LEICESTER MGS 2022
Graph Transformation:

Foundations and Applications to
Software Engineering

Reiko Heckel
University of Leicester, UK

Based on book with Gabriele Taentzer
Philipps Universitat Marburg, Germany

Graphs and Graph Transformations

Graphs represent Graph transformations
= Class and object = model
structures = Behaviour and
= Processes and reconfiguration
architectures = Creation, manipulation,
= Diagrams,3D evolution
objects = Operational semantics
formally, visually in an intuitive rule-based
and directly (little way, with formal semantics

need for encoding) for execution and analysis

Heckel, Taentzer Graph Transformation for Software Engineers

Outline

Foundations Two Types of Applications
= Graphs Graph Transformation-Based
= Graph Transformations = Software Engineering
= Semantics and Control = GIBSE
= Analysis Techniques " Language Engineering

=2 GTBLE

Heckel, Taentzer Graph Transformation for Software Engineers 3

IG ?‘Li%rgation&
Part 1: Foundations

Graphs

Graph Transformations
Semantics and Control
Analysis

Great 5 N
Baker Portland Eyston
Street Street

Road

= Edgware
Paddington Road Marylebone =

() Oud stre
Warren Street

Square
oke Grove
toad

Russell
Square

k- Bayswater

== Moorgate
Goodge
Sheet Chencacy

lerd’s Notting Lancaster gong Oxford h

ha Hill Gate Gate sireet Circus

e N
Holland Queensway Marble Yottanham
N Park Arch Court Road
\ | High street
| Kensington

Hyde Park Corner, Piccadmy
Circus

Holborn

st. Paul's
Feank

= Cannont
Street

Leicester Mansion
Square House

Monume

Knightsbridge, Charing

Cross =

Gloucester

Sloane & i
- Square Park g e ==
O — - / London
st South Victoria Westminster / Bridge
\\ n Kensington *] - // —
// ~ a

I text |

input x

while x>1

. xeven? 1

X =x/2|x:=3x-1

javax.servlethttp
AN # javaxserviet
~

org.hibernate| ™\

org.apache.logdj

Food Web in a Forest

\

| write letter |(Ij)| read book | (Ij) | meet Peter | 0—|—>|E|

’
first™_has has has__last
— ¢ P —

: Task [next— : Task [next— : Task
details = "write letter" |« prev—{details = "read book" |« prev—|details = "meet Peter"

org,junit

Heckel, Taentzer Graph Transformation for Software Engineers 5

Variants of graphs

Graph

o/\o

Types

BasicGraphStructure Decoration
Simple Undirected Labels Attributes
— P e
O VertexLabels Edgelabels VertexAttributes EdgeAttributes
Hypergraph

i (e

SubTypes

AbstractTypes

Multiplicities

Aggregation

Ordering

‘ Mandatory A Xor group
(JD Optional A Or group

5

A

Containment

5

AN

Spanning

Heckel, Taentzer

Graph Transformation for Software Engineers

GTBSE or GTBLE?
Directed or undirected

G
Labe”ed Or typed usr+ peter: User
Undirected labelled graph ink
= Nodes set V, Edges E € P,(V) s: S?Per—usr* gabi: User
= Labels L = {Peter, Gabi, Reiko} link
= lab,V >L [Gl s Ut

Peter]

Gabi| @

Reiko e
Directed typed graph TG =
= Node, edge labels form type graph TG /-\

usr usr

= Instance graph G with homomorphism | i
type preserving graph structure Super j«—link

Heckel, Taentzer Graph Transformation for Software Engineers 7

GTBLE: Petri nets

Create
= Type graph for Petri nets

= [nstance graph for the
example

Design decisions

= Bipartite (or unordered hyper)
graphs as typed graphs

= Node type Tn to represent
tokens (left) vs attribute m for
marking (right)

Marked graphs (right)
= add constraints for singleton
pre and post sets

pre

tn

t0: T

post

post

pre

t1

T

post

pre

post

pre

t2:T

Heckel, Taentzer

Graph Transformation for Software Engineers

Typed attributed graphs

with subtyping

Structured P2P model

= Client and Super
Nodes serve Users

= Super nodes form
overlay network,
support limited
number of Clients

= GTBSE

.
G
name = ‘'Reiko
link
y
s: Super usr u3: User
clients = 2 name = ""Gabi"
1
link
name = ‘'Peter
A

! ! type

.
TG

ovl

0..1 usr 1

/\

Super <1—Iink—*@

clients: Integer

User

name: String

Heckel, Taentzer

Graph Transformation for Software Engineers

Formalise this, ...

Type, instance graphs

=» Graphs and graph
homomorphisms

=» Slice category

Attributed graphs

=» Graphs related to
fixed data algebra

= Symbolic attributed
graphs

Heckel, Taentzer Graph Transformation for Software Engineers 10

GT4SE
Graph Transformation
for Software Engineers

Part 1: Foundations

Graphs

Graph Transformations
» Basic rules and transformations
* Global application conditions
* Advanced features

Semantics and Control
Analysis
Henshin Tool Demo

Rules generalize transformations

Specify changes by

Rule should describe

= Difference - What changes, and how?
between pre and - In which situations?
post graphs
> Deleted: L \ R
> Created: R\ L Gabi ’/ ‘;‘5: Gabi (% e
- Contextrequired | ¥ .. == | a2 o
for the changes to | ol |waie))
happen - % ‘
= Preserved: LN R \!:3

Heckel, Taentzer Graph Transformation for Software Engineers 12

Rules generalize transformations

Specify changes by
= Difference
between pre and
post graphs
= Deleted: L\ R
= Created: R\ L

= Context required
for the changes to

happen

= Preserved: L N R

’

\@

Rule

’
ul&l u2

V

Gabi / @

Peter

’
&l Reiko
N

Heckel, Taentzer

Graph Transformation for Software Engineers

Two ways to embed replacement R
graph into context
Gluing approaches

Interface shared between L ‘ @

and R provides gluing points
=>» our choice E> ':> G

R

Connecting approaches

R is linked to context by
edges created according to |:> [>
embedding relation

Heckel, Taentzer Graph Transformation for Software Engineers 14

Example: Connecting Approach

More powerful, but mathematically less tractable.

Simulated by :{>

gluing approach -
using multi objects. @

Gabi ’/ \; —
] eter
&i’ Barbara :
\ ’) States
&if transformed

new Embedding relation:

Gabi / @

Peter

'
&")‘ Barbara
AL ah

Heckel, Taentzer Graph Transformation for Software Engineers 15

Graph Transformation Concepts

GraphTransformation

e N

BasicApproach TransformationRule AttributeLanguage TransformationSystem

N

Embedding Gluing Action ApplicationConditions MultiPatterns Parameters
Deleting Merging Copying Predefined User-defined
Any Identification Injective Gluing InjectiveGluing || Atomic Nested

NACs PACs AttributeConditions PathExpression

Heckel, Taentzer Graph Transformation for Software Engineers

LHS RHS

c: Client —usr—>{u: User u: User
|
IiQk I endClient(c) = >

s: Super s: Super

clients = n clients := n-1

Rule Features

= Left- and right-hand side = Rule signature

= UML-like object notation = endClient(c: Client) : Client
= c:Client, u: User, s: Super * Rule label
= Attribute conditions = endClient(c) = c

= clients =n
= Attribute assignments
= clients := n-1

Heckel, Taentzer Graph Transformation for Software Engineers

LHS
c: Client —usr—>{u: User
|
link
v
s: Super
clients = n
IN
cl: Client —usr— ul: U“ser o
| name = “Peter
link
s: Super | usr— u3: User .
clients = 2 name = “Gabi”
link
c2: Client —usr— u2: l{ser. o
name = “Reiko

IendCIient(c) =c

RHS

u: User

s: Super

clients := n-1

What should be the result?
 Elements of IN deleted?
 New elements created?
» Attribute values changed?

Heckel, Taentzer

Graph Transformation for Software Engineers

O >()
GTBLE: Rules for Nets A > l

Rules to create marked graphs

newPlace(k) > an;k

N

\

pre post
p1:P p2:P newTrans() = t p1:P tT > p2:P

Firing rule for marked graphs

_ﬁ pre post . . pre post .
m=k <—tT > p2_.:3 fire(t) > $n1'.=FIJ<-1 < t:T > ?nz'.—FI)H
{k>0} m= . =

Heckel, Taentzer Graph Transformation for Software Engineers 20

rLHS) rRHS)

\u_:U%[‘s: Super qm —m

newSuper(u,s) = sl usr ovl
. usr ‘

\ sl: Super

" \ J clients := 0
\ J

P2P Rules e | .y (R |

[Node | xusr[uiser] | Lo Client(w) = ¢ [u:User |« usr—{: Ciient]

J \ J

s)

Network formation LHS]
s:Super

" NOde Creatlon c: Client clients = n RHS
. clients < max linkClient(c,s . . s:Super
and promotion & {clents < max) e [Clent-inkot =2

= Linking and

redirecting) ’
clients (LHS) (RHS)
usr
Iii]k promoteClient(c) = > U‘S"
RU Ie Conce ptS s:Super s:Super | : Super
- Cl’eation L clients = max) L clients := max - 1 clients := 0 J
= Deletion (LHS) (R \
s: Super . . ;

= Parameters i link—{c: Client] _s: Super_
= NA CS redirectCIient(s,c,s2> link
[| Attr[bute s2: Super s2: Super

conditions e T Clents = m 1

Heckel, Taentzer Graph Transformation for Software Engineers 21

GTBSE:
P2P Rules

Network deconstruction
= Dijsconnect nodes
= Terminate nodes

Rule Concepts
= Creation
= Deletion
= Parameters
= NACs

LHS
[u:User]«usr—{s:Super |
LHS
ovl
LHS
|u:User |<—USF—| c:CIient|
link
s:Super
clients = n
LHS

| u:User |<—USF—| c:Client |

endSuper(s) = >
disconnectSuper(s, t>

endClient(c) = >

Y
T
wn

ZY)
T
wn

RHS

4
wn
=
o
[}
=

clients := n-1

= Aftribute conditions . endUnlinkedClient(c) >
Graph Transformation for Software Engineers 22

Heckel, Taentzer

Global application conditions

What could possibly be wrong with this rule?

LHS RHS

BETO AT : [1Swper}-ou-{E5upa]
shortcut(s1) |

ovl ovl ovl

= With a match mapping s2 and s3 to the same node
In the input graph, the rule would create a loop.

Injective matches: Each element in the left-hand side
IS mapped to a separate element in the input graph.

Heckel, Taentzer Graph Transformation for Software Engineers 23

Global application conditions:
|dentification condition

Allowing for non-injective matches, what happens here?

LHS [NIdC] - RHS LHS [NIdC] — RHS
S ai:A] [a2:A)
N 277? N 277

Identification condition: elements to be deleted are
kept apart from

other elements and each other

Heckel, Taentzer Graph Transformation for Software Engineers 24

Global application conditions:
|dentification condition

Allowing for non-injective matches, what happens here?

LHS [NIdC] RHS LHS [NIdC] — RHS
e Al [azA]

IN ouT IN ouT
del+pres del2

Identification condition: elements to be deleted are
kept apart from

other elements and each other

Heckel, Taentzer Graph Transformation for Software Engineers 25

Global application conditions:
Dangling condition

Deletion in unknown contexts

LHS RHS
e v [supr] | 7850 >

What happens to any connections of s with other Super
nodes?

LHS RHS LHS RHS
del del
With dangling @ @
condition, rule
IN not applicable IN — ouT
ag: A bg: B here! ag: A bg: B

Heckel, Taentzer Graph Transformation for Software Engineers 26

Conservative

Global application conditions:
Overview

InjectiveGluingCond GluingCond DanglingCond
InjectivityCond Id entificationCond

i

NolnjectivityCond NoldentificationCond Any

|EJIPEY

Heckel, Taentzer Graph Transformation for Software Engineers 27

Formalise this, ...

Type, instance graphs Rules, transformations

> Graphs and graph = Rules as spans or
homomor phisms partial morphisms
-> Slice category > DPO, SPO, SqPO

Attributed graphs

=» Graphs related to
fixed data algebra

= Symbolic attributed
graphs

Heckel, Taentzer Graph Transformation for Software Engineers 28

“The clients attribute of a Super node is 0 iff there

Advanced features:
Graph constraints

are no Client nodes connected to it.”

Logically

self.clients=0 iff self.link->isEmpty()

or graphically

NOT

:Super

<link—{:Client]

clients = 0

NOT

:Super

clients > 0

link<]:Chient |

Heckel, Taentzer

Graph Transformation for Software Engineers

29

Advanced features:
Negative application conditions

“Apply shortcut rule only if nodes s2 and s3 are not
connected, neither directly nor via a 39 node.”

LHS RHS
K shortcut(sl)
ovl ovl ovl ovl ovl
Sapa] v Sore]

Heckel, Taentzer Graph Transformation for Software Engineers 30

Advanced features:
Path Expressions

“Apply connect only if there is no path of ov/ edges
between s7 and s2.”

LHS " RHS
s1:Super ovl* s2:Super connect(sl,s2) s1:Super ovl s2:Super
Heckel, Taentzer Graph Transformation for Software Engineers 31

Advanced features:
Multi Objects and Patterns

; . ay LHS
With the dangling condition, [T ShutdownSuper(s> RHS
we cannot delete a Super node clients = 0

without explicitly deleting all links to all its peers.

LHS [DC] (RHS
I I I I s:Super u:User
This is p_OSS|bIe_ using (s oSS0 —
a rule with multi object. o — —
Ssuper] S5uper]
S:Super matches the set of .
all super nodes linked to s: B T
\
ovl ovl
{S1] 82} s1:Super s2:Super s1:Super s2:Super
usr usr ufr ufr
1:User 2:U ul:User u2:User
me = “Pet me = “Reiko” me = “Pet me = “Reik

Heckel, Taentzer Graph Transformation for Software Engineers 32

Advanced features:
Merging

“Merge two user accounts into one.”

LHS
ul:User
name = uidl RHS
mergeAccounts(ul,u2,uidl) ul,u2:User
> name := uidl
u2:User
name = uid?2

Heckel, Taentzer

Graph Transformation for Software Engineers

33

Integrated Rule Notation

LHS

[; Node usr—{u:User]

= [ntegrate left- and right-hand side

newClient(u) = >

into a single graph

= Use colours and labels to

RHS

[u:User [« usrc: Client]

newClient(u) = c

T . . . s:Super
distinguish different roles [Userf-usr— 72 =ovi{ SiSuper|
LHS [DC] [RHS)
uer]
I — endSuperMuIti(s>
ovl
el [S5uwer]
Heckel, Taentzer Graph Transformation for Software Engineers 34

GTBLE: Firing rules e g®

for general Petri nets i i
Rule for 2:1 transitions (2 places pre, 1 place post set)
p1P _pre . re
m>0 < - post - fn1:.=F|;1.m-1 <p | post | p3:P
t: > p3: fireiti > t:T o
2P] m:=p3.m+1
p2:P | Pre m:=p2.m-1 | pre
m>0

How to ensure this is only applicable to 2:1 transitions?

Heckel, Taentzer Graph Transformation for Software Engineers 35

GTBLE: Firing rules e g®

for general Petri nets i i
Rule for 2:1 transitions (2 places pre, 1 place post set)
p1Z>PO <pre p1:P _pre
m post m:=p1.m-1 l post | p3:P
< ore t:T P p3:P | | fire(t t:T > m=p3.m+1
p2:P J ——
p2:P | pre| POt m:=p2.m-1 | pre
m>0]|

How to ensure this is only applicable to 2:1 transitions?

=>» Only matches if there are exactly 2 pre and 1 post
places.

Heckel, Taentzer Graph Transformation for Software Engineers 36

GTBLE: Firing rule B i d®
for general Petri nets 1 i

Firing rule for arbitrary transitions

pre post

' pre post [
fn1'>Po tT > p2:P | @ p1:P J eT o 22P

m:=p1.m-1 m:=p2.m+1

Matches sets of
= {p1:P|p1.m>0and p1in pre set of t}
= NAC ensures there is no p:P in pre set not in that set
= {p2:P | p2in post set of t}
Updates attributes m of all matched P nodes

Heckel, Taentzer Graph Transformation for Software Engineers 37

Formalise this, ...

Type, instance graphs Rules, transformations

> Graphs and graph = Rules as spans or
homomor phisms partial morphisms
-> Slice category > DPO, SPO, SqPO

Attributed graphs NACs, multi-objects

=» Graphs related to ,
fixed data algebra =>» Forbidden matches
=» Symbolic attributed =» Amalgamation

graphs

Heckel, Taentzer Graph Transformation for Software Engineers 38

GT4SE
Graph Transformation
for Software Engineers

Part 1: Foundations

v' Graphs
v Graph Transformations

« Semantics and Control

* Graph transformation systems, grammars, and
derivations

* Graph languages, relations and transition systems
* Rule-based programming: textual and diagrammatic

* Analysis
« Henshin Tool Demo

Semantics and

Control

TransformationSystem

AN

SemanticModel

Control

_——

Language

Relation

TransitionSystem

<

A\

Stochastic

Non-terminals ControlExp IntegrityConstraints Procedural Abstr
Conditional Choice Sequence AsLongAsPossible Atomic
Ordered

Heckel, Taentzer

Graph Transformation for Software Engineers

40

Transformation systems, grammars,

and semantic models

Graph transformation system GT7S = (TG, R)

Graph grammar GG = (TG, R, G)

E.qg. type graph and rules of the P2P model with
start graph as initial network configuration

Semantic Models

= Language: set of all graphs reachable from G,
= Relation: mapping from input to output graphs

= Transition system: reachable graphs as states,
transformation steps as transitions

Heckel, Taentzer Graph Transformation for Software Engineers

41

Relation: Compute Spanning Tree of

* 1 User
(Node]-"—usr—Lr—U%er_
A name: String

Super Nodes

Extended type graph

Rules to mark root
and children of
marked nodes

TG

N

Super

1

<=——link

. 1
child™ ‘ elem™
¥

clients: Integer

markRoot(s) »

RHS

5 Superkclom {: Thiodel

LHS

[TNode]

LHS

ov| c: Super
elem ellm

naz]

markChild(s) = >

RHS
s Swer} o[Sme]

elem elem

l l

[t: TNode fchild"{: TNode]

Initial set /. all unmarked instances graph of TG
Final set F: all graphs where all Super nodes are marked

Heckel, Taentzer

Graph Transformation for Software Engineers

45

P2P LTS
(partial)

= Graphs

State 1

u:User

uid = "Gabi"

u2:User

uid="Reiko"

s1:Super

clients = 0

=51 = newSuper(u)=9»

State 2

sl = newSuper(u2)

u:User s1:Super
uid = "Gabi" clients = 0
|
Y\USr ovl
|
u2:User s2:Super
uid="Reiko" clients = 0

l
sl = newSuper(u2)

State 3 State 4
as states wUser sl:Super wUser sTiSuper
uid = "Gabi" cIientls =0 uid = "G‘a\bi" clients = 0
ovl —s1 = newSuper(u) -y, us ovl
2:S
- St u2:User usr_| s3:Super ls tUFf"O ovl
epS as uid="Reiko" clients — 0 clients =
it A u2:User s3:Super
tranSItlonS s2 = endSuper(s2) Lid="Reiko" | Y3 Jients — 0
State 5
u:User sl:Super .
[| Ru Ie names uid = "Gabi" clients — 0 disconnectSuper(s2)
AN /
. usr
with args Sswer] o
clients = 0
as labels
u2:User USF— s3:Super
uid="Reiko" clients = 0
Heckel, Taentzer Graph Transformation for Software Engineers 47

Semantics and

Control

TransformationSystem

AN

SemanticModel

Control

_——

Language

Relation

TransitionSystem

<

A\

Stochastic

Non-terminals ControlExp IntegrityConstraints Procedural Abstr
Conditional Choice Sequence AsLongAsPossible Atomic
Ordered

Heckel, Taentzer

Graph Transformation for Software Engineers

48

Rule-based programming:

textual

Control expressions,

LHS

3

s:Super

|

shutdown = false

Procedural abstraction, ...

~

LHS

s:Super

shutdown = true

ovl

. _ (LHS
unit end.Super(sl. Super) { Suver
atomic { clients = n
{clients > 0}
alap { shutdown = true

disconnectSuper(sl,_)

}

alap {

s2:Super

clients = m
{clients < max}
shutdown = false

< link

redirectClient (s1,_ ,_)
}

shutdownSuper(sl)

}
}

\

(LHS)
s:Super
usr— clients = 0
shutdown = true
ovl

v

RHS

s:Super

shutdown := true

startShutdown(s) [

I disconnectSu perSd(s>

(RHS

s:Super

clients := n-1

I redirectCIientSd(s,c,s2>

s2:Super
clients := m+1

link

~

I shutdownSUperSd(5> [%

Heckel, Taentzer

Graph Transformation for Software Engineers

49

Rule-based programming:
diagrammatic

endSuperTransaction(s:Super)

redirectClient(s, _,_)
s:Super
disconnectSuper(s, _) clients =c [<link:
clients ;== c- 1 *
s:Super
: :
‘—’ : —exit—> ({[mk
ovl r
| K
' :Super
:Super _ P
clients = c
alap\/ clients :=c+ 1
{clients < max}
alap\/ |
exit

Using activity diagrams
to control transformation rules

<2%— ‘-usr-_:__s_=§999t_j
I

shutdownSuperTrans(s)

Heckel, Taentzer Graph Transformation for Software Engineers

GT4SE
Graph Transformation
for Software Engineers

Part 1: Foundations

v' Graphs
v" Graph Transformations
v' Semantics and Control
* Analysis
* Properties: analysis problems

» Techniques: solutions
* Mapping problems to solutions

* Henshin Tool Demo

Languages

membership
Inclusion

Instance
generation

non-ambiguity

Properties

Relations Trans Systems
= functionality = reachability
(uniqueness) = invariants

= totality = deadlocks

= injectivity = planning,

= surjectivity optimisation
= correctness = temporal, pre-

post properties
= termination
= confluence

Heckel, Taentzer

Graph Transformation for Software Engineers 52

Techniques

Static Dynamic
= Conflict and = Model checking
Dependency AnaIySiS R Graph parsing

Termination Analysis

Constraint Verification
and Enforcement

Heckel, Taentzer Graph Transformation for Software Engineers

53

Conflict and dep- Termination Constraint Model Graph
endency analysis analysis verification checking parsing

Language
Membership
Inclusion X

Instance generation X
Non-ambiguity

X
X

<A
e
sRolsRs

Relation

Functional behaviour X
Totality

Injectivity X
Surjectivity

Correctness X X

SRolsle
SRRl
e

Transition system
Reachability
Invariants X
Deadlocks
Planning &
optimisation
Temporal properties X
Termination X
Confluence X X

sRals

SRl

Heckel, Taentzer Graph Transformation for Software Engineers

Tools: Henshin

S eclipse-workspace - org.henshin.bank/src/org/henshin/bank/bank.henshin_diagram - Eclipse IDE

- a X
File Edit Diagram Navigate Search Project Run Window Help
O-EHRi%~0~Q&~iBs vidl v §l v GFE v D v |4@Ms Gothic vig VIBILA~ &~ .sv > v |RivR v |p £~ | 100% v
L moade
% Model Explorer % E% 877 [@sbankaird & *bankhensh.. i1 & *bank class... & example-ban... 4% example-ban... 4 example-ban... & =
type filter text x » t f t .
P i >
v > org.henshin.bank > Rule A (in cl ing, in [5> Rule defeteAllAccounts(in clientEString) | D) ra l l S O rl I I a I O I I
v Bsrc = Rule
~ #orghenshin.bank «preserve» «preserve [«preserve» preserver|«preserven E Node
2] BankExample java :Bank :Manager * renager e
[l bank.aird i e Managers ' ’ 9e
- «forbid» ~ proserve «delete™ «preserver | «preserves i
#bank.ecore accounts «create» \preserve» preserve» accounts clients Jient: = Attribute
& i accounts clients | clients clients
& bank.henshin ¢ . ? Conditi
z L i «create» «preserve» «delete*»| delete™y|Preserve» ondition
& bank henshin_diagram [«create» | Account |99/ Brient .
b &y-bank xmi ‘Account m.clrenl g owner - o Unit
& empty-bank.xmi = id=accountld = id=accountld = name: nt =0 O l I I ‘ a l I
& example-bank_transformed.xm & |nvocation
@ exemple-banlmi- Sl "
4 example-resultxmi = Rule transferMoney/(in client:EString, in fromid-Elnt, in told:Elnt, in amount:EDouble, var x:EDouble, var y:EDouble) 8
=\ JRE System Library [JavaSE-1.7] Account
=\ Plug-in Dependencies N E Bank
#=META-INF -Client E Client .
I P2PNetworks = name=client
B Manager
«preserve»
accounts H Person
«preserve» «preserve»
:Account :Account
= credit=x->x-amount = credit=y->y+amount
= id=fromld = id=told
> Condition financial covering * Condition positive transfer only
x>amount amount>0 C tr i t
< >
= s [ol]
= popees - ERETE PEVELTe) verification
< >
= Rule
=B s =
% Outline % vEEE -0
Core Property Value A
A Activated &true
earance
PP Check Dangling true
Description
Injective Matching
Java Imports

-~ Model checking
https://www.eclipse.org/henshin/ by translation

Heckel, Taentzer Graph Transformation for Software Engineers 55

Tools: Groove

%7 Production Simulator

mEX]

File Edit =plore
@ F connect = =
S (= (= i
%7 disconnect : 1
@ %7 fail i - T
Brawa Match 1 2 o s o
Beasa Match 2 ;
Oy
®” handover : "2 Wa
@ %7 is_connected 7 Y _...I(/ o
Brawg Match 1 < .
%7 looseSig i “ e e A aeF
5P move i N = T, A Nt S
%2 moveln 2 . =0
@ %7 moveOut o hgay N
s Match 1 < = 2 et 2
Brawg Match 2 e L
o’ repair i 7 .
%7 sEins_isNotok |4 ____ £Neh fe s : & =t
i - a——)
" et AT = 3 P ama
i = -
- e iy AR T =
et — = =
t— : e ~
e | ey =
. AP _— -
4 —
= Vo
Ay “ 3 .
4 =
“|64 nodes, 480 edges

) https://groove.ewi.utwente.nl

Graph
transformation

Visualisation
of rules and
matches

Native model
checking in
CTL and LTL

Heckel, Taentzer

Graph Transformation for Software Engineers 56

IG ?‘Li%rgation&
Part 1: Foundations

v' Graphs
v" Graph Transformations
v" Semantics and Control
v" Analysis

Further Reading

Gabriele Taentzer

GT4SE
Graph Transformation
for Software Engineers

Transformation
for Software ’ AUthO_r COPY Part Il - Graph Transformation in Software
EnglneerS » [Exercises Engineering
With Applicatons to Model-Based Slides 5. Detecting Inconsistent Requirements in a
sk bl Use-Case-Driven Approach
S 6. Service Specification and Matching
7. Model-Based Testing
8. Reverse Engineering: Inferring Visual
Contracts from Java Programs
Part | - Foundations of Graph 9. Stochastic Analysis of Dynamic Software

Transformation

1. Graphs for Modelling and Specification 10.

2. Graph Transformation Concepts
3. Beyond Individual Rules: Usage

Scenarios and Control Structures 11.

4. Analysis and Improvement of Graph

Transformation Systems 12.

Architectures

Advanced Modelling-Language Definition:
Integrating Metamodelling with Graph
Transformation

Improving Models and Understanding Model
Changes

Translating and Synchronising Models

Heckel, Taentzer Graph Transformation for Software Engineers 58

http://www.graph-transformation-for-software-engineers.org/

