
Graph Transformation:
Foundations and Applications in

Software Engineering
Reiko Heckel

University of Leicester, UK

Based on book with Gabriele Taentzer
Philipps Universität Marburg, Germany

MGS 2022

Graph Transformation-Based
Software Engineering

Heckel, Taentzer Graph Transformation for Software Engineers 2

Software design
Implementation

Testing and Analysis5: Detecting inconsistent
requirements

6: Service specification
and matching

7: Model-based testing
8: Reverse engineering

9: Stochastic analysis of
dynamic architectures

Requirements analysis

Detecting Inconsistent
Requirements

Integration of Views

Req. A

User View A

Req. B

User View B
ensure

consistency
Model A Model B

capture

integrate &
transform

System
Make sure there is
an implementation

satisfying all
requirements ! 1. Aspects of requirements models

2. Conflicts between functional requirements
3. Theory and tool support

Aspects of Requirements Models
Model A Model B

1. Static domain model: Agree on vocabulary first !
à class and object diagrams

2. Business process model: Which actions are
performed in which order ?
à use case description in natural language, activity diagrams,

etc.

Structure: Class and
Object Diagrams

Rack

Customer
cash

Cart

ShopBill
total

owns
ow

ns

0..1 0..1

0..1
0..1

0..1

0..1

0..1

1 1

1
0..1

CashBox
amount

1

1

Item
value

typing

ü formal, e.g., attributed
graphs at the type and
instance level

üestablished techniques
for view integration

:Customer
cash = 50

:Cart

:Shop

:Bill
total = 40

:Cash Box
amount = 1000

:Item
value = 30

:Item
value = 10

ownsowns

Behaviour: Use Cases
as Structured Text

Ó take shopping cart
Ó select items from rack
Ó take items out of cart
Ó pay required amount
Ó collect items

Ó create empty bill for
new customer

Ó take items out of
customer’s cart

Ó add them to the bill
Ó collect payment
Ó pack and give items to

customer

<<refine>>

Customer Clerk

buy items

sell items

Shop

ü based on vocabulary
of integrated domain
model

û no way to
tell if views are
consistent

Behaviour: Refinement
by Activity Diagrams

§ Are they consistent with the class model?
§ Are the processes consistent with each other?
§ Are there conflicts between then basic actions?

Heckel, Taentzer Graph Transformation for Software Engineers 8

Buy goods: Sell goods:

[HT20]

Aspects of Requirements Models
Model A Model B

ü Static domain model: Agree on vocabulary first !
à class and object diagrams

ü Business process model: Which actions are
performed in which order ?
à use case description in natural language, activity diagrams,

etc.

3. Functional model: What happens if an action is
performed ?
à pre-/post conditions as logic constraints
à transformation rules on object diagrams

(Fusion, Catalysis, Fujaba, formally: graph transformations)

Function: Rules on Object Structures

:Shop

:Item:Bill
total = x

:CashBox
amount = y

owns

:Shop

:Item
:Bill
total = x

:CashBox
amount = y+xClerk::

close bill

:Customer
cash=y

:Cart :Item

:Bill
total=x

:Shop
owns

:Customer
cash=y-x

:Cart :Item

:Bill
total=x

owns

:Shop

Customer::
pay bill

conflicting
actions

:Customer
cash = 40

:Cart

:Shop

:Bill
total = 10

:Cash Box
amount
= 1000

pay bill

:Item
value = 10

owns

Conflicting Functional Requirements
:Customer
cash = 50

:Cart

:Bill
total = 10

:Cash Box
amount
= 1000

owns

:Item
value = 10

:Shop

:Customer
cash = 50

:Cart

:Shop

:Bill
total = 10

:Cash Box
amount
= 1010

:Item
value = 10

owns

close bill

both delete
owns link

customer
updates

cash

clerk updates
amount

Customer Clerk

Theory: Independence, Causality and
Conflicts in Graph Transformation

§ Alternative steps are parallel
independent if they do not
disable each other.

Otherwise they are in conflict.

§ Consecutive steps are
sequentially independent if
they may be swapped without
affecting the result.

Otherwise they are causally
dependent.

Aim: Find potential conflicts and
dependencies between rules
by critical pair analysis

Characterization [EPS73]:
Two (alternative or
consecutive) steps are
independent iff all commonly
accessed items are in read-
access only.

G

H1 H2

p2p1

X
p1 p2

Are these in conflict / dependent?

§ What conflicts and dependencies can arise between
their activities?

Heckel, Taentzer Graph Transformation for Software Engineers 13

Buy goods: Sell goods:

[HT20]

Are these in conflict / dependent?
Potential conflicts

§ What potential conflicts can arise?
§ Can these be resolved by changes in the activity diagrams?

Heckel, Taentzer Graph Transformation for Software Engineers 14

[HT20]

Are these in conflict / dependent?
Potential dependencies

§ Favourable: dependencies along the control flow
§ Critical: dependencies between use cases of different views

Heckel, Taentzer Graph Transformation for Software Engineers 15

[HT20]

Activity Diagrams with
Dependency Reasons

§ Objects and links to explain potential dependencies.
§ Analogous to activity diagrams with object flow.

Heckel, Taentzer Graph Transformation for Software Engineers 16

[HT20]

Formalise this, …

Transformations in
conflict or dependent

èAlternative or
delayed matches

Rules potentially in
conflicts or dependent

èCritical pairs

Heckel, Taentzer Graph Transformation for Software Engineers 17

Summary
§ Requirements:

§ Structure: Class diagrams
àType graphs

§ Function: pre- and postconditions
àRules

§ Behavour: activity diagrams
àControl structures

§ Consistency
§ Structure vs function

àTyped graph transformation
§ Function vs behaviour, between views

àConflict and dependency analysis

Heckel, Taentzer Graph Transformation for Software Engineers 18

Graph Transformation-Based
Software Engineering

Heckel, Taentzer Graph Transformation for Software Engineers 19

Software design
Implementation

Testing and Analysis5: Detecting inconsistent
requirements

6: Service specification
and matching

7: Model-based testing
8: Reverse engineering

9: Stochastic analysis of
dynamic architectures

Requirements analysis

Service Specification
and Matching

Consistency in
Service-oriented Systems

External: between required and provided specifications
Matching data models and operations

Internal: between specification and implementation
Testing and reverse engineering

Requestor Provider

Requirements Description
Matching specs

Matching
signatures

Correct
implementation

Ontology:
Domain-oriented industry standards

Matching requirements to descriptions
requires a common understanding
of underlying concepts:

Requestor’s requirement:
“I need an online book shop that
accepts payment by bank transfer.”

Provider’s service description:
“We sell all kinds of media.
You may pay via credit card or
bank account.”

Media

Book CD DVD

PaymentMethod

Bank
Transfer

Credit
Card

CashOn
Delivery

Design by Contract (Meyer, 1988)
§ Interface is contract between requestor and provider
§ Both expect benefits and accept obligations

§ Expressible in logic, behavioral models, OCL, etc.
§ Here: visual contracts as visual preconditions and effects

contracts for payBill obligations benefits
Requestor Client
requirements

I provide
account data.

I expect that the Bill will
change status to „payed“.

Provider Shop
description

I guarantee that the
Bill will change to
“payed”, you will
get an ack, and I
store your data.

You provide
account data of the client
who pays.

Matching Requestor with Provider
Pre- and Postconditions

Requires
§ conversion between data models
§ or shared data model (ontology)

Requestor guarantees preR
à Provider assumes preP

Provider guarantees effectP
à Requestor assumes effectR

Requestor

Provider

preR

preP

effectR

effectP

1. call 2. return

Shared Data Model (Ontology)

pays

contains

Bill
total
status

Product
prize
descr

provides

Bank
code

1

AccountData
numberto

Client
name
1

Transfer
amount

credit

debit

1

1Acknowledgement
for

from

Requestor‘s Requirement:
An Inquiry for a Contract

„I want to pay via bank account!“

:AccountData

:Bill
status=open

:Bank

:Bill
status=payed

Pre: I provide
account data
(unchanged)provides

Effect:
I expect that the
Bill will change
status to „payed“
(a transformation)

Provider‘s Description:
A Contract Offer

„You may pay via bank transfer!“

:AccountData

:Bill
status=open

:Bank

:Bill
status=payed

Pre: You provide
account data of the
client who pays.

Effect:
I guarantee that the
Bill will change to
“payed”, you will
get an ack, and I
store your data.

provides

:Client
owns

pays

:Acknowledgement

for

:AccountData

Matching Inquiry and Offer

Pre: I provide
account data

Pre: You provide
YOUR account data

Post: I expect that the Bill
will change status to
„payed“.

Post: I guarantee that the
Bill will will change to
“payed”, and you will get
an ack.

Provider

Requestor

impliednot implied no
match

Inquiry and Offer: Preconditions

PreReq implies PrePro iff PrePro can be embedded in PreReq
„everything assumed by provider is guaranteed by requestor“

:AccountData

:Bank
provides

:AccountData

:Bill
status=open

:Bank
provides

:Client
owns

pays
:Bill
status=open

implies

Requestor‘s service requirement:
Extended precondition

„I want to pay via bank transfer!“

:AccountData

:Bill
status=open

:Bank

:Bill
status=payed

payBill

Pre: I provide
account data of
the client who pays.

Post:
I expect that the

Bill will change
status to „payed“

provides

:Client
owns

pays

Matching Inquiry and Offer

Pre: I provide
my account data

Pre: You provide
YOUR account data

Post: I expect that the Bill
will change status to
„payed“.

Post: I guarantee that the
Bill will will change to
“payed”, and you will get
an ack.

Provider

Requestor

impliedimplied match!

Formalise this, …

Transformations in
conflict or dependent

èAlternative or delayed
matches

Rules potentially in
conflicts or dependent

èCritical pairs

Service specs over local
data models

è Mapping between
data models

è Translate state graphs
and rules

Visual contract =
precondition + effect

èSeparate effect as
minimal rule

èCompare
preconditions

Heckel, Taentzer Graph Transformation for Software Engineers 32

Data Models: Shop à Agent
owns

contains

Bill
total
status

Product
price

provides

Bank
code

Transfer
amount

debit1

credit1

1

AccountData
number

from,
to

from,
to

owns

pays

contains

BankAccount
accNo
code

Bill
total
status

Product
price

1

Client
name

• Bill à Bill, …
• Bill.total à Bill.total, …
• pays à pays, …

pays

Client
name

Acknowledgement Acknowledgement

for for

Mappings Between Data Models

Data models:
§ covariant translation of instances of A into instance of B

without loss of data
§ contravariant projection of instances of B to instances of A

losing all data typed over B – A

Instances:

For all instances a over A, b over B
proj(trans(a)) = a trans(proj(b)) Í b

A map
A B

Instances
over A

Instances
over B

trans

proj

Instances: Agent

pays

contains

:Bill
status = closed
total = 43.40

:Product
price = 28.50
descr =
“H.Potter“

:Client
name
= “Max“

:Product
price = 14.90
descr =
“Winnetou I“

contains

to
owns :AccountData

accNo = 0815

:Bank
code =
100 700 24

provides

:AccountData
accNo = 4711

:Bank
code =
472 501 01

provides

concerns

:Transfer
amount =
43.40

debit credit

Instances: Shop ß Agent

pays

contains

:Bill
status = closed
total = 43.40

:Product
price = 28.50
descr =
“H.Potter“

:Client
name
= “Max“

:Product
price = 14.90
descr =
“Winnetou I“

contains

to
:BankAccount
accNo = 0815
code =
100 700 24

:BankAccount
accNo = 4711
code =
472 501 01

owns

Account and bank data
translated;
Transfer data lost

contravariant

Agent Object Diagram After
Translation Along Shop2Agent

pays

contains

:Bill
status = closed
total = 43.40

:Product
price = 28.50
descr =
“H.Potter“

:Client
name
= “Max“

:Product
price = 14.90
descr =
“Winnetou I“

contains

to
owns

Account and bank data
translated back;
No additional loss of
information

covariant

:AccountData
accNo = 0815

:Bank
code =
100 700 24

provides

:AccountData
accNo = 4711

:Bank
code =
472 501 01

provides

Observe: trans(proj(b)) Í b

Instances: Shop à Agent

Consistency in
Service-oriented Systems

External: between required and provided specifications
Matching data models and operations

Internal: between specification and implementation
Testing and reverse engineering

Requestor Provider

Requirements Description
Matching specs

Matching
signatures

Correct
implementation

Inferring Visual Contracts
from Implementations

Visual Contract

Application

How to model or
extract VCs?

Example: Car Rental Service

Code vs Visual Contracts

• determine scope
• instrument
• select test cases

Preparation

• test and log
changes

• derive contract
instances

Execution
• infer object

structure of
general
contracts

Structure
Inference

Generalisa-
tion

Java Application
dynamic extraction

and inference

Visual contract

• discover multi
object patterns
• learn data
constraints

Reverse Engineering Visual
Contracts

Test and Log Changes

By clicking on a node element

Deriving Contract Instances

• determine scope
• instrument
• select test cases

Preparation

• test and log
changes

• derive contract
instances

Execution
• infer object

structure of
general
contracts

Structure
Inference

Generalisa-
tion

Java Application
dynamic extraction

and inference

Visual contract

• discover multi
object patterns
• learn data
constraints

Reverse Engineering Visual
Contracts

Minimal Contracts and Shared Context

r1:Reservation

r2:Reservation

r3:Reservation

c:Client

r:Reservation

Minimal Contracts and Shared Context

From all instances representing executions of the
same operation generate

Minimal rule

• smallest rule able to perform the
observed object transformation

• cut all context not needed to
achieve observed changes nor
required as input or return

• use to classify instances by effect:
all instances with the same
minimal rule have the same effect,
but possibly different preconditions

Maximal rule

• extend the minimal rule by all
context present in all instances

• determine scope
• instrument
• select test cases

Preparation

• test and log
changes

• derive contract
instances

Execution
• infer object

structure of
general
contracts

Structure
Inference

Generalisa-
tion

Java Application
dynamic extraction

and inference

Visual contract

• discover multi
object patterns
• learn data
constraints

Reverse Engineering Visual
Contracts

Multi Object Patterns

Data Constraints

Consider actual data values extracted from rule instances.

Discover invariant conditions over attributes and (data)
parameters.

city = city
cMax = n

name = name
id = id

cMax = n+1

Generalised Contract

The Visual Contract Extractor (VCE) Tool
Architecture

Experimental Evaluation

§ Completeness and correctness of extracted contracts
§ Based on dynamic analysis è no completeness

Higher code coverage leads to more complete model.
§ Partial logging scope è over-approximation

Larger scope leads to more stronger preconditions and
effects.

§ Utility of visual contracts
§ User study with 66 participating students

§ Scalability of contract extraction
§ NanoXML and JHotDraw case studies

Heckel, Taentzer Graph Transformation for Software Engineers 55

Consistency in
Service-oriented Systems

External: between required and provided specifications
Matching data models and operations

Internal: between specification and implementation
Testing and reverse engineering

Requestor Provider

Requirements Description
Matching specs

Matching
signatures

Correct
implementation

Part 1: Introduction to
Graph Transformation

1. Graphs for Modelling and
Specification

2. Graph Transformation Concepts
3. Beyond Individual Rules: Usage

Scenarios and Control
Structures

4. Analysis and Improvement of
Graph Transformation Systems

Session 1

The book is available from Springer
https://link.springer.com/book/10.1007/978-3-030-43916-3
A free authors' copy and further material is available here:
http://graph-transformation-for-software-engineers.org/

Part 2: Graph Transformation
in Software Engineering

5. Detecting Inconsistent
Requirements in a
Use-Case-Driven
Approach

6. Service Specification
and Matching

7. Model-Based Testing
8. Reverse Engineering:

Inferring Visual
Contracts from Java
Programs

9. Stochastic Analysis of
Dynamic Software
Architectures

10. Advanced Modelling-
Language Definition:
Integrating
Metamodelling with
Graph Transformation

11. Improving Models and
Understanding Model
Changes

12.Translating and
Synchronising Models

Session 2

Session 3

