
Stochastic Simulation of Graph Transformation
Systems

Paolo Torrini1, Reiko Heckel1, and István Ráth2

1 Department of Computer Science, University of Leicester, pt95 | reiko@mcs.le.ac.uk
2 Department of Measurement and Information Systems

Budapest University of Technology and Economics, rath@mit.bme.hu

1 Introduction

Stochastic graph transformation systems (SGTS) [1] support integrated mod-
elling of architectural reconfiguration and non-functional aspects such as per-
formance and reliability. In its simplest form a SGTS is a graph transformation
system (GTS) where each rule name is associated with a rate of an exponential
distribution governing the delay of its application. However, this approach has
its limitations. Model checking with explicit states does not scale well to models
with large state space. Since performance and reliability properties often depend
on the behaviour of large populations of entities (network nodes, processes, ser-
vices, etc.), this limitation is significant. Also, exponential distributions do not
always provide the best abstraction. For example, the time it takes to make a
phone call or transmit a message is more likely to follow a normal distribution.

To counter these limitations, generalised SGTS [2] allow for general distribu-
tions dependent on rule - match pairs (rather than just rule names). Generalised
semi-Markov processes provide a semantic model for such systems, supporting
stochastic simulation. Rather than model checking, simulations provide a more
flexible tradeoff between analysis effort and confidence in the result and so allow
to verify soft performance targets in large-scale systems.

We present a tool called GraSS, for Graph-based Stochastic Simulation, to
enable the analysis of such processes. The tool is developed in Java-Eclipse,
extending the VIATRA model transformation plugin with a control based on the
SSJ library for Stochastic Simulation in Java. The main performance challenge,
in finding, at each state of the simulation, all matches for all rules, is alleviated by
VIATRA’s RETE-style incremental pattern-matching approach [3], which stores
precomputed matching information and updates it during transformation. We
illustrate and evaluate the application of the tool by the simulation of the original
P2P reconfiguration model as well as an improved and scaled-up version.

2 A P2P Network Model

As a test case we use an example of a SGTS modelling reconfigurations in a
P2P network [1]. Generating the state space of the model for up to seven peers,
in [1] we used stochastic model checking to analyse, e.g., the probability of the



2 Paolo Torrini, Reiko Heckel, and István Ráth

network being fully connected, so that each participant can communicate with
every other one.

The GTS below models basic P2P network reconfigurations. Rule new on
the left adds a new peer, registers it and links it to an existing peer. Rule kill
deletes a peer with all links attached. Predicate disconnected checks if there are
two nodes that are not connected by a path of links labelled l.

The two rules on the right create redundant links to increase reliability in case
a peer is lost. Rule random creates a link between p2 and p3 unless there is one
already or the number of additional connections of either p2 or p3 is greater than
two. Rule smart creates a link if there is no two-hop path between p2 and p3
apart from the one via p1. We consider two families of systems, SGTSrandom,x

and SGTSsmart,x. The former has rules {new, kill, random} and rates σ(new) =
σ(kill) = 1 and σ(random) = x. In the latter, random is replaced by smart with
σ(smart) = x. In both cases x ranges from 1 to 10,000 to test different ratios
between basic and redundancy rules.

3 Simulating Stochastic Graph Transformations

In order to define a general interface between the stochastic control component
of the simulation and existing graph transformation tools used for executing
rules, we define SGTS for a generic notion of graph transformation. Refining [4],
a graph transformation approach is given by a class of graphs G, a class of rules
R, and aR× G-indexed family of sets of rule matchesMr,G for rule r into graph
G. Transformation is defined by a family of partial functions⇒r,m: G → G, such
that ⇒r,m (G) is defined if and only if m ∈ Mr,G. This captures the idea that
rule application is well-defined and deterministic if m is a match for r in G.

For a set of rules R, ER is the set of events, i.e., compatible pairs 〈r,m〉.
S = 〈R,G0, F 〉 is a stochastic graph transformation system with set of rules R,
initial graph G0, and F : ER → (R → [0, 1]) assigning each event a continuous
distribution function such that F (e)(0) = 0.

We encode SGTS into generalised semi-Markov schemes (GSMS), a general-
isation of Markov chains associated with generalised semi-Markov processes [5].
Here transitions are independent of past states, but unlike Markov chains they
may depend on the time spent in the current one, i.e., interevent times may be
non-exponentially distributed. Formally, a GSMS is a structure

P = 〈 S, E, act : S → ℘(E), trans : S×E → S, δ : E → (R → [0, 1]), init : S 〉



Stochastic Simulation of Graph Transformation Systems 3

where S is a set of states (given by all graphs reachable in S), E is a set of
events (the rule matches ER), init is the initial state (graph G0), act gives the
set of events (rule matches) enabled in a state (graph), trans is the transition
function (given by trans(G, 〈r,m〉) = ⇒r,m (G)), and δ defines the probability
distribution for each event (given by F ).

The simulation component uses VIATRA as a graph transformation tool
to implement the elements of the GSMS that depend on the representation of
states and events, notably S,E, act, trans, init, i.e., GTSs are represented as a
VIATRA models. Definitions of distributions F are loaded from an XML file.
Based on this data, a GSMS simulation in GraSS consists of the following steps

1. Initialisation — the simulation time T is initialised to 0 and the set of the
enabled matches (active events) is obtained from the graph transformation
engine. For each active event, a scheduling time te is computed by a random
number generator (RNG) based on the probability distribution assigned to
the event. Timed events are collected as a list ordered by time (state list).

2. At each simulation step
(a) the first element k = (e, t) is removed from the state list
(b) the simulation time is increased to t
(c) the event e is executed by the graph transformation engine
(d) the new state list s′ is computed, by querying the engine, removing all

the elements that have been disabled, adding to the list an event for each
newly enabled match m with time t = T + d, where d is provided by the
RNG depending on F (m), and reordering the list with respect to time

GT rules with empty postconditions are used as probes — statistics about
occurrence of precodition patterns are computed as SSJ tally class reports, giving
average values over runs. One can specify the number of runs per experiment
(esp. useful to reduce the biasing effect of runs truncated by deletion of all
elements) and their max depth (either by number of steps or simulation time).

4 Evaluation

In order to validate the correctness and scalability of the tool we run a number
of experiments based on the P2P model of Section 2. We do not expect to repli-
cate exactly the results reported in [1] because (1) we remove the restriction to
7 nodes that was used to guarantee a finite (and manageable) state space; (2)
unlike in [1] where states and transitions were presented up to isomorphism, our
simulation deals with concrete graphs and transitions. A detailed comparison of
the underlying mathematical models is beyond the scope of this paper, but it
appears that, since the Markov chain is constructed from a more abstract tran-
sition system in [1], the two are not in stochastic bisimulation. Thus, evaluating
the same properties on both models may lead to different results. As in [1] we
run experiments with 10 different models, 5 versions each of using random and
smart rules, with rates ranging through x ∈ {1, 10, 100, 1000, 10000}.



4 Paolo Torrini, Reiko Heckel, and István Ráth

We perform 5 runs each with a simulation time bound of 10s for each ex-
periment — i.e. no run exceeds 10s regardless of the number of steps. The table
below gives the output of an experiment, indicating the version of the model
(1st column) followed by the percentage of disconnected states encountered, the
average number of steps performed per run, the average maximal extension of
the network, and the average time taken for each run.

Model: P2P Disconnected Number of steps Max number of peers Runtime

random:1 0.46 33 6 5
random:10 0.62 71 8 8
random:100 0.55 86 8 7
random:1000 0.89 284 20 10
random:10,000 0.46 116 8 9
smart:1 1.33 18 5 1
smart:10 0.01 90 8 4
smart:100 0.00 3561 48 10
smart:1000 0.00 998 24 10
smart:10,000 0.00 62 8 3

Such results confirm the inverse dependency observed in [1] between the rate
of the smart rule and the probability of being disconnected, whereas for the
random rule an increased rate does not lead to any significant change in relia-
bility — as confirmed by the average number of disconnections modulo square
of node number (not shown). The performance (number of simulation steps per
sec) is limited by the complexity of pattern disconnect which, in a network of
n peers, checks for (non-) existence of n2 paths. This can be hard due to tran-
sitive closure. As a simpler reliability measure, the proportion of peers with at
least two connections (hence less vulnerable to loss of connectivity) can do. A
simulation of 5 runs with a time limit of 10s has always been carried out in less
than a minute. Reliance on incremental pattern matching means model size only
affects simulation up to number of RNG calls, whereas increase in number and
complexity of the rules can add to the cost of graph transformation, too.

References

1. Heckel, R.: Stochastic analysis of graph transformation systems: A case study in
P2P networks. In Van, H.D., Wirsing, M., eds.: ICTAC’05. Volume 3722 of LNCS.,
Springer (2005) 53–69

2. Khan, A., Torrini, P., Heckel, R.: Model-based simulation of VoIP network recon-
figurations using graph transformation systems. In Corradini, A., Tuosto, E., eds.:
ICGT’08 - Doctoral Symposium. Volume 16 of El. Com. EASST. (2009) 1–20

3. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern match-
ing in the Viatra model transformation system. In: GRaMoT ’08, ACM (2008) 25–32

4. Kreowski, H.J., Kuske, S.: On the interleaving semantics of transformation units - a
step into GRACE. In: 5th Int. Workshop on Graph Grammars and their Application
to Computer Science, Williamsburg ’94, LNCS 1073, Springer (1996) 89 – 106

5. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: Stochastic
automata. Inf. Comput. 203(1) (2005) 1–38



Stochastic Simulation of Graph Transformation Systems 5

A VIATRA Model of the P2P Network

We present the VIATRA implementation of our graph transformation rules
shown in Section 2. The first pattern implements a check for a bidirectional
association.

pattern connected(N1,N2) = {
SN(N1);
SN(N2);
SN.overlay(Ov1,N1,N2);
SN.overlay(Ov2,N2,N1);

}

The following is a recursive pattern checking for the existence of a path
between N1 and N2. Rule disconnected is used as statistical probe, to check
whether there are two disconnected nodes. This rule is never applied, the simu-
lation just checks whether it is applicable (and counts its matches).

pattern pathEx(N1,N2) = {
SN(N1);
SN(N2);
find connected(N1,N2);

}
or
{

SN(N1);
SN(N2);
SN(N0);
find connected(N1,N0);
find pathEx(N0,N2);

}

pattern noPathEx(N1,N2) =
{
SN(N1);

SN(N2);
neg find pathEx(N1, N2);

}

gtrule disconnected() =
{

precondition pattern lhs(N1, N2) =
{
SN(N1);
SN(N2);
RS(R1);



6 Paolo Torrini, Reiko Heckel, and István Ráth

RS.reg(Rs1,R1,N1);
RS.reg(Rs2,R1,N2);
find noPathEx(N1, N2);
}

action {
println("Found a disconnection: "+fqn(N1)+fqn(N2));
}

}

Here follows the rule for creating new peers, registering them, and connecting
them to existing peers in the network

gtrule newNode() = {
precondition pattern lhs(N1,R1) = {

SN(N1);
RS(R1);
RS.reg(Rs1,R1,N1);

}

action {
let Ov1=undef, Ov2=undef, Rs2=undef, N2=undef in seq {

new(SN(N2));
new(SN.overlay(Ov1,N1,N2));
new(SN.overlay(Ov2,N2,N1));
new(RS.reg(Rs2,R1,N2));
println("created node: "+fqn(N2));

}
}

}

. . . and the one for deleting a peer with all its connections.

gtrule killNode() = {
precondition pattern lhs(N1) = {

SN(N1);
}

action {
delete(N1);
println("node to be deleted: "+fqn(N1));

}
}

The random rule creates redundant links up to a limit of 3 links per peer.

gtrule randomConnect() = {



Stochastic Simulation of Graph Transformation Systems 7

precondition pattern lhs(N0,N1,N2) = {
SN(N0);
SN(N1);
SN(N2);
find connected(N0,N1);
find connected(N0,N2);
neg find connected(N1,N2);
neg find two(N1);
neg find two(N2);

}

action {
let Ov1 = undef in new(SN.overlay(Ov1,N1,N2));
let Ov2 = undef in new(SN.overlay(Ov2,N2,N1));
println("added connection between: "

+fqn(N1)+fqn(N2));
}

}

The smart rule is more cautious, creating a link only if there is but a single
two-hop path between the two peers. The auxiliary pattern twoConnect checks
if there are two.

pattern twoConnected(N1,N2) = {
SN(N1);
SN(N2);
find connected(N1,N0);
find connected(N2,N0);
find connected(N1,N3);
find connected(N2,N3);
check (N0!=N3);

}

gtrule smartConnect() = {
precondition pattern lhs(N0,N1,N2) = {

SN(N0);
SN(N1);
SN(N2);
find connected(N0,N1);
find connected(N0,N2);
neg find connected(N1,N2);
neg find twoConnected(N1,N2);

}



8 Paolo Torrini, Reiko Heckel, and István Ráth

action {
let Ov1 = undef in new(SN.overlay(Ov1,N1,N2));
let Ov2 = undef in new(SN.overlay(Ov2,N2,N1));
println("added connection between: "

+fqn(N1)+fqn(N2));
}

}



Stochastic Simulation of Graph Transformation Systems 9

B Eclipse Plugin

Like VIATRA itself, the simulation tool is implemented as an Eclipse plugin
which is invoked from within Eclipse itself. There is no separate user interface,
all input and output is via files and VIATRA models.

Probability distributions are loaded from an external source, which allows to
specify the type of distribution (exponential, normal, etc.) as well as its param-
eters (rate, mean and variance, respectively).

The demonstration will show the model, the uploading of distributions sources
and feature parameters, start a simulation and show the output on screen as well
as collected in a log file. To give an indication, below we include a screen of the
invocation of the simulation as well as a sample log.

The snapshots below shows a VIATRA screen with the initial model. Model
entities are also used to pass parameters to the simulation — notably, number of
runs, limit in either time or number of steps, the name of the rule set (with as-
sociated stochastic parameters), and a distinguished rate value. A run is started
by clicking on the rule icon in the model space window (left below).

The second snapshot shows the output of a system run in the VIATRA
textual output window, where also the printout from rule application appears
at runtime.



10 Paolo Torrini, Reiko Heckel, and István Ráth


	Stochastic Simulation of Graph Transformation Systems
	Paolo Torrini, Reiko Heckel, István Ráth

