
Graph Transformation:
Foundations and Applications to

Software Engineering
Reiko Heckel

University of Leicester, UK

Based on book with Gabriele Taentzer
Philipps Universität Marburg, Germany

MGS 2022

Graphs and Graph Transformations

Graphs represent
§ Class and object

structures
§ Processes and

architectures
§ Diagrams,3D

objects

formally, visually
and directly (little
need for encoding)

Graph transformations
model

§ Behaviour and
reconfiguration

§ Creation, manipulation,
evolution

§ Operational semantics

in an intuitive rule-based
way, with formal semantics
for execution and analysis

Heckel, Taentzer Graph Transformation for Software Engineers 2

Outline

Foundations
§ Graphs
§ Graph Transformations
§ Semantics and Control
§ Analysis Techniques

Two Types of Applications
Graph Transformation-Based
§ Software Engineering

è GTBSE

§ Language Engineering
è GTBLE

Heckel, Taentzer Graph Transformation for Software Engineers 3

Part 1: Foundations

• Graphs
• Graph Transformations
• Semantics and Control
• Analysis

Graphs

Heckel, Taentzer Graph Transformation for Software Engineers 5

6 1 Graphs for Modelling and Specification

It turns out that such an Euler walk does not exist in this case, and Euler’s
theorem states that such a walk is possible if and only if every vertex in the
graph has an even number of edges attached to it.

Fig. 1.1. The seven bridges of Königsberg1

ÙÛ

Example 1.2 (chemical valence graphs). Another well-known example of graphs
comes from chemistry. Fig. 1.2 shows a valence graph of the dichlorine hep-
toxide molecule. The vertices stand for atoms of a certain chemical element, in
this example seven labelled “O” for oxygen and two labelled “Cl” for chlorine.
The edges represent bonding between atoms: essentially, each edge models a
single bond induced by a saturated valency.

Fig. 1.2. Valence graph of the dichlorine heptoxide molecule2

ÙÛ

Example 1.3 (food web). A mouse eats plants and is a delicacy for a snake,
which has to hide so as not to be caught by a kite. Such food chains occur
in all ecosystems. Since they are highly interconnected, they actually form a
food web. A sample food web graph is depicted in Fig. 1.3. It contains several
food chains, all starting with green plants and ending with some carnivore.

ÙÛ

Example 1.4 (London Tube map). When travelling by underground in Lon-
don, a Tube map helps us with finding out which line to take and where to
change lines. A section of the London Tube map is shown in Fig. 1.4. It can
be interpreted as a graph in which each station forms a vertex, and each con-
nection by each line forms an edge. As we see in the map, two stations may

1 From en.wikipedia.org/wiki/Eulerianpath.
2 From en.wikipedia.org/wiki/Valence_(chemistry).

6 1 Graphs for Modelling and Specification

It turns out that such an Euler walk does not exist in this case, and Euler’s
theorem states that such a walk is possible if and only if every vertex in the
graph has an even number of edges attached to it.

Fig. 1.1. The seven bridges of Königsberg1

ÙÛ

Example 1.2 (chemical valence graphs). Another well-known example of graphs
comes from chemistry. Fig. 1.2 shows a valence graph of the dichlorine hep-
toxide molecule. The vertices stand for atoms of a certain chemical element, in
this example seven labelled “O” for oxygen and two labelled “Cl” for chlorine.
The edges represent bonding between atoms: essentially, each edge models a
single bond induced by a saturated valency.

Fig. 1.2. Valence graph of the dichlorine heptoxide molecule2

ÙÛ

Example 1.3 (food web). A mouse eats plants and is a delicacy for a snake,
which has to hide so as not to be caught by a kite. Such food chains occur
in all ecosystems. Since they are highly interconnected, they actually form a
food web. A sample food web graph is depicted in Fig. 1.3. It contains several
food chains, all starting with green plants and ending with some carnivore.

ÙÛ

Example 1.4 (London Tube map). When travelling by underground in Lon-
don, a Tube map helps us with finding out which line to take and where to
change lines. A section of the London Tube map is shown in Fig. 1.4. It can
be interpreted as a graph in which each station forms a vertex, and each con-
nection by each line forms an edge. As we see in the map, two stations may

1 From en.wikipedia.org/wiki/Eulerianpath.
2 From en.wikipedia.org/wiki/Valence_(chemistry).

1 Graphs for Modelling and Specification 7

Fig. 1.3. A food web graph3

be connected by several lines: for instance, Earl’s Court and South Kensing-
ton (bottom left) are connected by two lines, coloured blue and green. In the
graph of stations and connections, Earl’s Court and South Kensington would
be vertices and the connections would become two parallel edges labelled by
di�erent colours. Once we have represented the Tube map as a graph struc-
ture, it can be used to find the path with the least number of stops between
two given stations, maybe combined with the minimum number of changes.
Hence, it can be used to provide travel suggestions.

Fig. 1.4. Section of the London Tube map4

ÙÛ

Example 1.5 (Voice-over-IP network). To model a peer-to-peer architecture,
we can use graphs with peers represented by vertices and connections between
peers represented by edges. Originally, the Skype IP telephony application sto-
red user and connectivity information in decentralised form [117], i.e. without

3 See the food web graph at biology.tutorvista.com/ecology/food-web.html.
4 See the London Tube map at https://tfl.gov.uk/maps/track/tube.

1 Graphs for Modelling and Specification 7

Fig. 1.3. A food web graph3

be connected by several lines: for instance, Earl’s Court and South Kensing-
ton (bottom left) are connected by two lines, coloured blue and green. In the
graph of stations and connections, Earl’s Court and South Kensington would
be vertices and the connections would become two parallel edges labelled by
di�erent colours. Once we have represented the Tube map as a graph struc-
ture, it can be used to find the path with the least number of stops between
two given stations, maybe combined with the minimum number of changes.
Hence, it can be used to provide travel suggestions.

Fig. 1.4. Section of the London Tube map4

ÙÛ

Example 1.5 (Voice-over-IP network). To model a peer-to-peer architecture,
we can use graphs with peers represented by vertices and connections between
peers represented by edges. Originally, the Skype IP telephony application sto-
red user and connectivity information in decentralised form [117], i.e. without

3 See the food web graph at biology.tutorvista.com/ecology/food-web.html.
4 See the London Tube map at https://tfl.gov.uk/maps/track/tube.

8 1 Graphs for Modelling and Specification

the use of a central infrastructure. Skype allows registered users to make voice-
over-IP (VoIP) calls and send messages to other users. A small example of a
VoIP network is shown in Fig. 1.5. User activities cause frequent changes in
VoIP networks. Hence, this example deals with highly dynamic graphs that
are transformed to reflect ongoing network reconfiguration.

Gabi

Reiko

Peter

Fig. 1.5. A small voice-over-IP network

ÙÛ

Example 1.6 (visualisation of software package dependencies). Graphs are of-
ten used to represent dependency structures of software modules. The graph
in Fig. 1.6 shows dependencies between software packages of a Web appli-
cation written in Java. Vertices represent packages and edges show package
dependencies; each edge is labelled by a number which stands for the number
of references causing a dependency. The shading of a vertex also conveys in-
formation: internal, application-specific packages are shown in black, whereas
the grey boxes correspond to external packages that are referenced by the
internal ones.

To better understand the information illustrated, we shall explain the
graph in Fig. 1.6 in more detail. A dependency graph can be used to cal-
culate each package’s resilience to change by computing its instability metric
I. This is calculated as I = Ce/(Ce + Ca), with Ce and Ca being the e�e-
rent and a�erent couplings of the package. The a�erent coupling of a package
denotes the number of classes in other packages that depend upon classes
within this package, while the e�erent coupling is the number of classes in
other packages that the classes in this package depend upon. The instability
metric I ranges from 0 to 1, with I = 0 indicating a completely stable package
and I = 1 indicating a completely unstable package. For instance, the depen-
dency graph in Fig. 1.6 has two unstable packages, application and test,
with I = 1, and two rather stable packages, daos (I = 0.3) and entities
(I = 0.2). ÙÛ

Example 1.7 (visualisation of data structures). During the development of a
software system, the design of its data structures is a crucial task. The visu-
alisation of sample structures can help to get a clear idea of what to develop.
Fig. 1.7 (top) shows a list of tasks as a doubly linked list. Each list entry con-
tains two links: one to the previous and one to the next entry. If an entry is

1 Graphs for Modelling and Specification 9

Fig. 1.6. Software package dependency graph

the first or last one, its predecessor or successor, respectively, is a specifically
designated entry not holding data and links, to terminate traversal. While
the adding and removing of list entries requires more change actions than in
singly linked lists, these actions can be realised in a more uniform way, since
the first and last entries do not have to be handled di�erently.

The bottom half of Fig. 1.7 shows a corresponding graph with type in-
formation. List entries are Tasks, storing task names in the attribute details.
Links are represented as edges, distinguished by types. The list itself is re-
presented by a List vertex pointing to its first and last entries by specifically
typed outgoing first and last edges. The list entries point to the next and previ-
ous elements using next and prev edges, except for the first and the last entry.
To complete this structure, the doubly linked list could be made circular by
inserting next and prev edges between the first and the last list entry as well.

: List

: Task

details = "read book"
: Task

details = "write letter"
: Task

details = "meet Peter"

first lasthas has has

next
prev

next
prev

Fig. 1.7. Schema (top) and graph representation (bottom) of a doubly linked list

Another graph representation of this sample list annotates edges with num-
bers to order tasks. Hence, edges are annotated by the indices of their adja-

1 Graphs for Modelling and Specification 9

Fig. 1.6. Software package dependency graph

the first or last one, its predecessor or successor, respectively, is a specifically
designated entry not holding data and links, to terminate traversal. While
the adding and removing of list entries requires more change actions than in
singly linked lists, these actions can be realised in a more uniform way, since
the first and last entries do not have to be handled di�erently.

The bottom half of Fig. 1.7 shows a corresponding graph with type in-
formation. List entries are Tasks, storing task names in the attribute details.
Links are represented as edges, distinguished by types. The list itself is re-
presented by a List vertex pointing to its first and last entries by specifically
typed outgoing first and last edges. The list entries point to the next and previ-
ous elements using next and prev edges, except for the first and the last entry.
To complete this structure, the doubly linked list could be made circular by
inserting next and prev edges between the first and the last list entry as well.

: List

: Task

details = "read book"
: Task

details = "write letter"
: Task

details = "meet Peter"

first lasthas has has

next
prev

next
prev

Fig. 1.7. Schema (top) and graph representation (bottom) of a doubly linked list

Another graph representation of this sample list annotates edges with num-
bers to order tasks. Hence, edges are annotated by the indices of their adja-

1.4 Hypergraphs 21

Each visual object is represented by a hyperedge of type text, while or cond,
corresponding to, respectively, textual statements, while loops and if–then–
else conditions. Dependent on its type, each hyperedge may have four or even
six attachment points represented by untyped vertices. For instance, the left-
hand side of Fig. 1.15 shows a Nassi–Shneiderman diagram; the corresponding
hypergraph (without attributes) is shown to its right. ÙÛ

Fig. 1.15. Nassi–Shneiderman diagram with its hypergraph representation6

Thus, hyperedges can be used to model n-ary relations over vertices.
Instead of pairs E ™ V ◊ V as for simple graphs, hyperedges can be modelled
as lists of vertices, i.e. E ™ V ú. The vertices in the list are called tentacles or
attachment points, based on the visual notation for hyperedges as illustrated
in Fig. 1.15. Regarding the possible range of attachments, hyperedges can be
defined with any number of attachment points, which may be zero, one, two
or more. Since the attachment points form a list, they are ordered and can
be distinguished, just like the source and target of (directed) binary edges.
Moreover, similarly to binary loops, hyperedges may be attached to the same
vertex more than once. However, there is also a variant where all attachments
points of a hyperedge are mutually distinct [74]. Like simple graphs or mul-
tigraphs, hypergraphs may be typed and attributed. Hyperedges of the same
type are assumed to have the same number of attachment points. The hyper-
graph in Fig. 1.15 is well typed: for instance, all text hyperedges have four
tentacles.

In the explanation above, hypergraphs were defined as an extension of
directed simple graphs. They may equally well be defined as an extension of
undirected graphs, or of multigraphs. Table 1.3 presents all the possible edge
structures for hypergraphs, where Pf (V) denotes the set of all finite subsets
V , and Mf (V) the set of all finite multisets over V . This is entirely analogous
to (but more general than) Table 1.1 for binary edges, except that we have
left out the case of hyperedges without loop.

Yet another possible representation of multi-hypergraphs is obtained by
representing the hyperedges themselves as “relational” vertices, and the ten-

6 Figures taken from [11].

Variants of graphs

Heckel, Taentzer Graph Transformation for Software Engineers 6

Directed or undirected
Labelled or typed

Heckel, Taentzer Graph Transformation for Software Engineers 7

1.3 Decorations: Labels, Types and Attributes 17

G

s: Super gabi: User

c1: Client

c2: Client

peter: User

reiko: User

usr

link

link

usr

usr

type

TG

Super

User

Client

usr usr

link

Fig. 1.11. Type and instance graph of the VoIP network

Boolean values, for example, with all the usual operations such as addition
(for numbers), concatenation (for strings) or Boolean connectors. As the di-
agram in Fig. 1.9 shows, attributes are an optional feature that can be used
independently of label or type decorations; however, the combination of types
and attributes is by far the most common one, and the one mainly used in
the remainder of the book.

To allow more than one attribute per graph element, attributes are equip-
ped with names. In a typed setting, the type graph also specifies the attribute
names and value domains; i.e. each vertex type may be further specified by
a list of its attributes. This means that all instances of a given type are at-
tributed in the same way. A Super node in a VoIP net, for example, may be
further specified by a name, computational power, storage capabilities and
connection bandwidth. In some cases, attributes are used to uniquely define
vertices, essentially acting like database keys, such as in the case of user IDs
or registration numbers.

Example 1.11 (VoIP network as typed attributed graph). In Fig. 1.10, we used
simple labels to encode user names; in Example 1.9, user names only served
the presentation but where not formally part of the graph. The simple-label
solution means that every possible name has to be in the set of labels, and
that name changes, such as those which may happen in the case of marriage,
cannot be computed by concatenating two existing names. Instead, it is better
to keep names as separate from the graph structure; i.e. using attributes. We
also use an attribute at Super nodes to count the number of clients attached.

Undirected labelled graph
§ Nodes set V, Edges E ⊆ P2(V)
§ Labels L = {Peter, Gabi, Reiko}
§ labV: V à L

Directed typed graph
§ Node, edge labels form type graph TG
§ Instance graph G with homomorphism

type preserving graph structure

GTBSE or GTBLE?

GTBLE: Petri nets
Create

§ Type graph for Petri nets
§ Instance graph for the

example

Design decisions
§ Bipartite (or unordered hyper)

graphs as typed graphs
§ Node type Tn to represent

tokens (left) vs attribute m for
marking (right)

Marked graphs (right)
§ add constraints for singleton

pre and post sets

Heckel, Taentzer Graph Transformation for Software Engineers 8

P
m: Nat T

pre

post

P T

pre

post

Tn
tn

1

1

p1:P
m=1 t1:T

pre

post

p2:P
m=1 t2:T

pre

t0:T
post

Typed attributed graphs
with subtyping
Structured P2P model
§ Client and Super
Nodes serve Users

§ Super nodes form
overlay network,
support limited
number of Clients

è GTBSE

24 1 Graphs for Modelling and Specification

G

s: Super

clients = 2
u3: User

name = ‘’Gabi’’

c1: Client

c2: Client

u1: User

name = ‘’Reiko’’

u2: User

name = ‘’Peter’’

usr

link

link

usr

usr

type

TG

Super

clients: Integer

Node User

name: String

Client
*link1

0..1 usr 1

*
ovl

*

Fig. 1.16. VoIP network with subtypes and multiplicities

and a node must not (transitively) contain itself. In [41], it was shown that
typed attributed graphs with inheritance and containment are able to formally
underpin EMF models.

Example 1.16 (graph structure of EMF models). The EMF model in Fig. 1.17
specifies a simplified variant of a statechart, a particular kind of model of
system behaviour based on hierarchical automata. A StateMachine consists of
state vertices which may be PseudoStates used to indicate initial states and
States that may be further refined to FinalStates. Since the behaviour of a State
may be specified by an automaton, it may contain vertices and Transitions.
Containment edges are indicated by black diamonds in Fig. 1.17. Together
with the requirement that a model must always contain a single StateMachine
vertex, this definition of containment relations allows and enforces spanning
trees with StateMachine instances as roots.

Figure 1.18 shows a simple statechart as an instance model in three di�e-
rent views. While the diagrammatic view on the right shows the statechart in
its concrete syntax, its containment structure is shown on the left in a tree-like
representation. This view shows that StateMachine contains a State “Phone”,
which contains some states and transitions. State “Active” is further refined
and contains again states and transitions. At the bottom right, a so-called

7 Figure taken from [41].

Heckel, Taentzer Graph Transformation for Software Engineers 9

Formalise this, …

Type, instance graphs
èGraphs and graph

homomorphisms
èSlice category

Attributed graphs
èGraphs related to

fixed data algebra
èSymbolic attributed

graphs

Heckel, Taentzer Graph Transformation for Software Engineers 10

Part 1: Foundations

ü Graphs
• Graph Transformations

• Basic rules and transformations
• Global application conditions
• Advanced features

• Semantics and Control
• Analysis
• Henshin Tool Demo

Rules generalize transformations

Specify changes by
§ Difference

between pre and
post graphs
èDeleted: L \ R
èCreated: R \ L

§ Context required
for the changes to
happen
è Preserved: L ∩ R

32 2 Graph Transformation Concepts

The di�erence between the rule and the transformation is twofold. First,
the rule does not mention unnecessary context, but only those nodes that are
needed for the change to take place. In our case, Peter’s node was deemed
irrelevant to the disconnection of Reiko’s from Gabi’s node. Second, the rule
also abstracts from the concrete identity of the objects in the states. For
example, the same rule could now be used to disconnect Peter’s node. This
exemplifies the second basic idea of graph transformation: the use of rules to
specify state transformations. ÙÛ

u1
u2

Rule

u1
u2

Gabi

Reiko

Peter Gabi

Reiko

Peter

States
transformed

Types

Fig. 2.1. Gluing approach, rule and transformation

This example demonstrates the principles that hold true in all graph trans-
formation approaches:

• A graph rule specifies the conditions under which a graph transformation
can take place and the actions that should be performed in that transfor-
mation. In the above example, only an edge was deleted; it is assumed that
this edge runs between two network nodes that exist and are preserved.

• Each such rule consists of a left-hand side, specifying the situation before
the change, and a right-hand side, corresponding to the situation after the
change. Applying the rule, the context outside the area matched by the
rule’s left-hand side is not changed. In our example, Peter’s node and its
connection to Gabi’s node are not e�ected.

We distinguish two fundamentally di�erent approaches to graph transfor-
mation, which we will refer to as gluing and embedding. They di�er in the

Heckel, Taentzer Graph Transformation for Software Engineers 12

Rule should describe
- What changes, and how?
- In which situations?

Rules generalize transformations

Specify changes by
§ Difference

between pre and
post graphs
èDeleted: L \ R
èCreated: R \ L

§ Context required
for the changes to
happen
è Preserved: L ∩ R

32 2 Graph Transformation Concepts

The di�erence between the rule and the transformation is twofold. First,
the rule does not mention unnecessary context, but only those nodes that are
needed for the change to take place. In our case, Peter’s node was deemed
irrelevant to the disconnection of Reiko’s from Gabi’s node. Second, the rule
also abstracts from the concrete identity of the objects in the states. For
example, the same rule could now be used to disconnect Peter’s node. This
exemplifies the second basic idea of graph transformation: the use of rules to
specify state transformations. ÙÛ

u1
u2

Rule

u1
u2

Gabi

Reiko

Peter Gabi

Reiko

Peter

States
transformed

Types

Fig. 2.1. Gluing approach, rule and transformation

This example demonstrates the principles that hold true in all graph trans-
formation approaches:

• A graph rule specifies the conditions under which a graph transformation
can take place and the actions that should be performed in that transfor-
mation. In the above example, only an edge was deleted; it is assumed that
this edge runs between two network nodes that exist and are preserved.

• Each such rule consists of a left-hand side, specifying the situation before
the change, and a right-hand side, corresponding to the situation after the
change. Applying the rule, the context outside the area matched by the
rule’s left-hand side is not changed. In our example, Peter’s node and its
connection to Gabi’s node are not e�ected.

We distinguish two fundamentally di�erent approaches to graph transfor-
mation, which we will refer to as gluing and embedding. They di�er in the

Heckel, Taentzer Graph Transformation for Software Engineers 13

Two ways to embed replacement R
graph into context

Gluing approaches
Interface shared between L
and R provides gluing points
è our choice

Connecting approaches
R is linked to context by
edges created according to
embedding relation

Heckel, Taentzer Graph Transformation for Software Engineers 14

34 2 Graph Transformation Concepts

delete the e-edge and replace it by an f -edge to vertex z in R.” Hence, the ap-
plication of this relation results in additional edges connecting the two graphs,
as illustrated at the bottom right of Fig. 2.3. While a rule in the embedding

/ 5

5/

/ 5

5/

Fig. 2.3. Schematic view of the embedding approach to graph transformation

approach consists of two graphs L and R plus the embedding relation, the
gluing approach does not require an embedding relation but instead relies on
a so-called gluing graph shared between the left- and right-hand sides of a rule.
Figure 2.4 gives a schematic view of the gluing approach. Once more, the red
part (of the left-hand side) denotes the graph elements to be deleted while the
green part (at the right-hand side) denotes new graph elements to be inserted.
This time, however, the left- and right-hand sides contain a common gluing
graph, so that the developer can use it to specify exactly how the deleted and
created elements are connected to the context graph. After a match of the
left-hand side (including the gluing graph) has been found, all graph parts
matched by the left-hand side, but not by the gluing graph, are deleted, while
graph elements in the match of the gluing graph are preserved. They form the
required graph part that is needed to insert new graph elements as specified by
R. No additional embedding relation is needed here. An example was given in
Fig. 2.1. With this basic understanding of graph transformation at hand, we

/ 5

5/

/ 5

5/

Fig. 2.4. Schematic view of the gluing approach to graph transformation

now consider the relevant graph transformation concepts. We present another
feature model to get an overview of the core features of graph transformations
and to understand how they are related. Then the gluing approach to graph
transformation is explained in detail.

34 2 Graph Transformation Concepts

delete the e-edge and replace it by an f -edge to vertex z in R.” Hence, the ap-
plication of this relation results in additional edges connecting the two graphs,
as illustrated at the bottom right of Fig. 2.3. While a rule in the embedding

/ 5

5/

/ 5

5/

Fig. 2.3. Schematic view of the embedding approach to graph transformation

approach consists of two graphs L and R plus the embedding relation, the
gluing approach does not require an embedding relation but instead relies on
a so-called gluing graph shared between the left- and right-hand sides of a rule.
Figure 2.4 gives a schematic view of the gluing approach. Once more, the red
part (of the left-hand side) denotes the graph elements to be deleted while the
green part (at the right-hand side) denotes new graph elements to be inserted.
This time, however, the left- and right-hand sides contain a common gluing
graph, so that the developer can use it to specify exactly how the deleted and
created elements are connected to the context graph. After a match of the
left-hand side (including the gluing graph) has been found, all graph parts
matched by the left-hand side, but not by the gluing graph, are deleted, while
graph elements in the match of the gluing graph are preserved. They form the
required graph part that is needed to insert new graph elements as specified by
R. No additional embedding relation is needed here. An example was given in
Fig. 2.1. With this basic understanding of graph transformation at hand, we

/ 5

5/

/ 5

5/

Fig. 2.4. Schematic view of the gluing approach to graph transformation

now consider the relevant graph transformation concepts. We present another
feature model to get an overview of the core features of graph transformations
and to understand how they are related. Then the gluing approach to graph
transformation is explained in detail.

Example: Connecting Approach
More powerful, but mathematically less tractable.

Simulated by
gluing approach
using multi objects.

2 Graph Transformation Concepts 33

mechanism used to combine the right-hand side of the rule with the context
left over from the given graph after deletion of the matched left-hand side. In
the gluing approach, the new graph is formed by gluing the right-hand side
to the context along a common subgraph. This principle was illustrated in
Example 2.1 above. In the embedding approach, on the other hand, the new
graph is formed by a disjoint union, with new edges created to connect the
right-hand side with the rest of the graph. This is illustrated by the following
example.

Example 2.2 (example transformation, embedding approach). Figure 2.2 shows
an example transformation in the embedding approach. The rule in question
creates a new server node; it has an associated embedding relation which
states that this new server should be connected to all existing servers. Note
that the left-hand side of the rule is empty, meaning that this rule is always
applicable (there is nothing to be matched). ÙÛ

Rule

new

Gabi

Barbara

Peter Gabi

Barbara

Peter

new
States

transformed

Embedding relation:

Fig. 2.2. Embedding approach, rule and transformation

More abstractly, in the embedding approach, the transformation starts by
finding a match of the left-hand side L in the graph, as indicated by the left
graph in the bottom row of Fig. 2.3. The matched part is deleted from the
graph; adjacent edges of deleted vertices are deleted as well. This leaves the
so-called context graph (depicted by a grey ring), which is unchanged. Subse-
quently, a copy of the right-hand side R is added to that context graph. At this
point, the question is how to connect R with the context graph. Just putting
them side by side without any connections, in other words taking their disjoint
union, is usually not the intention of the developer. Therefore, the embedding
approach supports the definition of an embedding relation between vertices of
R and of the context graph. This relation is defined in the form “If a context
vertex with label x is present and connected by an e-edge to vertex y, then

Heckel, Taentzer Graph Transformation for Software Engineers 15

Heckel, Taentzer Graph Transformation for Software Engineers 16

2.1 Feature Model for Graph Transformation Concepts 35

2.1 Feature Model for Graph Transformation Concepts

As we did for the features of graphs, we analyse the domain of graph trans-
formation approaches according to the commonalities and variabilities of con-
cepts. Figure 2.5 shows a feature diagram defining a taxonomy for graph
transformation concepts. As before in Fig. 1.9, this feature model is not me-
ant to be normative but is intended to establish an overview of the available
graph transformation concepts and explain how they are interrelated.

GraphTransformation

BasicApproach TransformationRule AttributeLanguage TransformationSystem

Embedding Gluing Action ApplicationConditions MultiPatterns Parameters

Deleting Merging Copying Predefined User-defined

Any Identification Injective Gluing InjectiveGluing Atomic Nested

NACs PACs AttributeConditions PathExpression

Fig. 2.5. Feature model for graph transformation concepts

As stated at the beginning of this chapter, we understand graph transfor-
mation to be rule-based. Given a basic approach, i.e. gluing or embedding (see
above), the main point of variability is the concept of a transformation rule.
The structure of transformation rules and the way they are applied to graphs
can vary greatly. All rules have in common that they are able to check the
availability of certain patterns during the process of matching.

Note 2.1: Pattern-based rewriting. Graph transformation is pattern-
based: a rule is applied by checking for the existence (and non-existence,
in the case of negative conditions) of graph patterns specified in its left-
hand side, and replacing an occurrence of this pattern by a copy of the
right-hand side.

Replacing the left-hand side pattern by the right-hand side pattern can be
broken down into basic actions.

Graph Transformation Concepts

38 2 Graph Transformation Concepts

Example 2.3 (introductory example of a graph transformation). Figure 2.6
shows a detailed graph representation of the transformation shown in Fig. 2.1.
The additional details concern the clients count in the Super node and the name
attributes in the User nodes. Note that all graphs, both in the rule and in the
concrete transformation, conform to the type graph of Fig. 1.16.

In the rule, generalisation is achieved by focusing on the relevant subgraph
of the given graph IN and observing its changes in the derived graph OUT.
The context graph (in terms of Fig. 2.4) is not shown explicitly but can be
deduced from the rule by identifying all elements that occur both in the left-
and the right-hand side. Since this particular rule does not add graph elements,
its gluing graph is equal to the right-hand side without the assignment to the
clients attribute whose update is realised by the deletion of the link to the old
value and the creation of a link to the new value. We abstract from concrete
attribute values, replacing, for example, clients = 2 in graph IN by clients = n,
and clients = 1 in OUT by clients = n-1. ÙÛ

LHS

s: Super

clients = n

u: Userc: Client usr

link endClient(c) = c

RHS

s: Super

clients := n-1

u: User

IN

s: Super

clients = 2
u3: User

name = “Gabi”

u1: User

name = “Peter”

u2: User

name = “Reiko”

c1: Client

usr

link

usr

c2: Client

link

usr

OUT

s: Super

clients = 1
u3: User

name = “Gabi”

u1: User

name = “Peter”

u2: User

name = “Reiko”

c1: Client

usr

link

usr

c2 = endClient(c2)

Fig. 2.6. From state transformations to rules: graph representation (LHS: left-hand
side, RHS: right-hand side

2.2.1 Elementary Rules

A rule combines a number of checks and actions that should be executed toget-
her. In this sense it is similar to an operation or a method in programming. To
be able to refer to these checks and actions abstractly, a rule has a signature
consisting of a rule name and a list of formal parameters. A formal parameter
name corresponds to either a node identity or an attribute value which is used

Rule Features
§ Left- and right-hand side
§ UML-like object notation

§ c:Client, u: User, s: Super
§ Attribute conditions

§ clients = n
§ Attribute assignments

§ clients := n-1

§ Rule signature
§ endClient(c: Client) : Client

§ Rule label
§ endClient(c) = c

Graph Transformation for Software EngineersHeckel, Taentzer

38 2 Graph Transformation Concepts

Example 2.3 (introductory example of a graph transformation). Figure 2.6
shows a detailed graph representation of the transformation shown in Fig. 2.1.
The additional details concern the clients count in the Super node and the name
attributes in the User nodes. Note that all graphs, both in the rule and in the
concrete transformation, conform to the type graph of Fig. 1.16.

In the rule, generalisation is achieved by focusing on the relevant subgraph
of the given graph IN and observing its changes in the derived graph OUT.
The context graph (in terms of Fig. 2.4) is not shown explicitly but can be
deduced from the rule by identifying all elements that occur both in the left-
and the right-hand side. Since this particular rule does not add graph elements,
its gluing graph is equal to the right-hand side without the assignment to the
clients attribute whose update is realised by the deletion of the link to the old
value and the creation of a link to the new value. We abstract from concrete
attribute values, replacing, for example, clients = 2 in graph IN by clients = n,
and clients = 1 in OUT by clients = n-1. ÙÛ

LHS

s: Super

clients = n

u: Userc: Client usr

link endClient(c) = c

RHS

s: Super

clients := n-1

u: User

IN

s: Super

clients = 2
u3: User

name = “Gabi”

u1: User

name = “Peter”

u2: User

name = “Reiko”

c1: Client

usr

link

usr

c2: Client

link

usr

OUT

s: Super

clients = 1
u3: User

name = “Gabi”

u1: User

name = “Peter”

u2: User

name = “Reiko”

c1: Client

usr

link

usr

c2 = endClient(c2)

Fig. 2.6. From state transformations to rules: graph representation (LHS: left-hand
side, RHS: right-hand side

2.2.1 Elementary Rules

A rule combines a number of checks and actions that should be executed toget-
her. In this sense it is similar to an operation or a method in programming. To
be able to refer to these checks and actions abstractly, a rule has a signature
consisting of a rule name and a list of formal parameters. A formal parameter
name corresponds to either a node identity or an attribute value which is used

Graph Transformation for Software Engineers

What should be the result?
• Elements of IN deleted?
• New elements created?
• Attribute values changed?

Heckel, Taentzer

GTBLE: Rules for Nets

Rules to create marked graphs

Firing rule for marked graphs

Heckel, Taentzer Graph Transformation for Software Engineers 20

p1:P
m=k
{k>0}

t:T p2:P
m=l

p1:P
m:=k-1 t:T p2:P

m:=l+1
pre post

p:P
m:=knewPlace(k)

p1:P t:T p2:P
pre post

p1:P p2:P newTrans() = t

pre post
fire(t)

GTBSE:
P2P Rules
Network formation

§ Node creation
and promotion

§ Linking and
redirecting
clients

Rule Concepts
§ Creation
§ Deletion
§ Parameters
§ NACs
§ Attribute

conditions

40 2 Graph Transformation Concepts

the expression {clients < max} in rule linkClient of Fig. 2.7. Here max is a con-
stant that is globally defined for a set of rules. Such an expression constrains
the possible matches of the rule to those where it evaluates to true. Apart from
the assignment symbol, we will use Java-like syntax for expressions.

newSuper(u,s) = s1

LHS
u:User s: Super

: Node

usr

RHS
u:User s: Super

s1: Super

clients := 0

ovlusr

newClient(u) = c
LHS

u:User: Node usr
RHS
u:User c: Clientusr

linkClient(c,s)

LHS

c: Client

s:Super

clients = n
{clients < max}

: Super

link

RHS

c: Client
s:Super

clients := n + 1link

promoteClient(c) = c

LHS
u: User

s:Super

clients = max

c: Client usr

link

RHS
u: User

s:Super

clients := max - 1
: Super

clients := 0
ovl

usr

redirectClient(s,c,s2)

LHS
s: Super

clients = n

s2: Super

clients = m
{clients < max}

c: Clientlink
RHS

s: Super

clients := n-1

s2: Super

clients := m+1

c: Client

link

Fig. 2.7. Rules for joining the network and making connections

2.2.3 Example Rules

In our running example of a dynamic VoIP network, rules are used to model
basic service operations. Some of these operations are local, taking place on
only one network node, while others require the cooperation between several
nodes. Common to all service operations is that they behave as transactions,

Heckel, Taentzer Graph Transformation for Software Engineers 21

GTBSE:
P2P Rules
Network deconstruction

§ Disconnect nodes
§ Terminate nodes

Rule Concepts
§ Creation
§ Deletion
§ Parameters
§ NACs
§ Attribute conditions

Heckel, Taentzer Graph Transformation for Software Engineers 22

42 2 Graph Transformation Concepts

endSuper(s) = s
LHS
u:User s:Superusr

RHS
u:User

disconnectSuper(s, t)

LHS
s:Super

t:Super

ovl

RHS
s:Super

t:Super

endClient(c) = c

LHS
u:User

s:Super

clients = n

c:Client

link

usr
RHS

u:User

s:Super

clients := n-1

endUnlinkedClient(c) = c

LHS
u:User c:Clientusr

s:Super

link
RHS
u:User

Fig. 2.8. Rules for disconnecting and leaving

• The rule endUnlinkedClient deals with the removal of unlinked clients, in
which case no counter needs to be decreased. The restriction to unlin-
ked clients is ensured via another negative application condition; if this
condition were omitted, then (as with endSuper) the rule would also be ap-
plicable to clients that actually have a link edge, resulting in the incorrect
behaviour of removing a Client without decreasing the clients counter.

These example rules illustrate how a single rule can express a precondition
and e�ect of a complex process in a single, atomic step. Any implementation
of rule promoteClient in a real distributed system would require a collaborative
e�ort between the Super node s, which recognised that another Super node was
needed, and the Client selected for promotion. The fact that we can describe
this process by a single step raises significantly the level of abstraction of the
model. This means that the model is easier to understand and analyse. The
abstraction becomes possible by ignoring certain aspects of the implementa-
tion, such as the detailed interaction between the Super and Client nodes.

2.2.4 Rule-Based Graph Transformation

A rule is applied to a given graph G by replacing in G an occurrence of the
left-hand side with a new copy of the right-hand side. Every rule is invoked
with a sequence of actual parameters that is consistent with the rule signature.

Global application conditions
What could possibly be wrong with this rule?

è With a match mapping s2 and s3 to the same node
in the input graph, the rule would create a loop.

Injective matches: Each element in the left-hand side
is mapped to a separate element in the input graph.

Heckel, Taentzer Graph Transformation for Software Engineers 23

48 2 Graph Transformation Concepts

in the graph, however, no change ensues. If matching were required to be
injective, this special case would have to be modelled by a dedicated rule.

The fact that non-injective matches are allowed is indicated by the NInjC
(No Injectivity Condition) annotation in the left-hand side. In such a case, the
identification condition is still required by default.

LHS [NInjC]
br:Bar1:A ar2:A

swing RHS
br:Bar1:A ar2:A

IN
bg:B aa:A

OUT
bg:B aa:A

swing

Fig. 2.12. Non-injective rule matching, avoiding the need for a rule for a special
case

On the other hand, there are cases where injectivity is required. For in-
stance, the rule in Fig. 2.13 builds the transitive closure of the overlay relation
between Super nodes. If nodes s2 and s3 are mapped to the same node of the
host graph, then that node receives an ovl loop instead, which is not intended.
To avoid such problems, we consider injective matching the default, indicated
by the absence of any annotation.

shortcut(s1)

LHS
s1:Super s2:Super

s3:Super

ovl

ovl

RHS
s1:Super s2:Super

s3:Super

ovl

ovl ovl

Fig. 2.13. Transitive closure of ovl: injective matching is required

Another example showing the usefulness of injectively matched rules is if
one wants to guarantee the existence of a minimum number of nodes of a
particular kind; in other words, if one wants to count occurrences of a node.
The natural way to encode this is to put that many nodes in the left-hand
side; but if those nodes may be matched non-injectively, then no conclusion
can be drawn about the number of nodes in the host graph (except that there
must be at least one).

2.3.2 Gluing Conditions

Invertibility of rules can also be hampered by another e�ect, namely that in
which a node is deleted – naturally resulting in the deletion of all its incident
edges as well – but cannot be fully reconstructed by the inverted rule, i.e.

Global application conditions:
Identification condition

Allowing for non-injective matches, what happens here?

Identification condition: elements to be deleted are
kept apart from

other elements and each other

Heckel, Taentzer Graph Transformation for Software Engineers 24

2.3 Global Application Conditions: Injectivity and Gluing 47

LHS [NIdC]
ar1: A ar2: A

del+pres RHS
ar1: A

IN
ag: A

OUT
del+pres

Fig. 2.10. Violation of the identification condition, leading to conflict (resolved by
deleting the conflicted node)

host graph nodes for which a conflict of this type occurs; but another choice
is to avoid conflict altogether, by imposing the identification condition.

Another example where the identification condition is violated is shown in
Fig. 2.11. In this case, both ar1 and ar2 are deleted. Again they are identified

LHS [NIdC]
ar1: A ar2: A

del2
RHS

IN
ag: A

OUT
del2

Fig. 2.11. Violation of the identification condition, leading to lack of invertibility

by the match. Note that there is now no conflict: it is clear that ag should
be deleted from the host graph. In this case there is another, more subtle
objection. Sometimes it is desirable to be able to invert a rule, by swapping
its left- and right-hand sides and applying the inverted rule to the target
graph, and so reconstruct the original host graph. However, in Fig. 2.11 this
is clearly not going to work out: the application of the inverted rule, applied
to the (empty) target graph, would result in a graph with two distinct A-typed
nodes. Imposing the identification condition saves the day by forbidding this
particular match.

Where the identification condition forbids only particular elements of the
left-hand side from being matched by the same host graph elements, injectivity
is a more restrictive condition:

Injectivity condition: No two distinct nodes or edges of the left-hand side
may be identified.

Non-injective rule matching can be a useful feature, as it allows one to combine
several di�erent cases into a single rule. An example is given in Fig. 2.12:
this shows an association between a B and an A node that swings around to
another A node. If the two A nodes are matched by one and the same node

2.3 Global Application Conditions: Injectivity and Gluing 47

LHS [NIdC]
ar1: A ar2: A

del+pres RHS
ar1: A

IN
ag: A

OUT
del+pres

Fig. 2.10. Violation of the identification condition, leading to conflict (resolved by
deleting the conflicted node)

host graph nodes for which a conflict of this type occurs; but another choice
is to avoid conflict altogether, by imposing the identification condition.

Another example where the identification condition is violated is shown in
Fig. 2.11. In this case, both ar1 and ar2 are deleted. Again they are identified

LHS [NIdC]
ar1: A ar2: A

del2
RHS

IN
ag: A

OUT
del2

Fig. 2.11. Violation of the identification condition, leading to lack of invertibility

by the match. Note that there is now no conflict: it is clear that ag should
be deleted from the host graph. In this case there is another, more subtle
objection. Sometimes it is desirable to be able to invert a rule, by swapping
its left- and right-hand sides and applying the inverted rule to the target
graph, and so reconstruct the original host graph. However, in Fig. 2.11 this
is clearly not going to work out: the application of the inverted rule, applied
to the (empty) target graph, would result in a graph with two distinct A-typed
nodes. Imposing the identification condition saves the day by forbidding this
particular match.

Where the identification condition forbids only particular elements of the
left-hand side from being matched by the same host graph elements, injectivity
is a more restrictive condition:

Injectivity condition: No two distinct nodes or edges of the left-hand side
may be identified.

Non-injective rule matching can be a useful feature, as it allows one to combine
several di�erent cases into a single rule. An example is given in Fig. 2.12:
this shows an association between a B and an A node that swings around to
another A node. If the two A nodes are matched by one and the same node

??? ???

Global application conditions:
Identification condition

Allowing for non-injective matches, what happens here?

Identification condition: elements to be deleted are
kept apart from

other elements and each other

Heckel, Taentzer Graph Transformation for Software Engineers 25

2.3 Global Application Conditions: Injectivity and Gluing 47

LHS [NIdC]
ar1: A ar2: A

del+pres RHS
ar1: A

IN
ag: A

OUT
del+pres

Fig. 2.10. Violation of the identification condition, leading to conflict (resolved by
deleting the conflicted node)

host graph nodes for which a conflict of this type occurs; but another choice
is to avoid conflict altogether, by imposing the identification condition.

Another example where the identification condition is violated is shown in
Fig. 2.11. In this case, both ar1 and ar2 are deleted. Again they are identified

LHS [NIdC]
ar1: A ar2: A

del2
RHS

IN
ag: A

OUT
del2

Fig. 2.11. Violation of the identification condition, leading to lack of invertibility

by the match. Note that there is now no conflict: it is clear that ag should
be deleted from the host graph. In this case there is another, more subtle
objection. Sometimes it is desirable to be able to invert a rule, by swapping
its left- and right-hand sides and applying the inverted rule to the target
graph, and so reconstruct the original host graph. However, in Fig. 2.11 this
is clearly not going to work out: the application of the inverted rule, applied
to the (empty) target graph, would result in a graph with two distinct A-typed
nodes. Imposing the identification condition saves the day by forbidding this
particular match.

Where the identification condition forbids only particular elements of the
left-hand side from being matched by the same host graph elements, injectivity
is a more restrictive condition:

Injectivity condition: No two distinct nodes or edges of the left-hand side
may be identified.

Non-injective rule matching can be a useful feature, as it allows one to combine
several di�erent cases into a single rule. An example is given in Fig. 2.12:
this shows an association between a B and an A node that swings around to
another A node. If the two A nodes are matched by one and the same node

2.3 Global Application Conditions: Injectivity and Gluing 47

LHS [NIdC]
ar1: A ar2: A

del+pres RHS
ar1: A

IN
ag: A

OUT
del+pres

Fig. 2.10. Violation of the identification condition, leading to conflict (resolved by
deleting the conflicted node)

host graph nodes for which a conflict of this type occurs; but another choice
is to avoid conflict altogether, by imposing the identification condition.

Another example where the identification condition is violated is shown in
Fig. 2.11. In this case, both ar1 and ar2 are deleted. Again they are identified

LHS [NIdC]
ar1: A ar2: A

del2
RHS

IN
ag: A

OUT
del2

Fig. 2.11. Violation of the identification condition, leading to lack of invertibility

by the match. Note that there is now no conflict: it is clear that ag should
be deleted from the host graph. In this case there is another, more subtle
objection. Sometimes it is desirable to be able to invert a rule, by swapping
its left- and right-hand sides and applying the inverted rule to the target
graph, and so reconstruct the original host graph. However, in Fig. 2.11 this
is clearly not going to work out: the application of the inverted rule, applied
to the (empty) target graph, would result in a graph with two distinct A-typed
nodes. Imposing the identification condition saves the day by forbidding this
particular match.

Where the identification condition forbids only particular elements of the
left-hand side from being matched by the same host graph elements, injectivity
is a more restrictive condition:

Injectivity condition: No two distinct nodes or edges of the left-hand side
may be identified.

Non-injective rule matching can be a useful feature, as it allows one to combine
several di�erent cases into a single rule. An example is given in Fig. 2.12:
this shows an association between a B and an A node that swings around to
another A node. If the two A nodes are matched by one and the same node

Global application conditions:
Dangling condition

Deletion in unknown contexts

What happens to any connections of s with other Super
nodes?

Heckel, Taentzer Graph Transformation for Software Engineers 26

2.3 Global Application Conditions: Injectivity and Gluing 49

together with all its original edges. This occurs if more edges are deleted from
the host graph than the rule explicitly specifies; in other words, if some of the
incident edges in the host graph are not in the match of the left-hand side.
Such edges are said to be left dangling by the rule application (in which case
the only reasonable solution is to remove them, as otherwise we would be left
with something that is not a graph). The dangling condition precisely forbids
this situation. In practice, the dangling condition is always combined with the
identification condition; the combination is called the gluing condition:

Dangling condition: A node that is deleted by a rule must be matched to
a node of the host graph such that all its incident edges are in the match
as well.

Gluing condition: Both the identification condition and the dangling con-
dition hold.

An example is given in Fig. 2.14: the host graph edge from the A node to
the B node must be deleted by the rule application because the A node is, and
we cannot have a dangling edge; but this edge is not itself in the match of the
left hand side. If we were to invert the rule and apply it to the target graph,

LHS
ar: A

del
RHS

IN
ag: A bg: B

OUT
bg: B

del

Fig. 2.14. Violation of dangling condition, resolved by deleting the dangling edge

the result would not equal the original host graph, as the edge would not be
reconstructed.

Imposing the gluing condition avoids not only this case of non-invertibility
but guarantees full invertibility of rules. This is a very important advantage
if one wants to precisely analyse and predict the outcome of a graph transfor-
mation.

The strongest of the restrictions we will discuss here is the combination of
injectivity and the dangling condition:

Injective gluing condition: Both the injectivity and the dangling condi-
tion hold.

Because injectivity implies the identification condition, injective gluing implies
the gluing condition.

42 2 Graph Transformation Concepts

endSuper(s) = s
LHS
u:User s:Superusr

RHS
u:User

disconnectSuper(s, t)

LHS
s:Super

t:Super

ovl

RHS
s:Super

t:Super

endClient(c) = c

LHS
u:User

s:Super

clients = n

c:Client

link

usr
RHS

u:User

s:Super

clients := n-1

endUnlinkedClient(c) = c

LHS
u:User c:Clientusr

s:Super

link
RHS
u:User

Fig. 2.8. Rules for disconnecting and leaving

• The rule endUnlinkedClient deals with the removal of unlinked clients, in
which case no counter needs to be decreased. The restriction to unlin-
ked clients is ensured via another negative application condition; if this
condition were omitted, then (as with endSuper) the rule would also be ap-
plicable to clients that actually have a link edge, resulting in the incorrect
behaviour of removing a Client without decreasing the clients counter.

These example rules illustrate how a single rule can express a precondition
and e�ect of a complex process in a single, atomic step. Any implementation
of rule promoteClient in a real distributed system would require a collaborative
e�ort between the Super node s, which recognised that another Super node was
needed, and the Client selected for promotion. The fact that we can describe
this process by a single step raises significantly the level of abstraction of the
model. This means that the model is easier to understand and analyse. The
abstraction becomes possible by ignoring certain aspects of the implementa-
tion, such as the detailed interaction between the Super and Client nodes.

2.2.4 Rule-Based Graph Transformation

A rule is applied to a given graph G by replacing in G an occurrence of the
left-hand side with a new copy of the right-hand side. Every rule is invoked
with a sequence of actual parameters that is consistent with the rule signature.

2.3 Global Application Conditions: Injectivity and Gluing 49

together with all its original edges. This occurs if more edges are deleted from
the host graph than the rule explicitly specifies; in other words, if some of the
incident edges in the host graph are not in the match of the left-hand side.
Such edges are said to be left dangling by the rule application (in which case
the only reasonable solution is to remove them, as otherwise we would be left
with something that is not a graph). The dangling condition precisely forbids
this situation. In practice, the dangling condition is always combined with the
identification condition; the combination is called the gluing condition:

Dangling condition: A node that is deleted by a rule must be matched to
a node of the host graph such that all its incident edges are in the match
as well.

Gluing condition: Both the identification condition and the dangling con-
dition hold.

An example is given in Fig. 2.14: the host graph edge from the A node to
the B node must be deleted by the rule application because the A node is, and
we cannot have a dangling edge; but this edge is not itself in the match of the
left hand side. If we were to invert the rule and apply it to the target graph,

LHS
ar: A

del
RHS

IN
ag: A bg: B

OUT
bg: B

del

Fig. 2.14. Violation of dangling condition, resolved by deleting the dangling edge

the result would not equal the original host graph, as the edge would not be
reconstructed.

Imposing the gluing condition avoids not only this case of non-invertibility
but guarantees full invertibility of rules. This is a very important advantage
if one wants to precisely analyse and predict the outcome of a graph transfor-
mation.

The strongest of the restrictions we will discuss here is the combination of
injectivity and the dangling condition:

Injective gluing condition: Both the injectivity and the dangling condi-
tion hold.

Because injectivity implies the identification condition, injective gluing implies
the gluing condition.

With dangling
condition, rule
not applicable

here!

Global application conditions:
Overview

Heckel, Taentzer Graph Transformation for Software Engineers 27

50 2 Graph Transformation Concepts

2.3.3 Summary: From Conservative to Radical

Altogether, we have five di�erent global application conditions, some of which
are strictly stronger than others. Fig. 2.15 shows them in relation to one
another. Transformations satisfying the source condition also satisfy the target
condition. The conditions shown in Fig. 2.15 can be described as follows:

InjectiveGluingCond GluingCond

InjectivityCond IdentificationCond

DanglingCond

NoInjectivityCond NoIdentificationCond Any

Co
ns

er
va

tiv
e

Radical

Fig. 2.15. Global application conditions, from conservative to radical

• Any: does not impose restrictions.
• IdentificationCond: no element in L \ R is identified by m with any other

element from L, i.e., for x œ L \ R, y œ L, m(x) = m(y) implies x = y.
• InjectivityCond: no two elements in L are identified by m with each other,

i.e., for x, y œ L, m(x) = m(y) implies x = y.
• DanglingCond: no edge in the context is attached to deleted nodes, i.e.

for node x œ m(L \ R) and edge y œ G, s(y) = x or t(y) = x implies
y œ m(L \ R).

• GluingCond: Both IdentificationCond and DanglingCond are satisfied.
• InjectiveGluingCond: Both InjectivityCond and DanglingCond are sa-

tisfied.
• NoInjectivityCond: InjectivityCond may not be satisfied, but Identifica-

tionCondition is satisfied.
• NoIdentificationCond: IdentificationCond may not be satisfied.

The fewer restrictions one imposes, the more radical the e�ects of a rule
application can be; conversely, the stronger the restrictions, the more conser-
vative their e�ects. As explained above, conservatism is beneficial for analysa-
bility; on the other hand, a more radical approach results in a more compact
set of rules, since each rule may combine cases that under a conservative global
application condition require distinct rules.

We consider injectivity of matches as the default condition in the rest
of this book because developers tend to specify patterns as they occur in
practice. Considering the dangling condition, it depends on the application
whether or not the deletion of nodes should be allowed in unknown contexts.
We indicate the presence of the dangling condition by an annotation DC on the

Formalise this, …

Type, instance graphs
èGraphs and graph

homomorphisms
èSlice category

Attributed graphs
èGraphs related to

fixed data algebra
èSymbolic attributed

graphs

Rules, transformations
èRules as spans or

partial morphisms
èDPO, SPO, SqPO

Heckel, Taentzer Graph Transformation for Software Engineers 28

Advanced features:
Graph constraints

“The clients attribute of a Super node is 0 iff there
are no Client nodes connected to it.”

Logically
self.clients=0 iff self.link->isEmpty()

or graphically

2.4 Advanced Graph Transformation Features 51

left-hand side, while the gluing condition is indicated by GC or, equivalently
NInjC, DC, since the default for matches that are not necessarily injective is
the identification condition.

2.4 Advanced Graph Transformation Features

In this section we introduce a number of features that extend the basic rule-
based approach, by

• more precise specification of the class of instance graphs by means of con-
straints and

• more expressive rules, allowing additional application conditions, univer-
sally quantified operations and the merging of graph elements.

2.4.1 Graph Constraints

When specifying transformations, it is desirable to have a precise understan-
ding of the class of graphs that may be encountered or are generated by the
rules. Type graphs, even with subtyping and multiplicities, are not expres-
sive enough to define more complex constraints on the structure of instance
graphs, especially when conditions on attributes are involved. For example, in
the peer-to-peer model above we use the attribute clients in Super nodes as a
counter for the number of clients attached. To make sure that, for example,
the rule in Fig. 2.20 in Section 2.4.4 is applicable if and only if no client is
linked to Super node s, we could add a constraint on Super such as

self.clients=0 iff self.link->isEmpty()

The same constraint can be expressed graphically, as shown in Fig. 2.16,
where it is broken down into two forbidden patterns, a Super node with
clients = 0, but linked to a client, and one with clients > 0 but no client linked.

NOT
:Super

clients = 0
:Clientlink

NOT
:Super

clients > 0
:Clientlink

Fig. 2.16. Two variants of a visual graph constraint

Constraints restrict the set of admissible instance graphs. Usually, the start
graph G0 is required to satisfy them and, for each rule r, we have to guarantee
that, if G =r∆ H is a transformation and G satisfies the constraints, the same
is true for H. In that case it follows that all reachable graphs satisfy the
constraints. In our case, this means that we have to guarantee that whenever
a client link is created or deleted, the clients attribute is updated.

In an alternative operational interpretation, constraints can be used to
control the transformation process by ruling out transformations leading to

Heckel, Taentzer Graph Transformation for Software Engineers 29

Advanced features:
Negative application conditions

“Apply shortcut rule only if nodes s2 and s3 are not
connected, neither directly nor via a 3rd node.”

Heckel, Taentzer Graph Transformation for Software Engineers 30

52 2 Graph Transformation Concepts

non-admissible graphs. This is comparable to the integrity mechanism in a
database management system, which checks the validity of constraints after
each update, but before the new state is committed. In this case, constraints
become part of the operational specification of the system.

In addition to the simple forbidden patterns covered here, we will consider
required patterns and more complex constraints in Chapter 4.

2.4.2 Negative Application Conditions

The phenomenon of “dangling edges” is caused by the fact that a node in a
graph may, in general, have an unknown number of connections. This is in
contrast with, for example, the rewriting of strings where the linear structure
provides information about the connections of any substring. The more com-
plicated situation for graphs has led to extensions of the basic approach by
application conditions, which have already been used informally in the VoIP
network example in Figs. 2.7 and 2.8.

Generalising the default gluing conditions of the conservative approach,
user-defined application conditions specify constraints on the immediate con-
text of the match of the rule’s left-hand side.

Example 2.5 (forbidden patterns). Figure 2.17 shows a rule that detects weak-
nesses in the network’s topology. The termination of a Super node s1 may

shortcut(s1)

LHS
s1Super s2:Super

s3:Super

ovl

ovl

:Super

ovl

ovl

ovl

RHS
s1Super s2:Super

s3:Super

ovl

ovl ovl

Fig. 2.17. Creating redundant links

increase the distance between two other nodes s2, s3 currently using s1 as
an intermediary. Such a situation is detected by checking that s1 is actually
connected to s2 and s3, and also that there is neither a direct link between them
nor a two-step path via another Super node. These two forbidden patterns are
expressed by the red, crossed-out elements in the left-hand side of the rule. ÙÛ

Forbidden patterns restrict the applicability of a rule. They are interpre-
ted as negative application conditions (NACs), each an extension of the rule’s
left-hand side L by nodes and edges whose joint presence in the context should
prevent the application of the rule. Formally, we define an NAC as a graph N
extending L. The elements of N \ L, drawn in red, constitute the forbidden
pattern. A rule with an NAC is applicable to a given graph G if the occur-
rence of the left-hand side cannot be extended to include any of the forbidden

Advanced features:
Path Expressions

“Apply connect only if there is no path of ovl edges
between s1 and s2.”

Heckel, Taentzer Graph Transformation for Software Engineers 31

54 2 Graph Transformation Concepts

perties. For two nodes n and m of a given graph, a path from n to m is a
sequence of edges e1e2 . . . ep such that the target of edge ei is the source of
edge ei+1 for all 1 Æ i Æ p ≠ 1, the source of e1 is n and the target of ep is m.

A path expression is a regular expression over edge types. When an edge e
in the left-hand side of a rule is labelled by such an expression, this demands
the existence of a path e1 . . . ep between the corresponding nodes in G such
that the sequence of edge types t(e1) . . . t(ep) satisfies the regular expression,
where t : G æ TG maps the elements of G to their types in the type graph
TG.

Example 2.7 (path expression). The expression ovlú specifies a path consisting
of a sequence of edges of type ovl. Because it occurs as part of a negative
condition, the rule connect in Fig. 2.19 detects situations where two Super
nodes are not connected by a path of ovl edges. When it is applied to two
such disconnected nodes s1 and s2, a new ovl edge is created between these
two nodes. ÙÛ

connect(s1,s2)
LHS
s1:Super s2:Superovl*

RHS
s1:Super s2:Superovl

Fig. 2.19. Rule with path expression

In Chapter 4, we will consider further kinds of application conditions requi-
ring, for example, the existence of a certain pattern, so-called positive applica-
tion conditions (PACs), and more complex ones, called conditional conditions,
which can be seen as nested positive and negative conditions.

2.4.4 Multipatterns

In the basic approach, each element in a rule’s left-hand side is matched to
exactly one node or edge in a graph the rule is applied to. In many cases,
however, we would like to express operations dealing with all elements of
a graph satisfying certain structural or attribute conditions. For example,
Fig. 2.20 shows the radical version of shutting down a Super node. The Super
node is deleted independently of the number of Super nodes still connected.

shutdownSuper(s)
LHS

u:User
s:Super

clients = 0
usr

RHS
u:User

Fig. 2.20. Super node exit, causing the implicit deletion of all adjacent connections
(radical solution)

If we wish to achieve the behaviour modelled by rule shutdownSuper in the
conservative approach, we have to be able to delete all ovl edges connected

Advanced features:
Multi Objects and Patterns

With the dangling condition,
we cannot delete a Super node
without explicitly deleting all links to all its peers.

This is possible using
a rule with multi object.

S:Super matches the set of
all super nodes linked to s:

{s1, s2}

Heckel, Taentzer Graph Transformation for Software Engineers 32

54 2 Graph Transformation Concepts

perties. For two nodes n and m of a given graph, a path from n to m is a
sequence of edges e1e2 . . . ep such that the target of edge ei is the source of
edge ei+1 for all 1 Æ i Æ p ≠ 1, the source of e1 is n and the target of ep is m.

A path expression is a regular expression over edge types. When an edge e
in the left-hand side of a rule is labelled by such an expression, this demands
the existence of a path e1 . . . ep between the corresponding nodes in G such
that the sequence of edge types t(e1) . . . t(ep) satisfies the regular expression,
where t : G æ TG maps the elements of G to their types in the type graph
TG.

Example 2.7 (path expression). The expression ovlú specifies a path consisting
of a sequence of edges of type ovl. Because it occurs as part of a negative
condition, the rule connect in Fig. 2.19 detects situations where two Super
nodes are not connected by a path of ovl edges. When it is applied to two
such disconnected nodes s1 and s2, a new ovl edge is created between these
two nodes. ÙÛ

connect(s1,s2)
LHS
s1:Super s2:Superovl*

RHS
s1:Super s2:Superovl

Fig. 2.19. Rule with path expression

In Chapter 4, we will consider further kinds of application conditions requi-
ring, for example, the existence of a certain pattern, so-called positive applica-
tion conditions (PACs), and more complex ones, called conditional conditions,
which can be seen as nested positive and negative conditions.

2.4.4 Multipatterns

In the basic approach, each element in a rule’s left-hand side is matched to
exactly one node or edge in a graph the rule is applied to. In many cases,
however, we would like to express operations dealing with all elements of
a graph satisfying certain structural or attribute conditions. For example,
Fig. 2.20 shows the radical version of shutting down a Super node. The Super
node is deleted independently of the number of Super nodes still connected.

shutdownSuper(s)
LHS

u:User
s:Super

clients = 0
usr

RHS
u:User

Fig. 2.20. Super node exit, causing the implicit deletion of all adjacent connections
(radical solution)

If we wish to achieve the behaviour modelled by rule shutdownSuper in the
conservative approach, we have to be able to delete all ovl edges connected

2.4 Advanced Graph Transformation Features 55

to the Super node in a single step. However, we do not know their number in
advance, so no rule with a fixed number of nodes and edges in its left-hand side
will be able to achieve this. Instead, for such universally quantified operations,
we adopt the concept of multiobjects familiar from UML object diagrams.

endSuperMulti(s)

LHS [DC]

u:User
s:Super

clients = 0
usr

S:SuperS:Super

ovl

RHS
u:User

S:SuperS:Super

Fig. 2.21. Super node exit, deleting connections with all other Super nodes (con-
servative, with multiobjects)

A multiobject such as S in the rule in Fig. 2.21 represents the set of all
objects with the specified connections to the fixed objects in the rule. In our
case, S would be matched by the set of all Super nodes related to Super node
s by an ovl edge. The universal quantification in the match carries over to the
action of the rule, i.e. the deletion of the matched ovl edges. Note that, by
the identification condition, the image of s cannot be an element of the set
matched by S, because the former is deleted while the latter is preserved.

Operationally, a rule r : L æ R with multiobjects is applied in two stages.
First, we find and fix a match m0 : L0 æ G for all “normal” (existentially
quantified) elements, making up the kernel rule r0 : L0 æ R0. Then, conside-
ring all multiobjects as normal elements, all possible extensions mi, 1 Ø i Ø n,
of m0 to L ´ L0 are found and a so-called amalgamated rule is created by
merging n copies of r to duplicate the multiobjects so that one copy exists for
each occurrence in the graph. This amalgamated rule is then applied as usual,
using the match assembled from m0 and all the mi. In our example, this crea-
tes a rule with as many copies of Super node S as there are ovl edges outgoing
from m(s) in G. Figure 2.22 illustrates the construction of the amalgamated
rule eSM for a host graph with two matches for the extended rule, leading to
two separate copies eSM1 and eSM2 that merge into one amalgamated rule,
overlapping in the kernel eSM0.

Multiobjects allow one to combine the main principles of both the gluing
and the embedding approach. While the application of normal rules reflects
the gluing approach (recall that L fl R specifies the overlap of L and R), mul-
tiobjects specify the embedding relation inherent in the embedding approach.
This relation is generally defined by statements of the following form: If a
context vertex with label x is present and connected by an e-edge to vertex y,
then delete the e-edge and replace it by an f-edge to vertex z in R. When
we specify the context vertex as a normal vertex in the kernel rule, it is in
the gluing part and therefore preserved. Vertex y is specified as a multivertex
in the left-hand side and z as a multivertex in the right-hand side. They are

56 2 Graph Transformation Concepts

eSM0(s)
L0 [DC]

u:User
s:Super

clients = 0
usr

R0

u:User

eSM2(s)

L2

u:User
s:Super

clients = 0
usr

s2:Super

ovl

R2

u:User

s2:Super

i2 j2

eSM(s)

G

u:User

name = “Gabi”
s:Super

clients = 0
usr

s1:Super

ovl

s2:Super

ovl

u1:User

name = “Peter”

usr

u2:User

name = “Reiko”

usr

H
u:User

name = “Gabi”

s1:Super s2:Super

u1:User

name = “Peter”

usr

u2:User

name = “Reiko”

usr

m2

eSM(s)

L

u:User
s:Super

clients = 0
usr

s1:Super

ovl

s2:Super

ovl

R
u:User

s1:Super
s2:Super

iú
1 jú

1

m mú

eSM1(s)

L1

u:User
s:Super

clients = 0
usr

s1:Super

ovl

R1

u:User

s1:Super

i1 j1

iú
2

jú
2

m1

Fig. 2.22. Amalgamated transformation of endSuperMulti (eSM) kernel and ex-
tension rules

connected to vertex x by the corresponding edges e and f , respectively.

We introduced multiobjects as means to express universally quantified
actions. This concept can be generalised to universal quantification over mul-
tipatterns. As with multiobjects, the use of a kernel rule localises the action to
one part of the graph. If the kernel rule is empty, the multipattern is applied
all over the graph. However, matches of multipatterns may overlap, leading
to conflicting transformations. In the following, an example of multipattern
use is presented exploring these issues.

Example 2.8 (optimisation of overlay network). To make our VoIP network
more resilient against loss of connectivity, we introduced a rule in Fig. 2.17

Advanced features:
Merging

“Merge two user accounts into one.”

Heckel, Taentzer Graph Transformation for Software Engineers 33

2.4 Advanced Graph Transformation Features 59

endSuperMultiCard(s)

LHS [DC]

u:User
s:Super

clients = 0
usr

S:SuperS:Super

ovl0..3

RHS
u:User

S:SuperS:Super

Fig. 2.24. Super node exit, deleting connections with up to three Super nodes

cution, even if they do not share any deleted element. Chapter 4 will consider
conflicts and dependencies between rule applications in more detail.

2.4.5 Merging

Sometimes it is desirable to merge, for example, two existing nodes into one
as part of a rule application. This is useful, for example, if two user accounts
are combined into one. When two nodes are merged, we expect that their
adjacent edges will be joined.

Example 2.9 (merging). To discuss the merging of graph elements, we consider
the type graph in Fig. 1.16, where the multiplicity of usr edges is modified to
allow more than one Node to serve one User, as shown in the type graph in
Fig. 2.25. In such a model, it can happen that a user account may be used
on several nodes. To merge two User accounts, the rule in Fig. 2.26 combines

TG

Super

clients: Integer

Node User

name: String

Client
*link1

* usr 1

*
ovl

*

Fig. 2.25. Modified type graph with subtypes and multiplicities

nodes u1 and u2 on the left into one node on the right. The rule takes a user
name uid1 as an input parameter to serve as the user name of the merged
account, while the other name is discarded. Formally, merging is achieved

mergeAccounts(u1,u2,uid1)

LHS
u1:User

name = uid1

u2:User

name = uid2

RHS
u1,u2:User

name := uid1

Fig. 2.26. Merging two di�erent user accounts

Integrated Rule Notation

§ Integrate left- and right-hand side
into a single graph

§ Use colours and labels to
distinguish different roles

Heckel, Taentzer Graph Transformation for Software Engineers 34

60 2 Graph Transformation Concepts

by rules whose left- and right-hand sides are related by non-injective partial
mappings, i.e. where two or more elements on the left are mapped to one
element on the right. ÙÛ

2.4.6 Integrated Notation for Rules

For a more compact representation of rules, their various components r : L æ
R, potentially equipped with negative conditions, can be combined within
a single rule graph, distinguishing rule parts by di�erent colours and styles
of elements to representing readers, erasers, creators or embargoes. As an
example, the rules in Fig. 2.27 represent the integrated views of the rules of
the same name in Figs. 2.7, 2.8 and 2.21. Readers (in L fl R), represented
by thin black solid outlines, are required but not deleted, such as the User
node in newClient and the User and Super nodes in endClient. Erasers (in L \ R),
represented by thin dashed blue outlines, are to be deleted by the rule, for
example, the Client node in endClient with its two edges. Creators (in R \ L),
represented by slightly wider dotted outlines in green, such as the Client node
in newClient, are to be created by the rule. Embargoes (in N \L) represented by
a red outline and crossed out, such as the node of type Node with its usr edge
in newClient, must be absent for the rule to be applicable. Attribute updates
are indicated by using :=. The representation of multinodes is just reused in
the integrated view.

newClient(u) = c

u:User c: Clientusr: Node usr

endSuperMulti(s)[D]

:User
s:Super

clients = 0
usr S:SuperS:Superovl

endClient(c) = c
:User

:Super

clients = cn
clients := cn - 1

c:Client

link

usr

Fig. 2.27. Rules newClient and endClient in integrated notation

This integrated notion for rules is especially helpful if the reader part is
large, since it needs to be drawn only once. It can become somewhat confusing
if several embargoes are used, attribute values are read and computed, and
larger parts are created. If a NAC refers to a node which is already in the left-
hand side of the rule forbidding a certain type refinement or attribute value,
the integrated notation contains two nodes with the same identifier but with
di�erent types. The variant with the forbidden type forms the embargo and
thus, drawn in that way. When considering, for example, a variant of the rule
endSuper which deletes a node if it is not a Client-node, the type refinement to
Client is forbidden by a separate node with the same identifier n as shown in

2.4 Advanced Graph Transformation Features 55

to the Super node in a single step. However, we do not know their number in
advance, so no rule with a fixed number of nodes and edges in its left-hand side
will be able to achieve this. Instead, for such universally quantified operations,
we adopt the concept of multiobjects familiar from UML object diagrams.

endSuperMulti(s)

LHS [DC]

u:User
s:Super

clients = 0
usr

S:SuperS:Super

ovl

RHS
u:User

S:SuperS:Super

Fig. 2.21. Super node exit, deleting connections with all other Super nodes (con-
servative, with multiobjects)

A multiobject such as S in the rule in Fig. 2.21 represents the set of all
objects with the specified connections to the fixed objects in the rule. In our
case, S would be matched by the set of all Super nodes related to Super node
s by an ovl edge. The universal quantification in the match carries over to the
action of the rule, i.e. the deletion of the matched ovl edges. Note that, by
the identification condition, the image of s cannot be an element of the set
matched by S, because the former is deleted while the latter is preserved.

Operationally, a rule r : L æ R with multiobjects is applied in two stages.
First, we find and fix a match m0 : L0 æ G for all “normal” (existentially
quantified) elements, making up the kernel rule r0 : L0 æ R0. Then, conside-
ring all multiobjects as normal elements, all possible extensions mi, 1 Ø i Ø n,
of m0 to L ´ L0 are found and a so-called amalgamated rule is created by
merging n copies of r to duplicate the multiobjects so that one copy exists for
each occurrence in the graph. This amalgamated rule is then applied as usual,
using the match assembled from m0 and all the mi. In our example, this crea-
tes a rule with as many copies of Super node S as there are ovl edges outgoing
from m(s) in G. Figure 2.22 illustrates the construction of the amalgamated
rule eSM for a host graph with two matches for the extended rule, leading to
two separate copies eSM1 and eSM2 that merge into one amalgamated rule,
overlapping in the kernel eSM0.

Multiobjects allow one to combine the main principles of both the gluing
and the embedding approach. While the application of normal rules reflects
the gluing approach (recall that L fl R specifies the overlap of L and R), mul-
tiobjects specify the embedding relation inherent in the embedding approach.
This relation is generally defined by statements of the following form: If a
context vertex with label x is present and connected by an e-edge to vertex y,
then delete the e-edge and replace it by an f-edge to vertex z in R. When
we specify the context vertex as a normal vertex in the kernel rule, it is in
the gluing part and therefore preserved. Vertex y is specified as a multivertex
in the left-hand side and z as a multivertex in the right-hand side. They are

40 2 Graph Transformation Concepts

the expression {clients < max} in rule linkClient of Fig. 2.7. Here max is a con-
stant that is globally defined for a set of rules. Such an expression constrains
the possible matches of the rule to those where it evaluates to true. Apart from
the assignment symbol, we will use Java-like syntax for expressions.

newSuper(u,s) = s1

LHS
u:User s: Super

: Node

usr

RHS
u:User s: Super

s1: Super

clients := 0

ovlusr

newClient(u) = c
LHS

u:User: Node usr
RHS
u:User c: Clientusr

linkClient(c,s)

LHS

c: Client

s:Super

clients = n
{clients < max}

: Super

link

RHS

c: Client
s:Super

clients := n + 1link

promoteClient(c) = c

LHS
u: User

s:Super

clients = max

c: Client usr

link

RHS
u: User

s:Super

clients := max - 1
: Super

clients := 0
ovl

usr

redirectClient(s,c,s2)

LHS
s: Super

clients = n

s2: Super

clients = m
{clients < max}

c: Clientlink
RHS

s: Super

clients := n-1

s2: Super

clients := m+1

c: Client

link

Fig. 2.7. Rules for joining the network and making connections

2.2.3 Example Rules

In our running example of a dynamic VoIP network, rules are used to model
basic service operations. Some of these operations are local, taking place on
only one network node, while others require the cooperation between several
nodes. Common to all service operations is that they behave as transactions,

GTBLE: Firing rules
for general Petri nets
Rule for 2:1 transitions (2 places pre, 1 place post set)

How to ensure this is only applicable to 2:1 transitions?

Heckel, Taentzer Graph Transformation for Software Engineers 35

p2:P
m > 0

t:T p3:P

pre

post
fire(t)

p1:P
m > 0

pre

t:T

pre

post

p1:P
m:=p1.m-1

pre

p2:P
m:=p2.m-1

p3:P
m:=p3.m+1

GTBLE: Firing rules
for general Petri nets
Rule for 2:1 transitions (2 places pre, 1 place post set)

How to ensure this is only applicable to 2:1 transitions?
è Only matches if there are exactly 2 pre and 1 post
places.

Heckel, Taentzer Graph Transformation for Software Engineers 36

p2:P
m > 0

t:T p3:P

pre

post
fire(t)

p1:P
m > 0

pre

t:T

pre

post

p1:P
m:=p1.m-1

pre

p2:P
m:=p2.m-1

p3:P
m:=p3.m+1

:P

:P

post

pre

p3:P
m:=p3.m+1

p1:P
m:=p1.m-1p2:Pp1:P

m > 0

GTBLE: Firing rule
for general Petri nets
Firing rule for arbitrary transitions

Matches sets of
§ {p1:P | p1.m > 0 and p1 in pre set of t}

§ NAC ensures there is no p:P in pre set not in that set
§ {p2:P | p2 in post set of t}
Updates attributes m of all matched P nodes

Heckel, Taentzer Graph Transformation for Software Engineers 37

t:T p2:P
post

fire(t)p1:P
m > 0

pre

t:T
post

p1:P
m:=p1.m-1

pre
p2:P
m:=p2.m+1

p:P pre

Formalise this, …

Type, instance graphs
èGraphs and graph

homomorphisms
èSlice category

Attributed graphs
èGraphs related to

fixed data algebra
èSymbolic attributed

graphs

Rules, transformations
èRules as spans or

partial morphisms
èDPO, SPO, SqPO

NACs, multi-objects
èForbidden matches
èAmalgamation

Heckel, Taentzer Graph Transformation for Software Engineers 38

Part 1: Foundations

ü Graphs
ü Graph Transformations
• Semantics and Control

• Graph transformation systems, grammars, and
derivations

• Graph languages, relations and transition systems
• Rule-based programming: textual and diagrammatic

• Analysis
• Henshin Tool Demo

Semantics and
Control

Heckel, Taentzer Graph Transformation for Software Engineers 40

70 3 Beyond Individual Rules: Usage Scenarios and Control Structures

TransformationSystem

SemanticModel Control

Language Relation TransitionSystem

Stochastic

Non-terminals ControlExp IntegrityConstraints ProceduralAbstr

Conditional Choice Sequence AsLongAsPossible Atomic

Ordered

Fig. 3.1. Feature model for rule control mechanisms in graph transformation sys-
tems

their possible interpretations based on these models. The semantic interpre-
tation of a graph transformation system GTS = (TG, R) with type graph TG
and set of rules R depends on its purpose. Certain control concepts originate
from specific interpretations (such as non-terminals increasing the expressive-
ness of grammars for specifying graph languages) but may also be applied in
di�erent contexts. We will therefore defer the discussion of control constructs
to Section 3.3 and first elaborate on the three di�erent usage scenarios for
graph transformations as introduced above.

The typical interpretation of a system described by a set of graph trans-
formation rules, such as the VoIP network model discussed in the previous
chapter, is based on states and non-deterministic transformations between
states by means of rules. Recall that a rule call and the tracking function
between the elements of the given graph G and the transformed graph H are
captured in the notation G =r(arg),f====∆ H. More generally, the set of transforma-
tions in a graph transformation system represents a labelled transition system
(as, for example, defined in [32]), where each state contains a graph, and the
graphs of two successive states are related by a tracking function.

Given a graph transformation system GTS = (TG, R) over a type graph
TG and a set of rules R, a graph transition system

LTS(GTS) = (S, Lab, æ, I, F)

Transformation systems, grammars,
and semantic models

Graph transformation system GTS = (TG, R)

Graph grammar GG = (TG, R, G0)
E.g. type graph and rules of the P2P model with
start graph as initial network configuration

Semantic Models
§ Language: set of all graphs reachable from G0

§ Relation: mapping from input to output graphs
§ Transition system: reachable graphs as states,

transformation steps as transitions

Heckel, Taentzer Graph Transformation for Software Engineers 41

Relation: Compute Spanning Tree of
Super Nodes
Extended type graph

Rules to mark root
and children of
marked nodes

Initial set I: all unmarked instances graph of TG
Final set F: all graphs where all Super nodes are marked

Heckel, Taentzer Graph Transformation for Software Engineers 45

74 3 Beyond Individual Rules: Usage Scenarios and Control Structures

TG

Super

clients: Integer

Node User

name: String

Client

TNode

*link1

* usr 1

*
ovl

*

* elem
1*child

*

Fig. 3.3. Type graph for spanning-tree computation

markRoot(s)
LHS
s: Super : TNode

RHS
s: Super : TNodeelem

Fig. 3.4. Initiating the computation of a spanning tree by marking the root

markChild(s) = c

LHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

RHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

child

Fig. 3.5. Marking a child non-deterministically

the graph transition system truly defines a relation between any VoIP net-
work graph and every corresponding spanning tree. In practice, if one actually
wants to compute a spanning tree, probably one that is optimal with respect
to some specific characteristic such as balance or cost, some control has to be
imposed on the non-deterministic relation to turn it into a deterministic algo-
rithm; for instance, a heuristic function to select the “best” rule application
at every junction. ÙÛ

3.2.3 Graph Transition Systems and Other Small-Step Models

If we are interested in observing the detailed behaviour of a graph transfor-
mation system, which rules are applied where and when, and which can be
applied in parallel or sequentially, neither language nor relational semantics
are appropriate. So-called small-step models of semantics have been proposed
to record such information, either in the form of interleaving models relying
on a global notion of state or as partial-order models where states are impli-
cit. Graph transition systems (as defined at the start of this section) represent
the most common choice of small-step models, making explicit both the state-
based nature and the non-determinism of graph transformations, but not their
parallelism and concurrency. Before we discuss this aspect in more detail, let
us see how normal graph transition systems are used to provide a comprehen-
sive system-level semantics.

74 3 Beyond Individual Rules: Usage Scenarios and Control Structures

TG

Super

clients: Integer

Node User

name: String

Client

TNode

*link1

* usr 1

*
ovl

*

* elem
1*child

*

Fig. 3.3. Type graph for spanning-tree computation

markRoot(s)
LHS
s: Super : TNode

RHS
s: Super : TNodeelem

Fig. 3.4. Initiating the computation of a spanning tree by marking the root

markChild(s) = c

LHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

RHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

child

Fig. 3.5. Marking a child non-deterministically

the graph transition system truly defines a relation between any VoIP net-
work graph and every corresponding spanning tree. In practice, if one actually
wants to compute a spanning tree, probably one that is optimal with respect
to some specific characteristic such as balance or cost, some control has to be
imposed on the non-deterministic relation to turn it into a deterministic algo-
rithm; for instance, a heuristic function to select the “best” rule application
at every junction. ÙÛ

3.2.3 Graph Transition Systems and Other Small-Step Models

If we are interested in observing the detailed behaviour of a graph transfor-
mation system, which rules are applied where and when, and which can be
applied in parallel or sequentially, neither language nor relational semantics
are appropriate. So-called small-step models of semantics have been proposed
to record such information, either in the form of interleaving models relying
on a global notion of state or as partial-order models where states are impli-
cit. Graph transition systems (as defined at the start of this section) represent
the most common choice of small-step models, making explicit both the state-
based nature and the non-determinism of graph transformations, but not their
parallelism and concurrency. Before we discuss this aspect in more detail, let
us see how normal graph transition systems are used to provide a comprehen-
sive system-level semantics.

74 3 Beyond Individual Rules: Usage Scenarios and Control Structures

TG

Super

clients: Integer

Node User

name: String

Client

TNode

*link1

* usr 1

*
ovl

*

* elem
1*child

*

Fig. 3.3. Type graph for spanning-tree computation

markRoot(s)
LHS
s: Super : TNode

RHS
s: Super : TNodeelem

Fig. 3.4. Initiating the computation of a spanning tree by marking the root

markChild(s) = c

LHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

RHS
s: Super c: Superovl

t: TNode

elem

: TNode

elem

child

Fig. 3.5. Marking a child non-deterministically

the graph transition system truly defines a relation between any VoIP net-
work graph and every corresponding spanning tree. In practice, if one actually
wants to compute a spanning tree, probably one that is optimal with respect
to some specific characteristic such as balance or cost, some control has to be
imposed on the non-deterministic relation to turn it into a deterministic algo-
rithm; for instance, a heuristic function to select the “best” rule application
at every junction. ÙÛ

3.2.3 Graph Transition Systems and Other Small-Step Models

If we are interested in observing the detailed behaviour of a graph transfor-
mation system, which rules are applied where and when, and which can be
applied in parallel or sequentially, neither language nor relational semantics
are appropriate. So-called small-step models of semantics have been proposed
to record such information, either in the form of interleaving models relying
on a global notion of state or as partial-order models where states are impli-
cit. Graph transition systems (as defined at the start of this section) represent
the most common choice of small-step models, making explicit both the state-
based nature and the non-determinism of graph transformations, but not their
parallelism and concurrency. Before we discuss this aspect in more detail, let
us see how normal graph transition systems are used to provide a comprehen-
sive system-level semantics.

P2P LTS
(partial)
§ Graphs

as states

§ Steps as
transitions

§ Rule names
with args
as labels

Heckel, Taentzer Graph Transformation for Software Engineers 47

76 3 Beyond Individual Rules: Usage Scenarios and Control Structures

State 1
u:User

uid = "Gabi"
s1:Super

clients = 0

u2:User

uid="Reiko"

State 2
u:User

uid = "Gabi"
s1:Super

clients = 0

u2:User

uid="Reiko"
s2:Super

clients = 0

usr ovl

State 3
u:User

uid = "Gabi"
s1:Super

clients = 0

u2:User

uid="Reiko"
s3:Super

clients = 0
usr

ovl

State 4
u:User

uid = "Gabi"
s1:Super

clients = 0

u2:User

uid="Reiko"

s2:Super

clients = 0

s3:Super

clients = 0

usr ovl

usr

ovl

State 5
u:User

uid = "Gabi"
s1:Super

clients = 0

u2:User

uid="Reiko"

s2:Super

clients = 0

s3:Super

clients = 0

usr

usr

ovl

s1 = newSuper(u)

s1 = newSuper(u2) s1 = newSuper(u2)

s1 = newSuper(u)

disconnectSuper(s2)

s2 = endSuper(s2)

Fig. 3.6. Section of a labelled transition system

possible. This means that, for an implementation to faithfully capture the
behaviour of the model, these processes have to be prevented from interfering
with each other. In the case of the promoteClient operation, this would mean
that Client, Super and User nodes are locked while the promotion is being
executed so that no other operations are applicable to these nodes.

This changes when we consider operations specified by control structures
as considered in the following section. In this case, it may take several rule
applications to perform an operation. Two such complex operations consisting
of several steps could be allowed to interleave, which may be appropriate in
a distributed system where global control is hard to achieve, while in other
cases a non-interleaving, isolated execution may be required. This choice is
discussed in more detail in Section 3.3.4 below.

Semantics and
Control

Heckel, Taentzer Graph Transformation for Software Engineers 48

70 3 Beyond Individual Rules: Usage Scenarios and Control Structures

TransformationSystem

SemanticModel Control

Language Relation TransitionSystem

Stochastic

Non-terminals ControlExp IntegrityConstraints ProceduralAbstr

Conditional Choice Sequence AsLongAsPossible Atomic

Ordered

Fig. 3.1. Feature model for rule control mechanisms in graph transformation sys-
tems

their possible interpretations based on these models. The semantic interpre-
tation of a graph transformation system GTS = (TG, R) with type graph TG
and set of rules R depends on its purpose. Certain control concepts originate
from specific interpretations (such as non-terminals increasing the expressive-
ness of grammars for specifying graph languages) but may also be applied in
di�erent contexts. We will therefore defer the discussion of control constructs
to Section 3.3 and first elaborate on the three di�erent usage scenarios for
graph transformations as introduced above.

The typical interpretation of a system described by a set of graph trans-
formation rules, such as the VoIP network model discussed in the previous
chapter, is based on states and non-deterministic transformations between
states by means of rules. Recall that a rule call and the tracking function
between the elements of the given graph G and the transformed graph H are
captured in the notation G =r(arg),f====∆ H. More generally, the set of transforma-
tions in a graph transformation system represents a labelled transition system
(as, for example, defined in [32]), where each state contains a graph, and the
graphs of two successive states are related by a tracking function.

Given a graph transformation system GTS = (TG, R) over a type graph
TG and a set of rules R, a graph transition system

LTS(GTS) = (S, Lab, æ, I, F)

Rule-based programming:
textual
Control expressions,
Procedural abstraction, …

Heckel, Taentzer Graph Transformation for Software Engineers 49

78 3 Beyond Individual Rules: Usage Scenarios and Control Structures

startShutdown(s)
LHS

s:Super

shutdown = false

RHS
s:Super

shutdown := true

disconnectSuperSd(s)

LHS
s:Super

shutdown = true

s1:Super

ovl

RHS
s:Super

s1:Super

redirectClientSd(s,c,s2)

LHS
s:Super

clients = n
{clients > 0}
shutdown = true

s2:Super

clients = m
{clients < max}
shutdown = false

c:Clientlink
RHS

s:Super

clients := n-1

s2:Super

clients := m+1

c:Client

link

shutdownSuperSd(s)

LHS

u:User

s:Super

clients = 0
shutdown = true

usr

s2:Super

ovl

RHS
u:User

Fig. 3.7. Shutdown of Super node with implicit control

1 unit endSuper(s1: Super) { // definition of transformation unit

2 atomic { // all ≠or≠nothing semantics

3 alap { // execute for as long as possible

4 disconnectSuper(s1,_) // invocation of rule by name + args

5 }
6 alap { // execute for as long as possible

7 redirectClient (s1,_ ,_) // invocation of rule by name + args

8 }
9 shutdownSuper(s1) // invocation of rule by name + args

10 }
11 }

Fig. 3.8. Transformation unit explicitly shutting down Super node s1

78 3 Beyond Individual Rules: Usage Scenarios and Control Structures

startShutdown(s)
LHS

s:Super

shutdown = false

RHS
s:Super

shutdown := true

disconnectSuperSd(s)

LHS
s:Super

shutdown = true

s1:Super

ovl

RHS
s:Super

s1:Super

redirectClientSd(s,c,s2)

LHS
s:Super

clients = n
{clients > 0}
shutdown = true

s2:Super

clients = m
{clients < max}
shutdown = false

c:Clientlink
RHS

s:Super

clients := n-1

s2:Super

clients := m+1

c:Client

link

shutdownSuperSd(s)

LHS

u:User

s:Super

clients = 0
shutdown = true

usr

s2:Super

ovl

RHS
u:User

Fig. 3.7. Shutdown of Super node with implicit control

1 unit endSuper(s1: Super) { // definition of transformation unit

2 atomic { // all ≠or≠nothing semantics

3 alap { // execute for as long as possible

4 disconnectSuper(s1,_) // invocation of rule by name + args

5 }
6 alap { // execute for as long as possible

7 redirectClient (s1,_ ,_) // invocation of rule by name + args

8 }
9 shutdownSuper(s1) // invocation of rule by name + args

10 }
11 }

Fig. 3.8. Transformation unit explicitly shutting down Super node s1

Rule-based programming:
diagrammatic

Using activity diagrams
to control transformation rules

Heckel, Taentzer Graph Transformation for Software Engineers 50

82 3 Beyond Individual Rules: Usage Scenarios and Control Structures

disconnectSuper(s, _)
s:Super

:Super

ovl

endSuperTransaction(s:Super)
redirectClient(s, _, _)

s:Super

clients = c
clients := c - 1

:Super

clients = c
clients := c + 1
{clients < max}

:Clientlink

link

shutdownSuperTrans(s)

:User
s:Super

clients = 0
usr

exit

exit

alap

alap

Fig. 3.10. Activity diagram specifying transformation unit endSuperTransaction(s)

3.3.4 Transactional Behaviour

Some features that are well known in database transactions, such as atomicity,
isolation and integrity, are also relevant to controlled graph transformation
systems.

Atomicity is the requirement that a complex sequence of operations, combi-
ning several internal steps, has an all-or-nothing interpretation. For example,
the transformation unit endSuperTransUnit(s) will only succeed in updating the
graph if all components are executed successfully. If, for example, the applica-
tion of the last rule, shutdownSuperTU(s), should fail, the entire unit fails and
does not lead to a new state. An additional aspect of atomicity is its reflection
in the graph transition system. If atomicity is required at the level of a na-
med transformation unit, we can decide to replace the sequence of internal
transitions by a single transition labelled with the name and argument of the
transformation unit, thus significantly simplifying the transition system.

Note 3.1: Atomic transformation units as transactions. A trans-
formation unit combines several rule applications into a functional unit. A
transformation unit whose body is contained in an atomic block represents
a transaction. Just as rule applications form transactions over basic acti-
ons, transformation units form transactions over rule applications. This
means that (1) if a part of a transformation unit cannot be executed, the
whole transformation fails, (2) the execution cannot be interleaved with
rule applications that create or destroy matches for any of the rules in the

Part 1: Foundations

ü Graphs
ü Graph Transformations
ü Semantics and Control
• Analysis

• Properties: analysis problems
• Techniques: solutions
• Mapping problems to solutions

• Henshin Tool Demo

Properties

Languages
§ membership
§ inclusion
§ instance

generation
§ non-ambiguity

Relations
§ functionality

(uniqueness)
§ totality
§ injectivity
§ surjectivity
§ correctness

Heckel, Taentzer Graph Transformation for Software Engineers 52

Trans Systems
§ reachability
§ invariants
§ deadlocks
§ planning,

optimisation
§ temporal, pre-

post properties
§ termination
§ confluence

Techniques

Static
§ Conflict and

Dependency Analysis
§ Termination Analysis
§ Constraint Verification

and Enforcement

Dynamic
§ Model checking
§ Graph parsing

Heckel, Taentzer Graph Transformation for Software Engineers 53

92 4 Analysis and Improvement of Graph Transformation Systems

Table 4.1. Analysis techniques to address analysis questions

Conflict and dep- Termination Constraint Model Graph
endency analysis analysis verification checking parsing

Language
Membership X X

Inclusion X X X
Instance generation X X X

Non-ambiguity X X X
Relation

Functional behaviour X X X X
Totality X X

Injectivity X X X X
Surjectivity X X
Correctness X X X

Transition system
Reachability X X

Invariants X X
Deadlocks X

Planning &
optimisation X

Temporal properties X X
Termination X X

Confluence X X X

solution, for example, by generating a set of reachable graphs and checking if
a given graph is in that set. If the language is finite (and small enough) this
can be a complete (if ine�cient) solution.

Language inclusion, for sets of graphs L, LÕ with L ™ LÕ, can be sampled
(tested) by any solution to the respective membership problems. If L = L(GG)
is the language generated by a grammar GG and LÕ = L(C) is the set of graphs
satisfying certain constraints C, we can use constraint verification to verify
that all graphs generated by GG satisfy C, i.e. L(GG) ™ L(C). In Chapter 10,
a set of constraints and a graph grammar for activity diagrams are given. We
can straightforwardly argue that the grammar fulfils all these constraints.

The inclusion question has a constructive version known as the filter pro-
blem [123]: Given GG and a logical specification of L, how do we derive a
grammar GGL such that L(GGL) = L(GG) fl L?

Instance generation can be supported by model checking, by generating
graphs reachable from the start graph and returning them as counterexamples
to properties representing the negation of policies to determine which instan-
ces should be returned. For example, in a language of activity diagrams we
may want to return graphs representing diagrams with more than one deci-
sion node. A temporal formula demanding that the rule to generate decision
nodes should be applied at most once would be violated by all paths through
the transition system with two or more applications, and such paths would be

Graph Transformation for Software EngineersHeckel, Taentzer

Tools: Henshin

EMF model
transformation

Conflict and
dependency
analysis

Constraint
verification

Model checking
by translation

Heckel, Taentzer Graph Transformation for Software Engineers 55

https://www.eclipse.org/henshin/

Tools: Groove

Graph
transformation

Visualisation
of rules and
matches

Native model
checking in
CTL and LTL

Heckel, Taentzer Graph Transformation for Software Engineers 56

https://groove.ewi.utwente.nl

Part 1: Foundations

ü Graphs
ü Graph Transformations
ü Semantics and Control
ü Analysis

Part I – Foundations of Graph
Transformation
1. Graphs for Modelling and Specification
2. Graph Transformation Concepts
3. Beyond Individual Rules: Usage

Scenarios and Control Structures
4. Analysis and Improvement of Graph

Transformation Systems

Part II – Graph Transformation in Software
Engineering
5. Detecting Inconsistent Requirements in a

Use-Case-Driven Approach
6. Service Specification and Matching
7. Model-Based Testing
8. Reverse Engineering: Inferring Visual

Contracts from Java Programs
9. Stochastic Analysis of Dynamic Software

Architectures
10. Advanced Modelling-Language Definition:

Integrating Metamodelling with Graph
Transformation

11. Improving Models and Understanding Model
Changes

12. Translating and Synchronising Models

www.graph-transformation-for-software-
engineers.org

• Author copy
• Exercises
• Slides

Further Reading

Heckel, Taentzer Graph Transformation for Software Engineers 58

http://www.graph-transformation-for-software-engineers.org/

