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Outline

• Motivation: characterise processes (quantum computation)

• Symmetric Monoidal Categories and Graphs

• Example with boolean circuits

• Extended graphs, Matching and Plugging

• Inductive patterns of graphs with !-boxes
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Symmetric Monoidal Categories (SMC)

• C is a monoidal category: it has associative and unital bifunctor ⊗:

– ⊗ operation on objects: X ⊗ Y ; and specific identity object I
(⊗ is associative and has I as identify)

– ⊗ operation on morphisms: if f : X → Y and g : X ′ → Y ′

then (f ⊗ g) : (X ⊗X ′) → (Y ⊗ Y ′)
(associative and has identity id)

• Braided : has ‘braiding’ isomorphisms: σX,Y : X ⊗ Y → Y ⊗X.

• Symmetric: σX,Y ◦ σY,X = id.
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Typed Graphs = SMC

X ⊗X ′

Y ⊗ Y ′
f ⊗ g

H

X ⊗X ′

f ⊗ g

Y ⊗ Y ′
H

X X ′

f ⊗ g

H H

Y Y ′
H H

Category Theory ⇒ swap edges and vertices ⇒ tensor is spacial

• already the generic way to draw processes, e.g. circuits:
Vertices are operations and Edges are objects,

• Coherence conditions provide correctness for graphical notation:
equality for graph = equality for SMC
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Graphical Representation

f ⊗ g := f g g ◦ f :=
f

g

• We can express the bifunctoriality of ⊗ and the symmetric braiding of σ as:

f

g
=

f

g f g
=

fg
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Example: Boolean Circuits
Values: B = {0, 1}; Operations: N : B ⊗B → B, C : B → B ⊗B, ⊥ : B → 1

1
H

0
H

1

H

0

H

N

H H

H

C

H

H H

⊥
H

Out 1 Out 0 In 1 In 0 Nand Copy Ignore

Symmetric monoidal categories composition of diagrams; need additional
equational structure to describe equivalences between circuits...
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Example: Boolean Circuit Graphical Equations
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N
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X
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HI
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H
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X1 X2
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⊥
H
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0 0
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H
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H
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Graphical Reasoning:

• Goal:

to develop suitable formalism for reasoning about equational structure in
symmetric monoidal categories.

• Based on SMC as graphs.

• Incident edges to a vertex define its type

• ‘subject reduction’: rewriting preserves types

• rewriting and plugging commute (plugging doesn’t break matching)

• reason with common inductive structures
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Graphs

• Directed graph: E
s

I

t
IV

Any number of edges are allowed between vertices (not a binary relation)

• G = (GE, GV , s, t); E = GE; V = GV ; in(v) := t−1(v); out(v) := s−1(v)

• graph morphism (graphs: G, H) fE : EG → EH and fV : VG → VH where:

sH ◦ fE = fV ◦ sG

tH ◦ fE = fV ◦ tG

Lucas Dixon Graphical reasoningin symmetric monoidal categories 5 Nov 2009



9

Extended Open Graphs

• Extended open graph: (G, X)
X ⊆ V (exterior); Int G = V \X (interior)

• Exterior vertices define an interface (hierarchical)
a subgraph has the same character as a vertex

• Morphism of open graphs: f : (G, GX) → (H,HX) (only map to HX from GX)
∀v ∈ VG. fV (v) ∈ ∂H ⇒ v ∈ ∂G

• Strict Morphism: f : (G, GX) → (H,HX) (no extra interior edges)
∀e ∈ EH. sH(e) ∈ fV (Int G) ∨ tH(e) ∈ fV (Int G) ⇒ ∃e′ ∈ EG. fE(e′) = e.

• There is also a topological interpretation: morphisms as continuous maps
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Matching for Extended Graphs

• Relaxed subgraph: cut and relaxed

– cut an edge: introduce two-clique new exterior vertices
– cut a vertex : throw away data, make exterior
– relax a vertex : makes incidence 1 ‘loving’ vertex-cliques of exterior vertex
– love: relation between cliques of exterior vertices

• G ≤ H (G matches H) = ∃f which is an open graph morphism from a relaxed
G to a relaxed subgraph of H, such that (it is an exact embedding):

1. f is a strict love morphism; (locally preserves type)
2. fE and fV are injective; (mapped 1-1 in subgraph)
3. ∀v ∈ VG. fV (v) ∈ ∂H ⇔ v ∈ ∂G (exact X map)
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Matching Example 1

⇒ ⇒

♥

⇒

♥

♥

cut vertex relax vertex cut edge
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Matching Example 2

G relax(G) H ′ an open-subgraph relax(H) H
of relax(H)

• Efficient algorithm by graph traversal:

– relaxation built in
– cuts implicit by left-over graph.
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Composing Graphs: a picture

Plugging of G and H via the two-sided e-graph π with embeddings p1 and p2.
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Composing Graphs: Plugging

• ((π, πX), (F,B)) a graph, π, with πV = πX and partition of πV into F and B

• Pair of embeddings: p1 : (π, πX) → (G, GX) and p2 : (π, πX) → (H,HX)
such that p1(F ) ⊆ X and p2(B) ⊆ Y

• plugging, πp1
p2

(G, H), defined by pushout: π⊂
p1

IG

H

p2

H

∩

Iπp1
p2

H
(G, H)

(minimal graph matched by both G and H where the two π’s are identified)

• Properties: π(G, H) ∼= π(H,G); G ≤e π(G, H) and H ≤e π(G, H);
K ≤e G implies K ≤e π(G, H);
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Representing Inductive Families of Graphs

. . . Xn1

∧
HI

Xn

∧
HI

Y
H

=

X1 . . . Xn

∧
J

I

Y
H

• Want a higher level language to capture such repeated structure; allow
rewriting etc
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!-Box Graphs

!-Box Graphs = (G, B) where B is a disjoint set of subsets of GV

(draw a box around elements of each member of B)

!-Box Matching : G matches H: (H ∈ G closed under:

copy : copy subgraph including incident edges some number of times
drop : removes the !-box, keep the contents.
merge : combines two !-boxes: {B1, B2, ...} → {(B1 ∪B2), ...}.

Semantics: JGK! subset of matches that have no !-boxes.
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!-Box Graphs: Example

A :
≤

copy B :

≤
merge C :

≤
drop D :

Example showing how A matches D
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Conclusions

• Symmetric monoidal categories have a natural graphical presentation

• Many processes form SMCs with extra equational structure

• High level language for processes motivates !-boxes to capture inductive
structure (ellipsis notation)

• Initial goal was to reason about quantum information; also has applications to
traditional circuits

• Developed a formalism for equational reasoning over graph-based
representations of symmetric monoidal categories

• Implementation: http://dream.inf.ed.ac.uk/projects/quantomatic

Lucas Dixon Graphical reasoningin symmetric monoidal categories 5 Nov 2009


