
Visual Smart Contracts:
A Doodle in DAML

Reiko Heckel1, Zobia Erum1, Nitia Rahmi2, and Albert Pul3

1 School of Comp. and Math. Sci., University of Leicester, UK, rh122|ze19@le.ac.uk
2 PT Bank Rakyat Indonesia (Persero) Tbk, Indonesia, nr185@student.le.ac.uk

3 betterECO GmbH, Germany pulalbert2@gmail.com

Abstract. We present a case study in the use of visual contracts and
graph transformations for representing DAML smart contacts, their op-
erational semantics, and analysis.

1 Introduction

The Doodle example is used in introductory papers [3,4] to illustrate a range
of DAML’s features. It provides a good opportunity for evaluating the feasibil-
ity of our model-based approach consisting of extended (DAML-specific) class
diagrams to declare DAML templates with their attributes and choices, smart
visual contracts to specify the behaviour of choices, and graph transformation
rules to capture their operational semantics.

A doodle is a voting system to schedule meetings, where an organiser invites
voters to vote on a set of options, recording their preferences in voting slots.
Everyone can vote at most once for each option, and votes are visible to all.

2 From DAML Data Structures and Templates
to Class Diagrams and Typed Graphs

In this section, we introduce DAML and establish a link with object-oriented
concepts by “reverse engineering” DAML code into UML class diagrams.

A class can be seen as a template for creating an object with certain features.
In DAML, a template describes the features of a contract, including its ownership
and access rights, attributes, and operations called choices.

2.1 DAML Code

The DAML code [5] has one data structure and two contract templates: As
shown in the listing below, a VotingSlot record represents the data about an
option, including the vote count and the list of parties who voted for it. The line
deriving (Eq, Show) states that records’ equality is based on identity and they
support serialization. A Doodle contract (created by the organiser as signatory)
offers choices (i.e., operations invoked by the specified controllers) to add and
remove voters and issue invites (organiser), and to cast votes (voters). Individual
DoodleInvite contracts will allow voters to access the CastVote choice.



II

data VotingSlot = VotingSlot
with

count : Int
voted : [Party]

deriving (Eq, Show)

template Doodle
with

name: Text
organizer: Party
voters: [Party]
options: [Text]
votes: TextMap VotingSlot
open: Bool

where
signatory organizer
observer voters
ensure (unique voters) && (unique options)
key (organizer, name): (Party, Text)
maintainer (fst key)

choice AddVoter : ContractId Doodle
with

voter: Party
controller organizer

do
assertMsg

"this doodle has been opened for voting, cannot add voters"
(not open)

create this with voters = voter::voters

choice RemoveVoter : ContractId Doodle
with

voter: Party
controller organizer

do
assertMsg

"this doodle has been opened for voting, cannot remove voters"
(not open)

create this with voters = DA.List.delete voter voters

preconsuming choice IssueInvites : ContractId Doodle
controller organizer

do
assertMsg



III

"this doodle has been opened for voting,
cannot issue any more invites"

(not open)
DA.Traversable.mapA

(\voter -> create DoodleInvite with doodleName = this.name,
organizer = this.organizer, voter = voter)

voters
-- archive self
create this with open = True

preconsuming choice CastVote: ContractId Doodle
with

voter: Party
option: Text
inviteId: ContractId DoodleInvite

controller voter
do

invite <- fetch inviteId
assertMsg

"this invite was issued for a different doodle"
(invite.doodleName == name)

assertMsg
"the voter casting the vote does not match the voter
who received the invite"
(invite.voter == voter)

assertMsg
"the organizer who issued the invite is not the one
who created this doodle"
(invite.organizer == organizer)

assertMsg "this doodle not is open" open
assertMsg "voters is not one of the invited voters"

(elem voter voters)
assertMsg "this is not a valid option " (elem option options)
let

crtVotes = fromOptional
(VotingSlot with count = 0, voted = [])
(DA.TextMap.lookup option this.votes)

updatedVotes = DA.TextMap.insert option
(VotingSlot with count = crtVotes.count + 1,

voted = voter :: crtVotes.voted)
this.votes

assertMsg
"each voter is only allowed to cast one vote per option"
(notElem voter crtVotes.voted)

create this with votes = updatedVotes



IV

2.2 Class Diagram

We illustrate the mapping by creating a class diagram from the DAML code.
The result is shown in Fig. 1. A template maps to a class with the same name,
and template parameters become its attributes or associations. In particular,
attributes of party type are associations to the single party actor in the diagram,
labelled by the appropriate prototypes. In the Doodle template, the organiser is
the signatory and the voters are observers.

Fig. 1: Class diagram for Doodle case study

2.3 Type and Instance Graphs

Disregarding operations, a class diagram can be seen as an attributed type graph
with inheritance [2]. Such a type graph defines a set of attributed instance graphs
representing object structures, the possible data states of our system.

The type graph in Fig. 2 has node types for all contract and data structures
with attributes as defined by the class diagram. It also defines a <op>Call node
for each operation (choice or contract constructor) <op>with arguments and
returns as attributes and edges.

An instance graph with one call node for the Doodle constructor, three parties
and two voting slots is shown in Fig. 3.



V

Fig. 2: Type graph for Doodle case study

Fig. 3: Sample instance Graph for Doodle case study



VI

3 From Template Constructors and Choices to Smart
Visual Contracts and Graph Transformation Rules

A Doodle contract (created by the organiser as signatory) offers choices (i.e.,
operations invoked by the specified controllers) to add and remove voters and
issue invites (organiser), and to cast their votes (voters).

3.1 Doodle Template

Constructor Doodle Fig. 4 shows how the template translates to a smart
visual smart contract (VC) modelling the constructor. We use green colour for
all elements created by the operation, i.e., the Doodle contract its references to
parties organizer, voter and to VotingSlotss.

Fig. 4: Template Doodle as visual contract

Fig. 5 shows the corresponding semantic graph transformation rules, one for
calling the choice, one for executing it and one for the return from the operation.

The first rule creates a DoodleCall node representing the call, which points
to the last version of the contract Doodle (indicated by the last loop), and the
input parameters org, vtr. The execution rule performs the operation, updates
the Doodle contract and creates a ret link to the new version to be returned,
and the return rule deletes the call node.

Choice RemoveVoter In the VC in Fig. 6 the label of the diagram: org >
Doodle.RemoveVoter(vtr) = d’ means that the actor org is the organizer of the
contract. The execution of the choice archives the current version d and replaces



VII

Fig. 5: Semantic rules for the call, execution and return of Doodle

it with a new version d’ indicated by object id d -> d’. The choice removes the
given vtr from the voters list, as represented by the deletion of the voters link.

Fig. 7 shows its corresponding semantic graph transformation rules, one for
calling the choice, one for executing it and one for the return from the operation.
The call rule represents the fact that RemoveVoter can be called at any time. It
is part of the interface the Doodle contract offers to the organizer of the poll.
The rule creates a RemoveVoterCall node representing the call, which points to
the latest version of the this contract d, indicated by the last loop, and the input
parameters org, vtr.

The precondition of the execution rule, shown in solid black (required but
unchanged) and dashed blue (required and deleted) specifies the structure that
must exist before the operation, including the call node. The post condition,
which specifies the changes to the graph, is shown in solid black (unchanged)
and dashed blue (deleted).

In the execution rule, the call node is unlinked from its input parameters
and linked to its return, the new version d’ of the contract. The blue dashed line
from call node to doodle represents the removal of the voter from d that caused
d to be archived and replaced by d’. Data and links are copied from the old to
the new version and any updates, such as the removal of the link to the voter,
are applied to the new version d’. The return rule just defines the deletion of
the call node which, in this case, could have been done in the same rule because
there are no nested calls.



VIII

Fig. 6: Choice RemoveVoter as visual contract

Fig. 7: Semantic rules for the call, execution and return of RemoveVoter



IX

Choice AddVoter Fig. 8 shows the choice AddVoter in DAML and modelled
as a visual smart contract. Fig. 9 shows its corresponding semantic graph trans-
formation rules, one for calling the choice, one for executing it and one for the
return from the operation.

Fig. 8: Choice AddVoter as visual contract

Choice IssueInvites Fig 10 shows choice IssueInvites as a rule and mod-
elled in visual smart contracts. Fig. 11 shows its corresponding semantic graph
transformation rules, one for calling the choice, one for executing it and one for
the return from the operation.

Choice CastVote Fig. 12 shows choice CastVote as a rule and modelled in
visual smart contracts. Fig. 13 shows its corresponding semantic graph trans-
formation rules, one for calling the choice, one for executing it and one for the
return from the operation.

3.2 DoodleInvite Template

Constructor DoodleInvite In Fig. 14, the arrow labelled DoodleInvite(d.name,org,
vtr) represents the invocation of the constructor for DoodleInvite contracts. Ac-
cording to the DAML code, the visual contract has to create the DoodleInvite
object, initialise its attributes and associations according to the input parameters
and return the new contract’s id di. Like the one earlier, this default constructor
VC is wholly derivable from the class definition and would not have to be defined
explicitly. Fig. 15 shows its corresponding semantic graph transformation rules,
one for calling the choice, one for executing it and one for the return from the
operation.

From the code in Fig. 16, we see that when Vote is called, it exercises choice
CastVote. Thus, the CastVote VC is represented with the call function notation.



X

Fig. 9: Semantic rules for the call, execution and return of AddVoter

Fig. 10: Choice IssueInvites as visual contract



XI

Fig. 11: Semantic rules for the call, execution and return of IssueInvites

Fig. 12: Choice CastVote as visual contract



XII

Fig. 13: Semantic rules for the call, execution and return of CastVote

Fig. 14: Template DoodleInvite as Visual Smart Contract



XIII

Moreover, since this choice is nonconsuming, this choice can be called more than
once without archiving the old contract.

Fig. 17 shows its corresponding semantic graph transformation rules, one for
calling the choice, one for executing it and one for the return from the operation.

Fig. 15: Semantic Rule for the call, execution and return of DoodleInvite



XIV

Fig. 16: Choice as a rule Vote as visual contract

Fig. 17: Semantic Rule for the call, execution and return of Vote



XV

4 Verification

We validated the model in Groove [1] both to test the soundness of the over-
all approach to mapping smart VCs into graph transformation systems and to
experiment with model checking to analyse different types of properties. In par-
ticular, we analysed safety properties deriving from constraints declared in the
class diagram, such as key properties for DoodleInvite (doodleName, organizer,
voter are jointly unique), Doodle (name, organizer are jointly unique), and Vot-
ingSlot (option is unique), uniqueness of associations (voters represents a list with
unique entries). From the logic of the problem domain we derive requirements
such as: A party can vote at most once for each voting slot.

We formalised these constraints as property rules (without effect) expressing
the forbidden patterns in their precondition. They are shown in Fig. 18.

We verified them in Groove as an LTL formula G !propNotDoodleInviteKey &
!propNotDoodleKey & !propNotVotingSlotKey & !propNotUniqueVoters & !prop-
NotUniqueVote. In addition we checked the lifeness property, that it is always
possible to reach a state where cast vote is not enabled any more (because all
invited parties have voted for all possible voting slots), in LTL GF !execCastVote.

Checks were executed on a state space of 3379 states and 22948 transitions
generated from a start graph with a single Doodle contract, three parties and
two voting slots while disabling the AddVoter and RemoveVoter. This shows that
model checking is feasible on graph transformation models derived from visual
smart contracts, with many of the properties defined directly by the constraints
in the class diagram and other safety and lifeness properties expressing suitable
requirements from the problem domain.

Fig. 18: Property Rules



XVI

References

1. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using groove. International journal on software tools for technology
transfer 14(1), 15–40 (2012), https://doi.org/10.1007/s10009-011-0186-x

2. Heckel, R., Taentzer, G.: Graph Transformation for Software Engineers - With Ap-
plications to Model-Based Development and Domain-Specific Language Engineer-
ing. Springer (2020), https://doi.org/10.1007/978-3-030-43916-3

3. Kirschner, E.: A doodle in DAML - Part 1. Medium.com (October 2020), https:
//entzik.medium.com/a-doodle-in-daml-part-1-d2ef18bbf7e8

4. Kirschner, E.: A doodle in DAML - Part 2. Medium.com (November 2020), https:
//entzik.medium.com/a-doodle-in-daml-part-2-910614d94c62

5. Kirschner, E.: Github (11 2020), https://github.com/entzik/daml-examples/
blob/master/doodle/daml/Com/Thekirschners/Daml/Doodle.daml

https://doi.org/10.1007/s10009-011-0186-x
https://doi.org/10.1007/978-3-030-43916-3
https://entzik.medium.com/a-doodle-in-daml-part-1-d2ef18bbf7e8
https://entzik.medium.com/a-doodle-in-daml-part-1-d2ef18bbf7e8
https://entzik.medium.com/a-doodle-in-daml-part-2-910614d94c62
https://entzik.medium.com/a-doodle-in-daml-part-2-910614d94c62
https://github.com/entzik/daml-examples/blob/master/doodle/daml/Com/Thekirschners/Daml/Doodle.daml
https://github.com/entzik/daml-examples/blob/master/doodle/daml/Com/Thekirschners/Daml/Doodle.daml

	Visual Smart Contracts: A Doodle in DAML

