G
reachable from G0 by executing R

Σ; ~G0�
T,∆R ⊢ ~G�

T

This is for completeness

Soundness requires more work on the interpretation of
linear implication

GTLL – p. 30

	Graph Transformation
	Linear Logic
	 Encoding GT in LL --- why?
	Typed hypergraphs
	DPO diagram
	Graph expressions
	Structural congruence
	Transformation
	Overall plan
	Normal forms
	Reachability
	QILL
	Proof system --- language
	Application schema
	Embedding h-graphs
	Quantifier and DPO conditions
	Incorrect matches
	RBQ introduction
	RBQ elimination
	Conclusion and further work
	rules I
	rules II
	Translation --- I
	Translation --- II
	Graph derivations
	Quantifier and congruence
	Graphs and types --- adequacy
	Graph transformation
	Completeness and soundness

