UNIVERSITY OF
LEICESTER MGS 2024
‘ GT4SE &
Graph Transformation
for Software Engineers

Foundations and Applications
of Graph Rewriting

Reiko Heckel
University of Leicester, UK

Partly based on book with Gabriele Taentzer
Philipps Universitat Marburg, Germany

= Edgware
Paddington Road ~Marylebone =

Edgware

= N
Baker Portland Eyston
Street Street

() Old stre

O

V4

@)

N\ /O\
O=ClI Cl=0 s | ‘
Goodge

// \\ erd’s Notting Lancaster gong Oxford Street

sh= |_HillGate Gate street Circus
D e e @ o v (>
O Tottenham
() i \H(;:::d Queensway M:’r:h;e Court Road
| High Street

Euston
Square

Warren Street

Regent's Park

Russell
Square

|} Kensington

Leicester Mansion

: |l Hyde Park Corner, Piccadilly Square House
9!) Circus Monume
) Knightsbridge, Charing

Cross =

Gloucester

Sloane

Square

South
Kensington

5

— Gabi /N

’ Peter

input x

while x>1

. xeven? 1

X =x/2|x:=3x-1

.
\
. | javaxserviet
\

Food Web in a Forest

org.hibernate.cfg

| write letter |(Ij)| read book | O’Ij) | meet Peter |0—|—>|E|

[18]
first™_has has has__last
—] e

: Task [next— : Task [next— : Task
details = "write letter" |« prev—{details = "read book" |« prev—|details = "meet Peter"

vy
java.lang

Graphs and Graph Transformations

Graphs represent Graph transformations
= Class and object = model
structures = Behaviour and
= Processes and reconfiguration
architectures = Creation, manipulation,
= Diagrams,3D evolution
objects = Operational semantics
formally, visually in an intuitive rule-based
and directly (little way, with formal semantics

need for encoding) for execution and analysis

Outline

Foundations Two Types of Applications
= Graphs Graph Transformation-Based
= Graph Transformations = Software Engineering

= Semantics and Control = GIBSE

= Analysis Techniques = Language Engineering

=2 GTBLE

IG ?‘Li%rgation&
Part 1: Foundations

Graphs

Graph Transformations
Semantics and Control
Analysis

Variants of graphs

Graph

o/\o

BasicGraphStructure Decoration
Simple Undirected Labels Attributes
— P e
O VertexLabels Edgelabels VertexAttributes EdgeAttributes
Hypergraph

Types

i (e

SubTypes

AbstractTypes

Multiplicities

Aggregation

Ordering

‘ Mandatory A Xor group
é) Optional A Or group

5

A

Containment

5

A

Spanning

GTBSE or GTBLE?
Directed or undirected

G
Labe”ed Or typed usr+ peter: User
Labelled undirected simple graph “Tk
= Nodes set V, Edges E € P,(V) s: S?Per—usr* gabi: User
= Labels L = {Peter, Gabi, Reiko} link
= lab, V >L [Gl s Ut

Peter

Gabi @

Refko) o
Directed typed graph TG =
= Node, edge labels form type graph TG /-\

usr usr

= Instance graph G with homomorphism | i
type preserving graph structure Super «—link

GTBLE: Petri nets

Create

= Type graph for Petri nets
= [nstance graph for the pre

example

tn

Design decisions A

= Bipartite (or unordered hyper) post
graphs as typed graphs

= Node type Tn to represent
tokens (left) vs attribute m for
marking (right)

Marked graphs (right) o1 | HRLP

= plus constraints for

singleton pre and post sets post A

pre

t1:

post

pre

post

pre

t2:T

Typed attributed graphs

with subtyping

Structured P2P model

= Client and Super
Nodes serve Users

= Super nodes form
overlay network,
support limited

number of Clients (¢

= GTBSE

name: String

Formalise this, ...

Type, instance graphs

=» Graphs and graph
homomorphisms

=» Slice category

Attributed graphs
=> Attributes for a fixed
data algebra

= Symbolic attributed
graphs

[G ?‘Li%rgation&
Part 1: Foundations

Graphs

Graph Transformations
» Basic rules and transformations
* Global application conditions
* Advanced features

Semantics and Control
Analysis

Rules generalize transformations

Specify changes by
= Difference
between pre and
post graphs
= Deleted: L\ R
= Created: R\ L

= Context required
for the changes to

happen
= Preserved: L N R

Rule should describe
- What changes, and how?
- In which situations?

Gabi /.~ ¥ “!

’ Peter

&‘1 Reiko
Sad

=

States
transformed

Gabi /\\P -

eter

,
&:1 Reiko

N\

Rules generalize transformations

Specify changes by
= Difference
between pre and
post graphs
= Deleted: L\ R
= Created: R\ L

= Context required

for the changes to
happen

= Preserved: L N R

)
~
D
~

By
)
=
(o)

/\
\x

Rule

ul

?
&l u?

N
@

Pete

/
k Reiko

9,

/

Graph Transformation Concepts

GraphTransformation

e N

BasicApproach TransformationRule AttributeLanguage TransformationSystem

N

Embedding Gluing Action ApplicationConditions MultiPatterns Parameters
Deleting Merging Copying Predefined User-defined
Any Identification Injective Gluing InjectiveGluing || Atomic Nested

NACs PACs AttributeConditions PathExpression

LHS RHS
c: Client —usr—>{u: User u: User
|
IiQk I endClient(c) = >
s: Super s: Super
clients = n clients := n-1

Rule Features

= Left- and right-hand side = Rule signature

= UML-like object notation = endClient(c: Client) : Client
= c:Client, u: User, s: Super * Rule label
= Attribute conditions = endClient(c) = c

= clients =n
= Attribute assignments
= clients := n-1

LHS

c: Client —usr—-> u: User

|
link
v

s: Super

clients = n

RHS

u: User

V

IN

ul: User

cl: Client —usr—

link

| name = “Peter”

s: Super u3: User

— USr—

clients = 2 name = “Gabi”

link

u2: User

c2: Client —usr—

name = “Reiko”

IendCIient(c) =c

s: Super

clients := n-1

What should be the result?
 Elements of IN deleted?
 New elements created?
» Attribute values changed?

LHS

c: Client —usr—-> u: User

link
v
s: Super
clients = n
IN
cl: Client —usr— ul: U“ser -
| name = “Peter
link
s: Super | st u3: User .
clients = 2 name = “Gabi”
link
u2: User

c2: Client —usr—

name = “Reiko”

IendCIient(c) =c

Ic2 = endClient(c2)

RHS
u: User
s: Super
clients := n-1
ouT
cl: Client —usr—> ul: U“ser -
| name = “Peter
link
s: Super | Usr— u3: User
clients =1 name = “Gabi”
u2: User
name = “Reiko”

GTBLE: Rules for Nets

S|

1

|

Rules to create all marked graphs (nets as attributed

directed multi graphs)

p1:P p2:P

Firing rule for marked graphs

_ﬁ pre post .
m=k_ [tT |—>rR2F
{k>0}

p:P
newPlace(k) > M=k
pre post
newTrans() =t p1:P € t:T > p2:P
. p1:P | Pre o Post [p2:P
jﬁ,ﬂret Dl = s Dl e

GTBSE:
P2P Rules

Network formation

Node creation
and promotion
Linking and
redirecting
clients

Rule Concepts

Creation
Deletion
Parameters
NACs

Attribute
conditions

{clients < max}

J
(LHS)
s:Super
c: Client clients = n
X {clients < max}
link
== |
(LHS)
EI!FHH!——Uﬂ-*I!I!!I
link
b
s:Super
clients = max
\ J
(LHS)
s: Supe
S ink—{c:]
clients = n
s2: Super
clients = m

newSuper(u,s) = s>

newClient(u) = ¢

promoteClient(c) = >

redirectCIient(s,c,s2>

(RHS

~

usr ovl

sl: Super

clients := 0
\ J
e)

RHS

|u:User [<usr— c: Client |
\ J

RHS

s:Super
clients := n +1

s D
RHS
u‘sr
s:Super : Super
- ovl+—
clients := max - 1 clients := 0
\ J
s D
RHS
s: Super
> 2P c: Client |
clients := n-1
link
s2: Super
clients := m+1
\ J

GTBSE:
P2P Rules

Network deconstruction

Disconnect nodes
Terminate nodes

Rule Concepts

Creation

Deletion
Parameters

NACs

Attribute conditions

LHS

[u:User |« usr— s:Super|

LHS

ovl

LHS
| u:User |<—USF—| c:Client |

link

s:Super

clients = n

LHS
| u:User |<—USF—| c:Client |

link

endSuper(s) = >
disconnectSuper(s, t>

endClient(c) = >

endUnlinkedClient(c) = >

Y
T
wn

ZY)
T
wn

RHS

4
wn
=
o
[}
=

clients := n-1

RHS

Global application conditions

Create shortcuts for redundancy:

LHS RHS

ovI |51:Super |—0v|—| s2:Super
shortcut(sl) » |

ovl ovl ovl

g V.

& .

What could go wrong here?

= With a match mapping s2 and s3 to the same node in the input
graph, the rule would create a useless self edge (loop).

Injective matches: Each element in LHS is mapped to a
separate element in the input graph.

Global application conditions:
|dentification condition

Allowing for non-injective matches, what could happen here?

LHS [NIdC] - RHS LHS [NIdC] — RHS
crpres [al:A] [ar2:A]
IN ??7? IN ??77?

To prevent this (while allowing non-injective matches) the

identification condition states that all deleted elements
must be different from

(1) other elements
(2) each other

Global application conditions:
|dentification condition

Allowing for non-injective matches, what could happen here?

LHS [NIdC] RHS LHS [NIdC] — RHS
e Al [azA]

IN ouT IN ouT
del+pres del2

Identification condition: elements to be deleted are kept
apart from

other elements and each other

Global application conditions:
)angling condition

C

Deletion in unknown contexts

LHS

[u:User |«-usr{s:Super |

endSuper(s) = >

RHS

What happens to connections of s with other Super

nodes?
LHS
IN
bg: B

RHS
del

With dangling

condition, rule

not applicable
here!

LHS

del

A

del >

Conservative

Global application conditions:

Overview
InjectiveGluingCond GluingCond DanglingCond
InjectivityCond Id entificationCond

i

NolnjectivityCond NoldentificationCond Any

[e21pey

Formalise this, ...

Type, instance graphs Rules, transformations

> Graphs and graph = Rules as spans or
homomor phisms partial morphisms
-> Slice category > DPO, SPO, SqPO

Attributed graphs

=» Graphs related to
fixed data algebra

= Symbolic attributed
graphs

“The clients attribute of a Super node is 0 iff there

Advanced features:
Graph constraints

are no Client nodes connected to it.”

Logically

self.clients=0 iff self.link->isEmpty()

or graphically

NOT

:Super

<link—{:Client]

clients = 0

NOT

:Super

clients > 0

link<{:Chient |

Advanced features:
Negative application conditions

“Apply shortcut rule only if nodes s2 and s3 are not
connected, neither directly nor via a 39 node.”

LHS RHS

K shortcut(sl>

ovl ovl ovl

ovl ovl
Sapa] v Sore]

Advanced features:

Multi Objects and Patterns

With the dangling condition,

we cannot delete a Super node

without explicitly deleting the links to all its peers.

This is achieved by
a rule with multi object.

S:Super matches the set of
all super nodes {s1, s2}
linked to s by ovl edges,
which all are deleted.

LHS RHS
s:Super shutdownSuper(s)
clients = 0 -
-,
LHS [DC] RHS
[wiUser J«-usr—|_SSuper
clients = 0
I endSuperMulti(s)
ovl
J

G

u:User | s:Super u:User

me = “Gab lients = 0 me = “Gab
\
ovl
1:Sup 2:Sup m 1:Sup 2:Sup
usr usr usr usr
| |
1:User 2:User 1:User 2:User
me = “Pet me = “Reik = "Pet = "Reik

Integrated Rule Notation

LHS
[Node]» s ~{usler]

= [ntegrate left- and right-hand side

newClient(u) = >

into a single graph

= Use colours and labels to
distinguish different roles

LHS [D(C]
s:Super
usr clients = 0
I
ovl

endSuperl\/IuIti(s>

RHS

[u:User [« usrc: Client]

newClient(u) = c

44444444444444

[RHS

GTBLE: Firing rules e g®

for general Petri nets i i
Rule for 2:1 transitions (2 places pre, 1 place post set)
1P | pre p1:P _pre
m >0 m:=p1 .m-1 o pOSt\ p3:P

| post

< t:T > p3:P fireZti) t:T T "
pre po\St 02:P . m:=p3.m+1

p2P pre m:=p2.m—1 pre
m>0

N

How to ensure this is only applicable to 2:1 transitions?

=>» Only matches if there are exactly 2 pre and 1 post
places.

GTBLE: Firing rule B i d®
for general Petri nets 1 i

Firing rule for arbitrary transitions

pre post ' pre post [——
p1:P T >'p2:P \ @ p1:P J T/ P2:P ‘

m>0 m:=p1.m-1 m:=p2.m+1

Matches sets of
= {p1:P|p1.m >0 and p1 in pre set of t}
= NAC ensures there is no p:P in pre(t) not in that set
= {p2:P | p2 in post set of t}
Updates attributes m of all matched P nodes

Formalise this, ...

Type, instance graphs

=» Graphs and graph
homomorphisms

=» Slice category

Attributed graphs

=» Graphs related to
fixed data algebra

= Symbolic attributed
graphs

Rules, transformations

=> Rules as spans or
partial morphisms

> DPO, SPO, SqPO

NACs, multi objects,
patterns and rules

=» Forbidden matches
=» Amalgamation

GT4SE
Graph Transformation
for Software Engineers

Part 1: Foundations

v' Graphs
v" Graph Transformations

« Semantics and Control

* Graph transformation systems, grammars, and
derivations

* Graph languages, relations and transition systems
* Rule-based programming: textual and diagrammatic

* Analysis

Semantics and

Control

TransformationSystem

AN

SemanticModel

Control

_——

Language

Relation

TransitionSystem

<

A\

Stochastic

S S S S
Non-terminals ControlExp IntegrityConstraints Procedural Abstr
S N4 N4 S N4
Conditional Choice Sequence AsLongAsPossible Atomic

Ordered

Transformation systems, grammars,
and semantic models

Graph transformation system GT7S = (TG, R)

Graph grammar GG = (TG, R, G)

E.qg. type graph and rules of the P2P model with
start graph as initial network configuration

Semantic Models

= Language: set of all graphs reachable from G,
= Relation: mapping from input to output graphs

= Transition system: reachable graphs as states,
transformation steps as transitions

Relation: Compute Spanning Tree of

Super Nodes

Extended type graph

Rules to mark root
and children of
marked nodes

TG

ovl

[Node|——usr—+
/\

User
name: String

: |

Super

clients: Integer

*
. 1
child ™ r elem™
> TNode|

1

<—link

LHS
[Tode]
LHS

= Spper}-ou-{e

[t: TNode|

c: Super

markRoot(s) »

elem

elem

markChild(s) = >

Initial set /. all unmarked instances graph of TG

RHS

5 Superkclom {: Thiodel

RHS
s Swerlo-{c v

elem elem

|t: TNode |childy: TNode|

Final set F: all graphs where all Super nodes are marked

P2P LTS
(partial)

= Graphs
as states

= Steps as
transitions

= Rule names
with args
as labels

State 1

u:User

uid = "Gabi"

u2:User

uid="Reiko"

s1:Super

clients = 0

=51 = newSuper(u)=9»

State 2

u:User

uid = "Gabi"

sl = newSuper(u2)

State 3

u:User

uid = "Gabi"

u2:User

uid="Reiko"

sl:Super

clients = 0

ovl

usr—

s3:Super

clients = 0

—s1 = newSuper(u) -y,

A
s2 = endSuper(s2)

State 5

u:User

uid = "Gabi"

N
usr

sl:Super

clients = 0

s2:Super

ovl

clients = 0

u2:User

uid="Reiko"

usr—

s3:Super

clients = 0

N

u2:User

uid="Reiko"

s1:Super

clients = 0

usr.

ovl

s2:Super

clients = 0

l
sl = newSuper(u2)

State 4

u:User

uid = "Gabi"

/

N
usr

s1:Super

clients = 0

ovl

s2:Super

ovl

clients = 0

u2:User

uid="Reiko"

s3:Super

usr—

clients =0

disconnectSuper(s2)

Semantics and

Control

TransformationSystem

AN

SemanticModel

Control

_——

Language

Relation

TransitionSystem

<

A\

Stochastic

S S S S
Non-terminals ControlExp IntegrityConstraints Procedural Abstr
S N4 N4 S N4
Conditional Choice Sequence AsLongAsPossible Atomic

Ordered

Rule-based programming:

textual

Control expressions,

N

s:Super

[LHS
)

shutdown = false

Procedural abstraction, ...

(LHS

s:Super

shutdown = true

ovl

.] (LHS
unit end.Super(sl. Super) { Suver
atomic { clients = n
{clients > 0}
alap { shutdown = true

disconnectSuper(sl,_)

< link

}

alap {

s2:Super

clients = m
{clients < max}
shutdown = false

redirectClient (s1,_ ,_)
}

shutdownSuper(sl)

}
}

(LHS
s:Super
usr4 clients = 0
shutdown = true

ovl

v

startShutdown(s) [

I disconnectSu perSd(s>

I redirectCIientSd(s,c,s2>

RHS

s:Super

shutdown := true

RHS

s:Super

clients := n-1

s2:Super
clients := m+1

link

~

RHS

u:User

I shutdownSuperSd(s>

Rule-based programming:
diagrammatic

endSuperTransaction(s:Super)

redirectClient(s, _,_)
s:Super
disconnectSuper(s, _) clients =c [<link:
clients :=c-1 *
s:Super
: :
‘—’ : —exit—> ({[mk
ovl
| K
' :Super
:Super _ P
clients = c
alap\/ clients :=c+ 1
{clients < max}
alap

exit

Using activity diagrams
to control transformation rules : shutdownSuperTrans(s)

GT4SE
Graph Transformation
for Software Engineers

Part 1: Foundations

v' Graphs
v" Graph Transformations
v' Semantics and Control
* Analysis
* Properties: analysis problems

» Techniques: solutions
* Mapping problems to solutions

Properties

Languages Relations Trans Systems
= membership = functionality = reachability
= inclusion (uniqueness) = invariants
= instance = {otality = deadlocks
generation = injectivity = planning,
= non-ambiguity = surjectivity optimisation
= correctness = temporal, pre-

post properties
= termination
= confluence

Techniques

Static Dynamic
= Conflict and = Model checking
Dependency AnaIySiS R Graph parsing

= Termination Analysis

= Constraint Verification
and Enforcement

Conflict and dep- Termination Constraint Model Graph
endency analysis analysis verification checking parsing

Language
Membership
Inclusion X

Instance generation X
Non-ambiguity

X
X

<A
e
sRolsRs

Relation

Functional behaviour X
Totality

Injectivity X
Surjectivity

Correctness X X

SRolsle
SRRl
e

Transition system
Reachability
Invariants X
Deadlocks
Planning &
optimisation
Temporal properties X
Termination
Confluence X

sRals

P S
SRl

Tools: Henshin

S eclipse-workspace - org.henshin.bank/src/org/henshin/bank/bank.henshin_diagram - Eclipse IDE

- a X
File Edit Diagram Navigate Search Project Run Window Help
B-HRiF~-0-Q i villv i~ GBI v - |#i@MsGothic vig VIBILA~ &~ s~ v [B it~ |8 = ~ | 100% v
L moae
& Model Explorer & E% 877 [@sbankaird & *bankhensh.. i1 & *bank class... & example-ban... 4% example-ban... 4 example-ban... & =
type filter text x ioPalette b t f t H
. i ‘ =
v > org.henshin.bank > Rule A (in cl ing, in [5> Rule defeteAllAccounts(in clientEString) | ks J ra l l S O rl I I a I O I I
v Bsrc = Rule
v Eor\g’hemhm’ba"k, «preserve» «preserve» [«preserve» «preservey «preserve» ENode
[3) BankExample java -Bank :Manager I~ managersManager .
4l bank.aird) managers g " Edge
3 bank. «forbid» — «delete™ «preserve» | cpreserve
#bank.ecore accounts «create» (preservey - [preserver accounts clients | clients = Attribute
bank.henshin accounts _glients | clients ., !
2 bank herahinliagram orbidn <createn croate |epresever cdeleten] olorory Preserver Condition .
oo == :Account :Account “ccounts -Client Account| = > Client w0 Unit
& empty-bank.xmi = id=accountld = id=accountld| #°°°“™ | @ na ient =0 O l I I ‘ a I I
& example-bank_transformed.xm & |nvocation
3 example-bankxmi = "
& example-result.xmi = Rule transferMoney(in client:EString, in fromld-Elnt, in told-Elnt, in amount:EDouble, var x:EDouble, var y:EDouble) g
=\ JRE System Library [JavaSE-1.7] Account
=\ Plug-in Dependencies CGRCERG E Bank
#>META-INF :Client H Client L
1= P2PNetworks = name=client
& Manager
«preserve»
accounts B person
«preserve» «preserve»
:Account :Account
= credit=x->x-amount = credit=y->y+amount
= id=fromld = id=told
© Condition financial covering 7 Condition positive transfer only
x>amount amount>0 C tr i t
< >
= . L oL]
R B verification
< >
- = = Rule
% Outline vHEE =3
Core Property Value A
Activated &true
Appearance
Check Dangling ktrue
— Description =
Injective Matching &true
Java Imports = .
* Model checking
>
Y810

https://www.eclipse.org/henshin/ by translation

Tools: Groove

%7 Production Simulator

mEx)
File Edit =plore
@ oF connect "= | = @ich
Brasa Match 1 B ‘ | g |
%72 disconnect E 1
@ %7 fail . i
Brawo Match 1 .. e —
Braw Match 2
%2 handover 4 T
@ %7 is_connected 7 Y 4 o
Brawg Match 1 a .
%7 looseSig “ ¥ == i N s
%2 move E < — , = B
%2 moveln N o
@ %2 moveOut id s =7 N
Brawa Match 1 “ - e] ;
Brasa Match 2 et L
%7 repair i 7 -
%P sEins_isNotok (4 . el — - 3 =
| I, i YA
) SR NP t 7 -
i) - = R ———
na . s AR T .
— = P aad &-{
= = 3
e | e =
@ ——ie N e -
4 —
- - A ———
iyl w \}
S aamis e
5? 64 nodes, 480 edges

) https://groove.ewi.utwente.nl

Graph
transformation

Visualisation
of rules and
matches

Native model
checking in
CTL and LTL

IG ?‘Li%rgation&
Part 1: Foundations

v' Graphs
v" Graph Transformations
v" Semantics and Control
v" Analysis

Reiko Heckel
Gabriele Taentzer

J; Graph

- Transformation
for Software - Author copy
Engineers * Exercises
With Applications to Model-Based ° SI Id es

Development and Domain-Specific
Language Engineering

@ Springer

Part | - Foundations of Graph
Transformation

1.
2.
3.

Graphs for Modelling and Specification
Graph Transformation Concepts
Beyond Individual Rules: Usage
Scenarios and Control Structures
Analysis and Improvement of Graph
Transformation Systems

Further Reading

GT4SE
Graph Transformation
for Software Engineers

Part Il - Graph Transformation in Software
Engineering

5.

6.
7.
8.

0.

10.

11.

Detecting Inconsistent Requirements in a
Use-Case-Driven Approach

Service Specification and Matching
Model-Based Testing

Reverse Engineering: Inferring Visual
Contracts from Java Programs

Stochastic Analysis of Dynamic Software
Architectures

Advanced Modelling-Language Definition:
Integrating Metamodelling with Graph
Transformation

Improving Models and Understanding Model
Changes

12. Translating and Synchronising Models

http://www.graph-transformation-for-software-engineers.org/
http://www.graph-transformation-for-software-engineers.org/

