
Graph Transformation-based
Stochastic Simulation

Paolo Torrini
joint work with Reiko Heckel and Ajab Khan

pt95@mcs.le.ac.uk

University of Leicester

GTST – p. 1



Network reconfiguration

Graph Transformation Systems as modelling technique

Stochastic simulation as validation technique

Application: simulation of system reconfiguration and
behaviour

Present focus: reconfiguration of P2P networks
(previous work by Reiko), VoIP applications — esp.
Skype (Ajab’s PhD)

Semantics: stochastic GTS interpreted as stochastic
processes (previous work by Reiko et al.)

Implementation: based on existing GTS tools (VIATRA)

GTST – p. 2



Modelling networks

Network as a typed graph (SPO):
components as nodes
connections as edges

Transformations in our model:
basic behaviour

sending packets
checking QoS parameters
connection/disconnection of clients

reconfiguration
change of node status, client-supernode and overlay
connections to improve QoS

GTST – p. 3



Type graph

Node

...

Packet

Client

Sender ReceiverAt

RegServerSuperNode

Overlay
Overlay

Link
Register

bandwidth:Int
memory: Int

chronos: Time

firewall:Bool

stamp:Time
content:String

GTST – p. 4



Stochastic approach

Probabilistic rather than indeterministic actions

Simulation based on sampling delay values according
to given distributions

Individual processes determined by Random Number
Generator

Rule application associated with an expected delay
according to a probability distribution function

GTST – p. 5



Probability distributions

Expected delay (timer) — random variable associated
to probability distribution function

FT (x) = P{T ≤ x}

Exponential distribution — determined by a rate,
depends only on the present state

Normal distribution — determined by mean and
variance, finer modelling

GTST – p. 6



Representing time

Each component has a clock — chronos attribute

chronos rule to advance time

Normally distributed
— exponential distribution would not do

chronos=t

n:Noden:Node

chronos=t+1

chronos rule

GTST – p. 7



GTS with probability

Stochastic Graph Transformation Systems:
rules associated with exponential probability
distributions

Generalised Stochastic Graph Transformation Systems:
rule matches associated with general probability
distributions

Rule matches as equivalence classes to preserve
inter-graph identity
— restrictions on GSGTS to ensure they are a proper
set (numbered graphs)

Continuous time — timers are independent variables,
so probability of two actions taking place at the same
time is 0. So we skip parallelism

GTST – p. 8



Stochastic processes

Continuous-time stochastic process — time-indexed
family of random variables over states

Markov process: next state depends on current state
only, interevent time is exponentially distributed

Semi-Markov process: next state depends on time
spent in current state, too

Translation of GSGTS to Generalised Semi-Markov
Processes

GTST – p. 9



Stochastic structures

Generalised Semi-Markov process:
generated by a structure based on timers + race
condition

Timers as stochastic clock structure: Stochastic Timed
Automata

Timers set by RNG: Generalised Semi-Markov Scheme

Timers do not need to be reset at each state change
i.e. they do not need to be exponential — so neither
interevent time do

GTST – p. 10



GSGTS

SPO — components may disconnect without warning

G = 〈TG,P, π,G0, F 〉

Type graph, rule names, initial graph

F maps rule matches to probability distribution
functions (cumulative distributions:
— max delay value mapped to probability)

GTST – p. 11



GSMS

P = 〈 States

Events

ActiveStates : State → ℘Event

Transition : State × Event → State

∆ : Event → (R → [1, 0])

InitialState : State 〉

GTST – p. 12



from GSGTS to GSMS

P = 〈 ReachGraphs

RuleMatches (equivalence classes)

EnabledMatches : ReachGraph → ℘RuleMatch

GraphTrans :

ReachGraph × RuleMatch → ReachGraph

F : RuleMatch → (R → [1, 0])

InitialGraph : ReachGraph 〉

GTST – p. 13



GSMS-based simulation

Simulation of GSMP based on Event Scheduling
Scheme algorithm

Refinement of ESS
— for GSMP obtained from GSGTS

Substantial problem: computation of active matches
— we need to keep track of pre-existing matches

Incremental pattern-matching
— implemented in VIATRA (Eclipse plug-in)

Planned Java implementation using SSJ libraries for
RNG

GTST – p. 14



Implementation architecture

Graph transformation tool (GTT)

Simulation control (SC)

Random number generator (RNG)

GTT SC RNG

GTST – p. 15



Scheduling Scheme I

Initial input:
graph transformation system (for GTT)
simulation time t (for SC)
probability distribution functions (for RNG)

Initialisation:
active matches of the initial graph computed by GTT

associated to scheduled delay d (from RNG)
scheduled time = t + d

collected in list ordered by scheduled time

list ordering implements race condition

GTST – p. 16



Simulation Control

1. First item (〈r,m〉, t′) removed from list,
simulation time updated to t′

2. Graph update (by GTT)
— rule r applied to the current graph at m

— new and surviving matches are computed
(incremental approach should help)

3. New matches are associated to scheduling times
— RNG calls

4. list ordering

GTST – p. 17



Further work

Containment relations and spatial aspect — to model
domains, firewall restrictions, geographic locations

Chronos rule application overkill: two possible
strategies
— temporal granularity with laziness
— synchronous approach (global time)

Comparison with existing simulation tools (such as
NS2)

A. Kahn, P. Torrini, R. Heckel — Model-based
Simulation of VoIP Network Reconfigurations using
Graph Transformation Systems
Doctoral Symposium ICGT 2008 (post-proceedings,
2009)

GTST – p. 18


	Network reconfiguration 
	Modelling networks
	Type graph
	Stochastic approach
	Probability distributions
	Representing time
	GTS with probability
	Stochastic processes
	Stochastic structures
	GSGTS
	GSMS
	from GSGTS to GSMS
	GSMS-based simulation
	Implementation architecture
	Scheduling Scheme I
	Simulation Control
	Further work

