LEICESTER MGS 2022
Graph Transformation:

Foundations and Applications in
Software Engineering

Reiko Heckel
University of Leicester, UK

Based on book with Gabriele Taentzer
Philipps Universitat Marburg, Germany

Graph Transformation-Based
Software Engineering

Requirements analysis

5: Detecting inconsistent | Testing and Analysis
requirements 7: Model-based testing

6: Service specification 8: Reverse engineering

and matching

Software design
Implementation

9: Stochastic analysis of
dynamic architectures

Heckel, Taentzer Graph Transformation for Software Engineers 2

Detecting Inconsistent
Requirements

Integration of Views

capture

User View A User View B

ensure
consistency

0"
.

Make sure there is
an implementation
satistying all
reguirements !

1. Aspects of requirements models
2. Conflicts between functional requirements
3. Theory and tool support

Aspects of Requirements Models

Model A Model B

1. Static domain model: Agree pn vocabulary first !
— class and object diagrajns

2. Business process model: Which actions are
performed in which order ?

—> use case description innaturalllanguage, activity diagrams,
etc.

Structure: Class and

Object Diagrams

:Customer :Bill
v formal, e.g., attributed ~ L<esh =30 total = 40
graphs at the type and
instance level Cart Ttem Tterm
value = 30| |value = 10
v’ established techniques [:cash Box owns owns
for view integration amount = 1000 :Shop
l typing
1 0.1 1
Customer Bill Shop
cash total o 0.1 1 1
0.1 0.1 01 o
0..1 LVOS 1
Cart 0.1 Item 0.1l Rack CashBox
value i amount

Behaviour: Use Cases
as Structured Text Shop

/ -
v’ based on vocabulary Cust%ner // ¢ G%k

of integrated domain / _ \
model

NoppIng cart

it create empty billior
selecu lems from rack Pty pIllTo

NEW. cUsteomer
[ake item scuror
ustomer's cart

add them to the bill
CollECt payment
X no way to % packand give items to
e . customer;
tell if views are
consistent

Behaviour: Refinement
by Activity Diagrams

Buy goods: Sell goods:

f 3 f Y

‘—’@ .—{create bill j

Y A

[select good }D @@D

Y Y

@—@ settle bil

\. y \ J

[HT20]
= Are they consistent with the class model?

= Are the processes consistent with each other?
= Are there conflicts between then basic actions?

Heckel, Taentzer Graph Transformation for Software Engineers

Aspects of Requirements Models

Model A Model B

v Static domain model: Agree jon vocabulary first !
— class and object diagrains

performed in which order ?

—> use case description in|natura
elc.

v" Business process model: WIich actions are
/

anguage, activity diagrams,

3. Functional model: What happens if an action is
performed ?
— pre-/post conditions as Jogic cqnstraints

—> transformation rules onjobject fliagrams
(Fusion, Catalysis, Fujdba, formally: graph transformations)

Function: Rules on Object Structures

:Customer :Bill :Customer :Bill
cash=y total=x cash=y-x total=x
O@/)S
Cart |7/ :ltem .Cart ‘ltem
:Shop :Shop
conflicting
actions
. :CashBox . :CashBox
:Sh A o . -Lashbox
21OP amount =y Shop amount = y+x
total = x :Item fofal = x .ltem

Conflicting Functional Requirements

:Customer :Bill
cash = 50 total = 10
7
Customer = .- Clerk
"""" :Cart :1tem
“““ RCUCER
customer owns | <-......
d t :CashBox | """ b th d / t
upaaies amount :Shop p— e o eee
cash = 1000 S owns /ink
pay bill clerk updates close bill
amou nt
:Customer ¥ :Bill kS :Customer :Bill
cash = 40 total = 10 cash = 50 total = 10
owns owns
:Cart :Item :Cart :Item
Vale = 10 T =T0—

:Cash Box :Cash Box
amount :Shop “Jamount :Shop
= 1000 T = 1010

Theory: Independence, Causality and
Conflicts in Graph Transformation

= Alternative steps are parallel

G
independent if they do not
disable each other. p/ VZ

Otherwise they are in conflict.

H, H,
= Consecutive steps are '02\ /) !
X

sequentially independent if
they may be swapped without
affecting the result.

Characterization [EPS73]:

Otherwise they are causally Two (alternative or

dependent. :
consecutive) steps are
Aim: Find potential conflicts and independent iff all commonly
dependencies between rules accessed items are in read-

by critical pair analysis access only.

Are these in conflict / dependent?

Buy goods

Sell goods:

7

Y

[select

g0od j::::::>

\

Y

Y

3 é

Y

settle bill

. \

v

= \What conflicts and dependencies can arise between
their activities?

[HT20]

Heckel, Taentzer

Graph Transformation for Software Engineers

13

Are these in conflict / dependent?
Potential conflicts

a R 4
.—{take cart] .—{create bill j
[select good]3 //[bill good]:)

g

= \What potential conflicts can arise?
= (Can these be resolved by changes in the activity diagrams?

[HT20]

Heckel, Taentzer Graph Transformation for Software Engineers 14

Are these in conflict / dependent?
Potential dependencies

7~

r "
‘—{take cart J/—\\ .—{create bill j
l’ Il
I I

1
Ly

W
[select good]D [bill good j:)
‘ Y ‘*V
pay bill — settle bill j
e

" J

[HT20]
= Favourable: dependencies along the control flow
= Critical: dependencies between use cases of different views

Heckel, Taentzer Graph Transformation for Software Engineers 15

Activity Diagrams with
Dependency Reasons

N\

4

[select good %

c:Customer

'

‘—{create bill j

Y

bill g@D

settle bill
_J

[HT20]

= Objects and links to explain potential dependencies.
= Analogous to activity diagrams with object flow.

Heckel, Taentzer Graph Transformation for Software Engineers 16

Formalise this, ...

Transformations in
conflict or dependent

=>» Alternative or
delayed matches

Rules potentially in
conflicts or dependent

=» Critical pairs

Heckel, Taentzer

Graph Transformation for Software Engineers

17

Summary

= Requirements:
= Structure: Class diagrams
—>Type graphs
= Function: pre- and postconditions
- Rules
= Behavour: activity diagrams
—> Control structures

= Consistency
= Structure vs function
- Typed graph transformation

= Function vs behaviour, between views
- Conflict and dependency analysis @bm

m

Heckel, Taentzer Graph Transformation for Software Engineers 18

Graph Transformation-Based
Software Engineering

Requirements analysis

5: Detecting inconsistent | Testing and Analysis
requirements 7: Model-based testing

6: Service specification 8: Reverse engineering

and matching

Software design
Implementation

9: Stochastic analysis of
dynamic architectures

Heckel, Taentzer Graph Transformation for Software Engineers 19

Service Specification
and Matching

Consistency In
Service-oriented Systems

Matching specs

fRequirements --------

| Correct
Matching v implementation

signatures
Reqguestor — - - >0—-

External: between required and provided specifications
Matching data models and operations

Internal: between specification and implementation
Testing and reverse engineering

Ontology:

Domain-oriented industry stand

Matching requirements to descriptions
requires a common understanding
of underlying concepts:

““
«®

Requestor’s requirement:
“| need an online book shop that

accepts payment by bank transfer.”

......

Provider’s service description: .
“We sell all kinds of media.
You may pay via credit card or

bank account.”

.
...
...
........

dia

L 4
L
4
L4
L4
4

DVD

Bank Credit CashOn
Transfer Card Delivery
7 7

.
o**
.
.
a®

Design by Contract (Meyer, 1988)

= Interface is contract between requestor and provider
= Both expect benefits and accept obligations

contracts for payBill

obligations

benefits

Requestor Client
requirements

I provide
account data.

I expect that the Bill will
change status to ,payed".

Provider Shop
description

I guarantee that the
Bill will change to
“payed”, you will
get an ack, and I
store your data.

You provide
account data of the client
who pays.

= Expressible in logic, behavioral models, OCL, etc.
= Here: visual contracts as visual preconditions and effects

Matching Requestor with Provider
Pre- and Postconditions

Requestor

1. call

Provider

Requires

Requestor guarantees preg

- Provider assumes prep
2. return

Provider guarantees effectp
- Requestor assumes effecty

= conversion between data models
= or shared data model (ontology)

Shared Data Model (Ontology)

Client
name
1
pays
Bill from 1 credit
Acknowledaement for total | ¢ AccountData Transfer
. O {number 1 debit | amount
status
provides
contains 1
Product Bank
prize code
descr

Requestor's Requirement:
An Inquiry for a Contract

,| want to pay via bank account!”

:AccountData

|

|

| provides
I :Bank
|

:Bill
status=open

:Bill

status=payed

Pre: I provide
account data
(unchanged)

Effect:
I expect that the
Bill will change

status to ,payed"
(a transformation)

1

Provider's Description:

A Contract Offer

,YOU may pay via bank transfer!”

:AccountData

:Bank

owWns

:Client
— - pPavs _
:Bill

status=open

''''' | provides

a D

:AccountData

:Acknowledgement

for

:Bill

status=payed

Pre: You provide
account data of the

client who pays.

Effect:
I guarantee that the
Bill will change to

“payed”, you will
get an ack, and 1
store your data.

Matching Inquiry and Offer

Requestor
Pre: | provide A Post: | expect that the Bill
account data will change status to
Lpayed".
not implied no w implied
match
Pre: You provide Post: | guarantee that the
YOUR account data Bill will will Change fo
“payed”, and you will get
an ack.
4

Provider

Inquiry and Offer: Preconditions

:AccountData :AccountData
provides provides
:Bank :Bank
_ _ owns
pays
:Bill :Bill
status=open status=open

Prege, implies Prep,, iff Prep,, can be embedded in Preg,,
,everything assumed by provider is guaranteed by requestor”

Requestor's service requirement:
Extended precondition

,| want to pay via bank transfer!”

:AccountData

provides
:Bank

owns
:Client

:Bill
status=open

:Bill

status=payed

Pre: I provide
account data of

the client who pays.

Post:
I expect that the
Bill will change

status to ,payed"

Matching Inquiry and Offer

Requestor
Pre: | provide A
my account data
Pre: You provide
YOUR account data
4

Provider

Post: | expect that the Bill
will change status to
Lpayed".

w implied

Post: | guarantee that the
Bill will will change to
“payed”, and you will get
an ack.

Formalise this, ...

Transformations in Service specs over local
conflict or dependent data models
=>» Alternative or delayed = Mapping between
matches data models
=» Translate state graphs
and rules
Rules potentially in Visual contract =
conflicts or dependent precondition + effect
= Critical pairs =» Separate effect as
minimal rule
= Compare
preconditions

Heckel, Taentzer Graph Transformation for Software Engineers 32

Data Models: Shop - Agent

T T T e e e owns :

“ === 1debit
BankAccggpf, Client Client ~] AccountData Transfer
accNo OWNS | name e number Icredit | amount
code~ _ -

T s~ provides
from, | 1 J T bays from, 4
0 Bill bay “Jeir-]_ |0 |Bank
total |— total |— T = 3| code
status status
contains contains
o Bill = Bill, ...
Product | Product e Bill.total > Bill.total, ...
price price e pays 2> pays, ...
for for

Acknowledgement Acknowledgement

Mappings Between Data Models

A

map

Data models:

>

» covariant translation of instances of A into instance of B

without loss of data

» contravariant projection of instances of B to instances of A

losing all data typed over B — A

Instances:

For all instances a over A, b over B

proj(trans(a)) = a

trans(proj(b)) — b

Instances: Agent

: to
:Client
owns | :AccountData | :AccountData
name [Y 5 B
— \\MaX\\ acho — 4711 aCCNO — 0815
M J provides prOVideS
pays
status = closed -Bank :Bank
total = 43.40 code = code =
contaWontains 472 501 01 100 700 24
debit credit
:Product :Product concerns
price = 28.50 price = 14.90 Transfer
descr = descr = _—
“H.Potter" “Winnetou I | amount = [
43.40

Instances: Shop <_Agent

. to
:Client] ;
OWNS :BankAccount :BankAccount
o accNo = 4711 accNo = 0815
code = code =
: Bill 472 501 01 100 700 24
pays
status = closed
total = 43.40
contay\contains
:Product :Product
price = 28.50 price = 14.90
descr = descr =
“H.Potter" “Winnetou I

Instances: Shop - Agent
s

:Client to
OWNS -AccountData :AccountData
name | —— _
— \\MaX\\ acho — 4711 aCCNO - 0815
-Bill provides provides
pays
status = closed ‘Bank :Bank
total = 43.40 code = code =
contay\contains 472 501 01 100 700 24
:Product :Product
price = 28.50 price = 14.90
descr = descr =
“H.Potter" “Winnetou I

Observe: trans(proj(b)) c b

Consistency In
Service-oriented Systems

Matching specs

fRequirements --------

| Correct
Matching W implementation

signatures
Reqguestor — - - >0—-

External: between required and provided specifications
Matching data models and operations

Internal: between specification and implementation
Testing and reverse engineering

Inferring Visual Contracts
from Implementations

Visual Contract

first parent

- A % 4
T v

this:Element

How to model or
extract VCS?

Application

Example: Car Rental Service

Branch
0..1 city: string 1
at cMax: int of
rMax: int
* i i *
Car 1 1 Client
registration: string name: string
11 id: string
pickup dropoff 1
Reservation
for «|reference: string[« made

Code vs Visual Contracts

\ﬁsualising Rule Instance : dropoffCar (String Reference = null)

LHS 1 4
public void dropoffCar(String Reference){ R 30Rs et T : 2004270537 Reservaion ||
. . . i ' reference=Leicester_12
int ilndex = getReservationIndex(Reference); reservaﬁo%:mrayust
o . 0: index - ArrayList
if (1Index==— |){ 1907290007: ArrayList e A
return; —

}

Reservation getReservation = this.reservations.get(ilndex); [EIE N G Ty

efy Export o= Layout [2Y Zoom

SOOI Wi —

check if reserved car has been picked up already @ J——— LS ;
lf (getReSCI'Vallon.pleup'=nu“){ 5964628083:Remal E 363100463:Branch :
{ é return; reservation%ArrayLiﬁ pickug:Branch
l ‘; } 1907290007: ArrayList 0 index - ArrayLi 2004270537:Reservation
=)) size=1 reference=Leicester_12
14 return reserved car to the drop—off branch
l 5 getReservat]ondropoff_ at.add(getReservatlonfOl‘); B3 visualising Rule Instance : dropoffCar (String Reference = Leicester_11
. 4
16 remove reservation object LS ;
17 this.reservations.remove(ilndex); R
l 8 } reference=Leicester_11
A
FOIV : dropoff:Branch
66755446:Car ' 1668121 4A30: Branch
0: indexi— ArrayList
:"1 150139778:Rertal b

Reverse Engineering Visual
Contracts

a

p)

—

child:Element child:Element

Java Application Visual contract
dynamic extraction

and inference

4
. y Y Generalisa-
S xecution _— tion
(« determine scope\ (« infer object R
* Instrument * test and log structure of - discover multi
- select test cases changes general :
, contracts object patterns
constraints
— - . J | Structure Q
Preparation Inference

Test and Log Changes

Method Signature String RentalService.Rental.makeReservation(String, String, String)
Passed/Return Parameters | String ClientID = Leicester_0, String pickup = Leicester, String dropoff = Nottingham, String return = Leicester_11
Total Executed Objects 24¢ = -
e amtat| I \ode Details [954064616:Reservation] x|
Steps in Internal States 0
N
Access and code location details —
Access Type Internal State (step No) Code Location (line No)
read 49 Rental java - line 296 L
074051048 Rertal ;
: ! . e o .)) 916794 Client
----------------- : initialise 50 Reservation.java - line 21
=Leicester_0
- - - - ’1
write (made) 51 Reservation.java - line 13 &t
7440720:Car
write (pickup) he Reservation.java - line 14
istration=E5
write (dropoff) h Reservation.java - line 15
write (For) 54 Reservation.java - line 16 =
3 Export o= Layout Zoom 3 Export o= Layout Zoom

By clicking on a node element

Deriving Contract Instances

Method Signature

String RentalService.Rental.makeReservation(String, String, String)

Passed/Return Parameters

String ClientID = Leicester_0, String pickup = Leicester, String dropoff = Nottingham, String return = Leicester_11

Total Executed Objects 246 Objects in Scope 10 Objects in Rule Execution in sec. |00:00:00.006001
Steps in Internal States 70 Objects in min-Rule 7 Contexts Effect Yes
LHS 4 RHS
3
550648129:Branch i 550648129:Branch
—>
1+ index - Branchi] city=Nottingham city=Nottingham
A
1
1
1974081946:Rental : 1 index - Branchi] !
1 <Ol Nall
s ; 0 index - ArrayList |968916794:Client ' 0 index - ArrayList [388916794Client
................ !
o) clD=Leicester_0 M clD=Leicester_0
0:index - Branchl] | (717862425:Branch | e 1 | 717862425 Branch | -
1974081948 Rertal ‘Branch 1 R
city=Leicester X L "l cityrLeicester, made: Sient
oMU - ’
Max=11 || e ||| "7 rMax=12 '
1137440720:Car ' A1137440720:Car
A ’
. s ', .: o
1 +index - ArrayList registration=ES ' 1 index - Arza’yu registration=ES
0:index - ArrayList pickup:Branchs P " 4
' . -7 ForCar
1 Z z
1218827221:Reservation
>
reference=Leicester_11
e2i Export o= Layout Zoom 5= Layout Zoom

Reverse Engineering Visual
Contracts

a

p)

—

child:Element child:Element

Java Application Visual contract
dynamic extraction

and inference

4
£ " Y Generalisa-
S xecution _— tion
(« determine scope\ (« infer object R
* Instrument * test and log structure of - discover multi
- select test cases changes general :
, contracts object patterns
constraints
— - . J | Structure Q
Preparation Inference

Minimal Contracts and Shared Context

Two contract-instances extracted from : cancelClientReservation(..)
(A)

r1:Reservation

r2:Reservation

made

r1:Reservation

(B)

=

r2:Reservation

c1:Client

(C)

id="c1"

c1:Client

r3:Reservation

made

c2:Client

id = "c2"

r3:Reservation

c2:.Client

The maximal rule extracted from : (A) and (B)

r:.Reservation

made

» c:Client

r:Reservation

c:Client

Minimal Contracts and Shared Context

-

From all instances representing executions of the
same operation generate

o
Minimal rule Maximal rule
« smallest rule able to perform the » extend the minimal rule by all
observed object transformation context present in all instances

« cut all context not needed to
achieve observed changes nor
required as input or return

* use to classify instances by effect:
all instances with the same
minimal rule have the same effect,
but possibly different preconditions

Reverse Engineering Visual
Contracts

a

p)

—

child:Element child:Element

Java Application Visual contract
dynamic extraction

and inference

4
£ " Y Generalisa-
S xecution _— tion
(« determine scope\ (« infer object R
* Instrument * test and log structure of - discover multi
- select test cases changes general :
, contracts object patterns
constraints
— - . J | Structure Q
Preparation Inference

(A)

(B)

Multi Object Patterns

Two instances extracted from : showClientReservation(..)= returnList

c1:Client

mader id = "c1”

r1:Reservation

c2:Client

mader id = "c2" Tmade
/' Hr2:Reservation | | r3:Reservation

made

— c1:Client

@ [r1:Reservation

return:Collection

made r

c2:Client je—

made

r2:Reservation| | r3:Reservation I '

return:Collection «—-I

Inferred multi objects from (A) and (B)

c:Client
Tmade

r-Reservation

H

1.2!

c:Client

@ Tmade

r:Reservation

return:Collection

!

1.2"

Data Constraints

-

.

Consider actual data values extracted from rule instances.

AN

parameters.
-

—|

b:Branch ||

b:Branch

I ~ ~ I

city = "London"
cMax =0

| | h'Rranrh |

>

b
Discover invariant conditions over attributes and (data)

r 3

b:Branch
cMax = 1

lof

b:Branch

city = city
cMax =n

c:Client

name ="Reiko"
id ="c1"

b:Branch

cMax = n+1

lof

c:Client

name = name
id = id

Generalised Contract

Extracting and Learning Visual Contracts

@ Visualis Rule's Instances < Visualis Generalised Rules

By view &level [E Report [Print

- Observed operations Rule's Applicability ~Rule's Instances
&5 Maximal Rule 1 : observationlD 27296 - . : Instance id No. objects No. internal states
%2 Maximal Rule 2 : observationiD 27325 @® Positive (O Negative || - 7 37 =
¢ [cancelClientReservation [void RentalService.Rental.cancelClientReservation(String)] R 27382 5 31
22 Rule with multi-object inferred from cancelClientReservation oid= 27362 e 27383 7 37
&5 Maximal Rule 1: observationID 27362) Correct) Incorrect 27407 5 31 =
o= (3 cancelReservation [void RentalService.Rental.cancelReservation(String)] 27408 7 37
o [dropoffCar [void RentalService Rental.dropoffCar(String)] = - 27433 5 31
Refresh - Commit | 27434 7 37 —]
[«] i o] Ao 5 3 hd
Generalised Rule ===> return = RegisterClient (par1, par2)
| Select NAC instance — | v |¢ LHS g —
NAC ‘i e | I -
' this-N27357L4 : Rental . ' this-N27357R5 : Rental ' Fq27357R4 -Client
1 1 1 1
PP DADDDDDDS D 1 g 1

0 index { Branch(] 0 index { Branchi] . Invariant Constraints on Attributes 5|

1. N27357R1_Post_size ==1.0
2. N27357R4_Post_cID one of { "Birmingham_0", "Leicester_0"}
B 3. N27357R4_Post_cName one of { "Abdullah”, "Reiko™ }
N27357L3 :Branch gg < 4. N27357R4_Post_cID = N27357R4_Post_cName
B A
B

R2¢357R3EBranch . N27357R4_Post_cID == return
. N27357R4_Post_cName == cIientName_Par2|

city ° :
cMax city
b cMax

eZ Export o= Layout e Export o= Layout Constraints e Export o= Layout [EY Zoom

The Visual Contract Extractor (VCE) Tool

Process of extracting and inferring visual contracts >

Inferring features

Universal context

: Generalising contracts
Extracting |:> Min & Max rules |::> Multi objects/patterns

Contract instances

Attribute/parameter

A

e A T .- - T <
Step1 } Extract Step2 i infer Step3 } infer
Tracer Generaliser Inferencer
Aspect) Graph Matching Algorithm MO Algorithm and Daikon
:Observe ((Back-end database
—
B
lava (D)
010110 Generate
.............. 110011 ¥ table
> 1101000 s - ; execu
- 0001y > l i contracts =
ﬁ‘—.—.‘— Secescssssessescsessasssssssssnnenes }
Henshin

Existing system . ;
g sy Visualiser

Experimental Evaluation

Completeness and correctness of extracted contracts
= Based on dynamic analysis = no completeness
Higher code coverage leads to more complete model.
= Partial logging scope = over-approximation

Larger scope leads to more stronger preconditions and
effects.

Utility of visual contracts

= User study with 66 participating students
Scalability of contract extraction

= NanoXML and JHotDraw case studies

Heckel, Taentzer Graph Transformation for Software Engineers 55

Consistency In
Service-oriented Systems

Matching specs

fRequirements --------

| Correct
Matching W implementation

signatures
Reqguestor — - - >0—-

External: between required and provided specifications
Matching data models and operations

Internal: between specification and implementation
Testing and reverse engineering

Part 1: Introduction to

L
Graph Transformation

1. Graphs for Modelling and

Specification Gl aentzer
2. Graph Transformation Concepts
3. Beyond Individual Rules: Usage

. Graph
Scenarios and Control Trar?sformation
Structures for Software

4. Analysis and Improvement of Engineers
Graph Transformation Systems Dot e Doh-Srare

Language Engineering
The book is available from Springer
https://link.springer.com/book/10.1007/978-3-030-43916-3
A free authors' copy and further material is available here:
http://graph-transformation-for-software-engineers.org/

@ Springer

Part 2: Graph Transformation

5. Detecting Inconsistent

Requirements in a
Use-Case-Driven
Approach

| 6. Service Specification
and Matching

/. Model-Based Testing

Inferring Visual
Contracts from Java
Programs

8. Reverse Engineering:

in Software Engineering
9. Stochastic Analysis of

Dynamic Software
Architectures

10. Advanced Modelling-
Language Definition:
Integrating
Metamodelling with
Graph Transformation

11.Improving Models and
Understanding Model
Changes

12. Translating and
Synchronising Models

L

