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Abstract. In distributed and mobile systems with volatile bandwidth
and fragile connectivity, non-functional aspects like performance and re-
liability become more and more important. To formalise, measure, and
predict these properties, stochastic methods are required. At the same
time such systems are characterised by a high degree of architectural
reconfiguration. Viewing the architecture of a distributed system as a
graph, this is naturally modelled by graph transformations.
To address these two concerns, stochastic graph transformation systems
have been introduced associating with each rule its application rate—the
rate of the exponential distribution governing the delay of its application.
Deriving continuous-time Markov chains, Continuous Stochastic Logic
is used to specify reliability properties and verify them through model
checking.
In particular, we study a protocol for the reconfiguration of P2P networks
intended to improve their reliability by adding redundant connections.
The modelling of this protocol as a (stochastic) graph transformation
system takes advantage of negative application and conditions path ex-
pressions. This ensuing high-level style of specification helps to reduce the
number of states and increases the capabilities for automated analysis.

1 Introduction

Non-functional requirements, concerning the quality or resources of a system,
are often difficult to capture, measure, and predict. At the same time they are
usually critical for success. Many failures of software engineering projects have
been attributed to a lack of understanding of non-functional aspects in the early
stages of development [9].

With the success of Internet and mobile technology, properties like the reli-
ability of connections, available bandwidth and computing resources become an
even greater concern. Since individual occurrences of failures are generally un-
predictable, stochastic concepts are required to formalise such properties. Many
specification formalisms provide corresponding extensions, including stochastic
transition systems (or Markov chains [2, 21]), stochastic Petri nets [1, 4, 19, 20] or
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process algebras [5, 7]. Most of these formalisms specialise in describing behaviour
in terms of orderings of events, neglecting aspects like data transformations and
changes to software architecture or network topology.

A noticeable exception is the π-calculus [18], which allows communication
of channel names between interacting processes. It is thus possible to describe
changes of data structures or network topologies. The stochastic π-calculus [22],
extending the original by assigning rates to the communication actions of a pro-
cess, allows to address non-functional aspects. However, while the π-calculus is an
adequate semantic framework for programming, it is too low-level for expressing
requirements in the early stages of a project. Here communication between de-
velopers and clients requires a direct, diagrammatic description of what changes
are required, instead of a detailed description of how they are achieved.

A more abstract style of specification is provided by rewriting-based for-
malisms like Rewriting Logic or Graph Transformation [17, 24]. Here, rules spec-
ify pre- and post-conditions of operations (what should be achieved) in terms of
complex patterns, while the underlying mechanisms for pattern matching and
implementing these changes are hidden from the user. Graph transformation, in
particular, supports a visual representation of rules which is reminiscent of to
the intuitive way in which engineers would sketch, for example, network recon-
figurations.

In order to account for the non-functional aspects, we introduced stochas-
tic graph transformation systems [11]. Associating an exponentially distributed
application delay with each rule, we derive continuous-time Markov chains
(CTMCs), the standard model for stochastic analysis. This enables us to es-
tablish a link to continuous stochastic logic (CSL) to express and verify proper-
ties like the probability of being connected within 20 seconds after start-up, the
long-term probability for connectedness, etc.

This paper is devoted to a case study, a simplified version of a protocol for
the reconfiguration of Peer-to-Peer networks [16], to validate the practicability of
the approach. P2P networks are decentralised overlay networks that use a given
transport infrastructure like the Internet to create a self-organising network. Due
to the lack of global control and potential unreliability of the infrastructure, P2P
networks are prone to dependability problems. The standard solution consists
in creating sufficient redundancy so that, when a node unexpectedly leaves the
network, its role in the routing of information can be taken over by other nodes.

Mariani [16] proposes an algorithm which, executed asynchronously by each
peer, adds redundant connections to the network to guarantee that the disap-
pearance of a peer does not unduly affect the overall performance and routing
capabilities of the network. It does so by querying the local context of a node up
to a given depth to expose potential weaknesses in the network topology. The
assumption is that this happens fast enough to prevent loss of connectivity due
to the disappearance of the node before extra links could be added. The desired
result is an increased fault tolerance.

We are going to validate these assumptions and compare the level of fault
tolerance achieved with the one obtained by the simpler solution of just adding



a limited number of references at random. To this purpose, we shall model the
protocol as a stochastic graph transformation systems and analyse different vari-
ants of it. To develop a satisfactory model, we will require advanced features for
controlling the application of rules, like negative application conditions and path
expressions. We give an introduction to the basic approach and its extensions
and discuss their relevance w.r.t. the model checking problem.

The paper is structured as follows. Below, in Sect. 2 we introduce typed
graph transformation systems and provide a functional model model of the P2P
network. In Sect. 3 we extend definitions and examples to stochastic graph trans-
formation systems, including the derivation of Markov chains, stochastic logic
and model checking. Their application to the case study is reported in Sect. 4.
Sect. 5 concludes the paper with a discussion of tools and relevant theoretical
problems.

2 Graph Transformation Systems

In this section we will first focus on the basic ideas of typed graph transformation
systems, followed by a survey of the more advanced concepts required by our
case study. We follow the so-called algebraic single-pushout (SPO) approach [15]
to the transformation of typed graphs [13, 6].

2.1 Type and Instance Graphs

Graphs provide the most basic mathematical model for entities and relations. A
graph consists of a set of vertices V and a set of edges E such that each edge e
in E has a source and a target vertex s(e) and t(e) in V , respectively.

In this paper, graphs shall represent configurations of a Peer-to-Peer (P2P)
network, modelling network nodes as vertices and links between them as edges.
We distinguish two different kinds of nodes in our networks, labelled by P for
peers and R for registry, as well as edge types l and r representing links and
registrations, respectively. The idea is that new peers participating in the network
have to login with a central registry server. Afterwards, they can connect and
communicate directly, without using any central infrastructure.

The graph in the upper right of Fig. 1 represents a network with a single
participant and the registry, while the one in the upper left has two connected
participants. Our graphs are directed, but in the case of links we use undirected
l-edges edges to denote symmetric pairs of directed ones.

Like a network configuration, also a collection of interrelated types may be
represented as a graph. In the bottom, Figure 1 shows the type graph of the
P2P model, providing the types for the instance graphs in the top. The relation
between types and their occurrences in configurations is formally captured by
the notion of typed graphs: A fixed type graph TG represents the type level and
its instance graphs the individual snapshots.

Definition 1 (typed graphs). A directed (unlabelled) graph is a four-tuple
G = 〈GV , GE , srcG, tarG〉 with a set of vertices GV , a set of edges GE, and



Fig. 1. Type and instance graphs

functions srcG : GE → GV and tarG : GE → GV associating to each edge
its source and target vertex. A graph homomorphism f : G → H is a pair of
functions 〈fV : GV → HV , fE : GE → HE〉 preserving source and target, i.e.,
such that fV ◦ srcG = srcH ◦ fE and fV ◦ tarG = tarH ◦ fE.

Fixing a type graph TG, an instance graph 〈G, tpG〉 over TG is a graph G
equipped with a graph homomorphism tpG : G → TG. A morphism of typed
graphs h : 〈G1, g1〉 → 〈G2, g2〉 is a graph homomorphism h : G1 → G2 that
preserves the typing, that is, tpG2 ◦ h = tpG1 .

We us the notation of the Unified Modelling Language (UML) for class and
object diagrams to capture the distinction between types and instances: r : R
denotes an element of an instance graph 〈G, tpG〉 such that its type tpG(r) = R.
The expression is underlined to stress that it is considered part of a system con-
figuration (rather than a rule as we shall see below). Morphisms between typed
graphs 〈G, tpG〉 and 〈H, tpH〉 are exemplified in Fig. 1. Morphism f represents
a subgraph inclusion while g, combining inclusion and renaming, is an injective
homomorphism or subgraph isomorphism.

2.2 Single-Pushout Graph Transformation

Having modelled configurations as instance graphs, we are turning to the speci-
fication of instance graph transformations by means of rules. A rule can be seen
as a representative example of all transformations, modelling them by means of
patterns for pre and post states.

For a given type graph TG, a graph transformation rule p : L → R consists
of a name p and a pair of graphs typed over TG. The left-hand side L represents
the pre-condition of the operation specified by the rule while the right-hand side
R describes the post-condition. A correspondence between elements in L and R



is given by the identities of the nodes (sometimes omitted, assuming that the
intention is obvious from the layout).

The rules for the P2P network model are shown in Fig. 2 and 5. Rule new
creates a new peer. This requires to look up the registration of an existing peer
at the registry server, represented by the r-edge from r : R to p : P , to create a
new peer p1 : P with corresponding registration, and to link it to p with a new
edge of type l.

Rule kill models the deletion of a peer with all its ingoing and outgoing
edges. This may cause the network to become disconnected, except for regis-
trations, which are not used for communication. The rule disconnected in the
bottom is provided to detect such situations. The rule is applicable if there are
two registered nodes which are not connected by a path of l-edges, but the appli-
cation does not have any effect on the graph. This rule combines two interesting
features: Negative application conditions and path expressions, both to be intro-
duced below in more detail.

Fig. 2. Rules for creating and killing peers

Rules generate transformations by replacing in a given graph a match for the
left-hand side with a copy of the right-hand side. Thus, a graph transformation

from a pre-state G to a post-state H, denoted by G
p(m)
=⇒ H, is performed in

three steps.

1. Find a match of the left-hand side L in the given graph G, represented by an
injective graph morphism m : L → G, and check if it satisfies the application
conditions, if any;

2. Delete from G all vertices and edges matching L \R;
3. Paste to the result a copy of R \ L, yielding the derived graph H.

In Fig. 3 the application of a rule is shown which creates a new peer, but
unlike new in Fig. 2 passes on the registration from the existing to the new peer.



Fig. 3. Transformation step using rule collect

The match m of the rule’s left-hand side is indicated by the boldface nodes and
edges in G. The transformation deletes the r-edge from r : R to p

2
: P , because

it is matched by an edge in the left-hand side L, which does not occur in R.
To the graph obtained after deletion, we paste a copy of the node p1 : P in L,
renaming it to p

3
to avoid a name conflict, as well as copies of the l-edge from

p : P to p1 : P and the r-edge from r : R to p1. The match m tells us where these
edges must be added, e.g., p 7→ p

2
means that the new l-edge is attached to p

2
rather than to p

1
in H. However, this is not the only possibility for applying this

rule. Another option would be to match p by p
1
, attaching the link to a different

peer. That means, there are two causes of non-determinism: choosing the rule to
be applied (e.g., new or pass on) and the match at which it is applied. (In this
case, both transformations lead to graphs that are isomorphic, i.e., differ only
up to renaming.)

The example of Fig. 3 is not entirely representative of the problems that may
be caused by deleting elements in a graph during step 2. In fact, we have to
make sure that the remaining structure is still a valid graph, i.e., that no edges
are left dangling because of the deletion of their source or target vertices. The
problem is exemplified by the step in Fig. 4. The deletion of p

2
: P would leave

the attached r and l edges “dangling”.
There exist two solutions to this problem: a radical and a conservative one.

The first gives priority to deletion, removing the vertex along with the dangling
edges. The conservative alternative consists in assuming a standard applications
condition which excludes the depicted situation as valid transformation. This
application condition is known as the dangling condition, and it is characteristic
of the algebraic DPO (double-pushout) approach to graph transformation [8].

We adopt the more radical Single-Pushout (SPO) approach [15] because it
provides a more realistic representation of the behaviour we intend to model: It
may not be possible to stop a peer from leaving the network, even if it is still



Fig. 4. More interesting example

connected to other peers. The SPO approach owes its name to the fact that the
construction of applying a transformation rule can be formalised as a pushout
(a gluing construction) in the category of graphs and partial graph homomor-
phisms [15]. A partial graph morphism g : G → H is a total morphisms from
some subgraph dom(g) of G to H. We consider the simplified case of injective
matching, where the left-hand side is essentially a subgraph of the graph to be
transformed, rather than an arbitrary homomorphic image.

Definition 2 (rule, match, transformation). A rule p : L
r−→ R consists

of a rule name p and a partial graph morphism r. A match for r : L → R into
some graph G is a total injective morphism m : L → G. Given a rule p and a
match m for p in a graph G the direct (SPO-) transformation from G with p at

m, written G
p(m)
=⇒ H, is the pushout of r and m in the category of graphs and

partial graph morphisms.

L

(1)m

��

r // R

m∗

��
G

r∗
// H

The typing G, L
r−→ R, and L

m−→ G over TG induces a unique typing for
the derived graph H as well as for the tracking morphism r∗ and the co-match
m∗. Intuitively, all elements that are preserved get their typing from G via r∗

and all new elements inherit their typing from R via m∗. Pushout properties of
(1) imply that there are no further elements in H (i.e., r∗ and m∗ are jointly
surjective) and for all elements that are in the image of both morphisms, there
exists a common pre-image in L so that commutativity of the diagram and type
compatibility of r and m ensure that they inherit the same types from R and G.



2.3 Application Conditions and Path Expressions

Quite often, plain graph matching is not enough to express sophisticated ap-
plication conditions. An example is the dangling edge condition, requiring that
there are no edges incident to nodes that are to be deleted, except for those that
are already part of the rule.

Fig. 5. Rules for introducing short-cuts in the network

User defined negative application conditions [10] can “sense” the existence or
non-existence of connections in the vicinity of the match. As examples, Fig. 5
shows the rules for creating redundant links in the network to achieve a higher
fault tolerance in case a node is unexpectedly deleted. Using smart in the bot-
tom, a shortcut is introduced if the two neighbours of a peer are not otherwise
connected by a direct link or via a third peer. This is expressed by two negative
context conditions: the crossed out l-edge and the crossed out P -node with its
two attached edges.

The rule should be applicable at match m only if m can not be extended
to include any of the two forbidden structures, i.e., neither the crossed out l-
edge nor the P -node with its two edges. They are represented in Fig. 6 by two
injective morphisms l1 and l2 outgoing from the left-hand side L. Extension li
is present in graph G if an injective morphism ni can be found which coincides
with m on L, i.e., the corresponding sub-diagram commutes.

Definition 3 (application conditions). A constraint over L is an injective
typed graph morphism L

l−→ L̂. Given a a match (injective morphism) L
m−→ G,



Fig. 6. Satisfaction of shortcut constraints as graph morphisms

match m satisfies l, written m |=L l, if there is an injective morphism L̂
n−→ G,

such that n ◦ l = m. An application condition is a Boolean expression using
constraints over L as atomic propositions. Satisfaction is defined as usual, based
on the satisfaction of constraints.

A conditional transformation step is a transformation step where the match
satisfies the application conditions associated with the rule.

The negative application in Fig. 6 is thus of the structure N = ¬l1 ∧¬l2. Its
satisfaction does not only depend on the graph G, but also on the chosen match
m. Consider, for example, m1 = {pi 7→ p

i
}, m2 = {p1 7→ p

3
, p2 7→ p

4
, p3 7→ p

5
},

and m3 = {p1 7→ p
3
, p2 7→ p

1
, p3 7→ p

5
}. Then m1,m2 6|=L N , but m3 |=L N .

The rule random in Fig. 5 models the naive approach of adding links at
random as long as the number of additional l-edges attached to either p3 or p4,
beyond the ones linking them to p1, do not exceed two. Hence, the rule will
not increase the degree of any node beyond three. This condition is expressed
by negative constraints, too. Note that injectivity of L̂

n−→ G is essential here,
because this enables us to count the number of nodes in a graph which would
have been confused otherwise.

Path expressions specifying the (non-)existence of certain paths support the
navigation within graphs and are generally useful if non-local graph properties
shall be expressed. For instance, rule disconnected in Fig. 2 detects disconnected
parts of the graph.

For vertices v, w ∈ GV , a path from v to w is a sequence of edges s =
(e1, e2, . . . , en) ∈ GE such that tarG(ei) = srcG(ei+1) for all i ∈ {1, . . . , n − 1}
(the target vertex of one edge is the source of its successor), v = srcG(e1) and
w = tarG(en). If G is typed over TG by tpG, the type of s is is defined by
extending tpG to sequences, i.e., tpG(s) = tpG

E(e1), tpG
E(e2), . . . , tpG

E(en).
A path expressions p is a regular expression over the alphabet TGE of edge

types. Labelling an edge e in the left-hand side of a rule, it is satisfied by a match



m : L → G if there exists a path s from m(srcL(e)) to m(tarL(e)) such that
tpG(s) = p.

Path expressions are formally subsumed by Def. 3 if we allow for a countably
infinite set of constraints and infinitary Boolean expressions as application con-
ditions. An expression stating the non-existence of a path labelled by l-edges, like
in rule disconnected in Fig. 2, is then represented by a conjunction ¬l1∧¬l2∧ . . .
where the li are constraints specifying paths of length i.

2.4 Graph Transformation Systems

Rules over the same type graph are collected in a graph transformation system.
Given a graph to start with, they can generate any of the usual state-based
models, like sets of traces, labelled transition systems, event structures. We will
be particularly interested in a variant of transition systems.

Definition 4 (graph transformation system). A graph transformation sys-
tem G = 〈TG, P 〉 consists of a type graph TG and a set of (conditional) graph
transformation rules p : L

r−→ R ∈ P . The application condition of p is denoted
by AP (p).

A transformation sequence in G

G0
p1(m1)=⇒ G1

p2(m2)=⇒ · · · pk(mk)
=⇒ Gk

is a sequence of consecutive transformation steps with pi ∈ P , briefly denoted by
G0 =⇒∗

G Gk.

The graph transformation systems we shall be interested in are

– Grandom = 〈TG, {new, kill, disconnected, random}〉
– Gsmart = 〈TG, {new, kill, disconnected, smart}〉

with TG being the type graph shown in the bottom of Fig. 1 and the rules given
in Fig. 2 and 5.

A labelled transition graph is the multi-graph equivalent of a labelled transi-
tion system, allowing for more than one transition between a given pair of states,
defined as isomorphism classes of the graphs reachable from the initial one.

Definition 5 (induced labelled transition graph). Let G = 〈TG, P 〉 be a
graph transformation system and G0 a graph typed over TG. Assume a fixed
mapping χ associating to each isomorphism class C of typed graphs a represen-
tative G, i.e. χ(C) = G with C = [G] := {H | H ∼= G}. The labelled transition
graph induced by G and G0 is given by LTG(G, G0) = 〈L, S, T, pre, post, lab〉,
where

– L = P is the set of rule names of G;
– S is the set of all isomorphism classes of graphs reachable from G0, i.e.

S = { [Gn] | G0 =⇒∗
G Gn};



– T is the set of transformations t = (G
p(m)
=⇒ H) with χ(s) = G and χ(s′) = H

for some s, s′ ∈ S. In this case, pre(t) = s, post(t) = s′, lab(t) = p and we
write briefly s

p
=⇒ s′.

Multiple transitions are of interest when in the following section labelled
transition graphs are used to derive Markov chains.

3 Stochastic Graph Transformation

In this section, we introduce stochastic graph transformations extending typed
graph transformation systems in the SPO approach by rates associated with rule
names. We show how to derive a Continuous-Time Markov Chain (CTMC) from
the generated transition system, thus providing the basis for stochastic logic and
model checking in Section 3.3.

3.1 Markov Chains

First we provide some basic notions adopting the Q-matrix, a kind of “incidence
matrix” of the Markov Chain, as elementary notion (cf. [21]).

Definition 6 (Q-matrix). Let S be a countable set. A Q-matrix on S is a
real-valued matrix Q = Q(s, s′)s,s′∈S satisfying the following conditions:

(i) 0 ≤ −Q(s, s) < ∞ for all s ∈ S,
(ii) Q(s, s′) ≥ 0 for all s 6= s′,
(iii)

∑
s′∈S Q(s, s′) = 0 for all s ∈ S.

The Q-matrix is also called transition rate matrix. We use Q-matrices in order
to define random processes. A random process is a family of random variables
X(t) where t is an indexing parameter. Depending on whether t is taken from
a discrete or continuous set, we speak of a discrete- or continuous-time process,
respectively.

We consider continuous-time random processes in which the number of times
the random variables X(t) changes value is finite or countable. Let t1, t2, t3, . . . be
the times at which the state changes occur. If we ignore how long the random pro-
cess remains in a given state, we can view the sequence X(t1), X(t2), X(t3), . . .
as a discrete-time process embedded in the continuous-time process, the so called
jump chain [21, 2.2].

Definition 7 (CTMC). A continuous-time Markov chain (CTMC) is a
continuous-time, discrete-state random process such that

1. The jump chain is a discrete-time Markov chain, i.e. a random process in
which the current state depends only on the previous state in the chain.

2. The time between state changes is a random variable T with a memoryless
distribution, i.e. P(T > t + τ | T > t) = P(T > τ) for all t, τ > 0.



A Q-matrix on a countable set of states S defines a CTMC in the following
way:

If s 6= s′ and Q(s, s′) > 0, then there is a transition from s to s′. If the
set {s′ | Q(s, s′) > 0} is not a singleton, then there is a competition between
the transitions originating in s. The probability that transition s → s′ wins the
“race” is −Q(s,s′)

Q(s,s) . This defines the jump chain.
The time T for leaving a state s to another state is exponentially distributed

with rate Q(s) = −Q(s, s) (the total exit rate), i.e. P(T > t) = e−Q(s)·t. The
exponential distribution is well-known to enjoy the memoryless-property [21,
2.3.1]. Thus a Q-matrix defines a Continuous-Time Markov Chain:

Definition 8 (CTMC with generating matrix Q). Let Q be a Q-matrix on
a countable set of states S. Then the continuous-time random process with jump
chain and state-change times as decried above is the Continuous-Time Markov
Chain with generator matrix Q.

Let Q be a Q-matrix on S and Q′ be a Q-matrix on S′. We call the CTMCs
generated by Q and Q′ isomorphic if there is a bijective mapping φ : S → S′ such
that Q′(φ(s), φ(t)) = Q(s, t) for all states s, t ∈ S. The transition probability
matrix P (t) = (Pss′(t))s,s′∈S describes the dynamic behaviour. It is the minimal
non-negative solution of the equation

P ′(t) = QP (t), P (0) = I.

The (s, s′)-indexed entry of P (t) specifies the probability that the system is
in state s′ after time t if it is in state s at present. Given an initial distribution
π(0), the transient solution π(t) = (πs(t))s∈S is then

π(t) = π(0)P (t).

In the finite case, P (t) can be computed by the matrix exponential function,
P (t) = eQt, but the numerical behaviour of the matrix exponential series is
rather unsatisfactory [25]. Apart from the transient solution, which specifies the
behaviour as time evolves, the steady state or invariant distribution is of great
interest. It is a distribution, i.e. a map π : S → [0, 1] with

∑
s∈S πs = 1, such

that πQ = 0 holds. The steady state gives information about the long term
behaviour of the Markov Chain.

3.2 Stochastic Graph Transformation Systems

A stochastic graph transformation system associates with each rule name a pos-
itive real number representing the rate of the exponentially distributed delay of
its application.

Definition 9 (stochastic GTS). A stochastic graph transformation system
SG = 〈TG, P, ρ〉 consists of a graph transformation system 〈TG, P 〉 and a func-
tion ρ : P → R+ associating with every rule its application rate ρ(p).



For the rules of our sample systems Grandom,Gsmart, fixed rates shall be
given by ρ(new) = ρ(kill) = 1 and ρ(disconnected) = 0, while the rates of
random, smart shall range over 10x for x = 1 . . . 4. That means, disconnected
shall never actually be applied, while the frequency of applying the rules for
creating shortcuts will vary considerably between the experiments. This will
allow us to answer the question if and under which conditions the protocol
proposed in [16] is superior to a random addition of links.

Next we show how a stochastic graph transformation system gives rise to
a Markov Chain, so that the analysis techniques described in Sect. 3.1 can be
applied.

Definition 10 (induced Markov chain). Let SG = 〈TG, P, ρ〉 be a stochas-
tic graph transformation system with start graph G0 and let the induced labelled
transition graph LTG(G, G0) = 〈L, S, T, pre, post, lab〉 be finitely-branching. As-
sume for all s ∈ S that ρ(p) = 0 if p ∈ R(s, s).

Then the Q-matrix on S, generating the induced Markov chain of SG is
defined by

Q(s, s′) =


∑

s
p

=⇒s′

ρ(p) , for s 6= s′

−
∑
t6=s

Q(s, t) , for s = s′.

The initial distribution π(0) is given by πs(0) = 1 for s = [G0] and πs(0) = 0
else. For a proof that this is well-defined, see [11].

Note that there may be multiple transitions linking two given states. As the
Q-matrix can hold only a single entry for every pair of states, the rates of all
these transitions have to be added up. Hence our notion of equality on transitions
determines the rate in the Q-matrix. We regard two transitions as equal only if
the same rule is applied at the same match. For example, if two different peers
can decide to terminate themselves, these decisions should be independent, lead
to two different transitions, and finally add up to a higher rate.

3.3 Stochastic Temporal Logic

We use extended Continuous Stochastic Logic CSL as presented in [3] to describe
properties of CTMCs. Suppose that a labelling function L : S → 2AP is given,
associating to every state s the set of atomic propositions L(s) ⊆ AP that are
valid in s. The syntax of CSL is:

Φ ::= tt | a | ¬Φ | Φ1 ∧ Φ2 | S/p(Φ) | P/p(Φ1UIΦ2)

where / ∈ {≤,≥}, p ∈ [0, 1], a ∈ AP and I ⊆ R is an interval. The other
boolean connectives are defined as usual, i.e., ff = ¬tt, Φ∨Ψ = ¬(¬Φ∧¬Ψ) and
Φ → Ψ = ¬Φ∧Ψ . The steady-state operator S/p(Φ) asserts that the steady-state
probability of the formula Φ meets the bound /p. The operator P/p(Φ1UIΦ2)



asserts that the probability measure of the paths satisfying Φ1UIΦ2 meets the
bound /p.1

For example, the formula P≥0.02(true U [0,10] disconnected) expresses the fact
that the probability of reaching a state labelled disconnected within 10 time
units is at most 0.02, while S≤0.01(disconnected) that the long-term probability
of being in a state labelled disconnected is less than 0.01. Both operators are
also available as queries, asking for the probability of a certain formula to be
true. For example, S=?(disconnected) would return the probability of being in
a disconnected-labelled state, rather than true or false.

In order to use CSL for analysing stochastic graph transformation systems,
we have to define the atomic propositions AP and the labelling function L.

Definition 11 (interpreting CSL over labelled transition graphs). Let
LTG = 〈L, S, T, pre, post〉 be the labelled transition graph of a (stochastic) graph
transformation system G with initial graph G0. We define AP = L to be the set
of transition labels (rule names of G), and the labelling of states

L(s) = {p ∈ AP | ∃t : pre(t) = s}

to be given by the sets of labels of outgoing transitions.

Thus we can reason about the applicability of rules. Coming back to the
above example, a state labelled disconnected is therefore one where the rule
disconnected is applicable (which has an outgoing transition with that label).
S=?(disconnected) therefore queries the transition system for the probability of
being in a disconnected state.

Recall that rule disconnected does not have any effect on the state, i.e., it
is exclusively used to represent a state property. The transition rates of such
property rules are set to 0, so that they do not affect the Q-matrix.

4 Application

We have constructed an experimental tool chain consisting of Groove [23] for
generating the labelled transition graph of a graph transformation system, and
Prism [14] for probabilistic model checking. An adapter connects both tools by
translating the transition graph generated by Groove into a Prism transition
system specification, incorporating the transition rates ρ as specified in a separate
file 2.

As usual, the size of the state space to be generated and analysed is a limiting
factor. Presently the main bottleneck is not the actual state space generation in
Groove, which can handle up to 106 states, but its import into the Prism
model checker, which reaches its limits at a few thousand states. The actual
model checking, once the model is successfully imported, takes no more than a
few seconds.
1 The other path and state operators can be derived. Details are given in [3].
2 http://www.ls10.de/sgt



The problem is caused by the low-level presentation of transition systems
generated by the transformation tool, which uses a single state variable s only.
Transitions are represented as conditional assignments as in the listing below,
where [new]s=176->1*new_rate:(s’=80) defines a transition from state 176
to state 80 using rule new at rate new rate = 1. The enumeration at the end
defines the labelling of states by atomic propositions (= rule names).

stochastic

// 605 Nodes

// 14322 Transitions

const int kill_rate=1;

const int smart_rate=1000;

const int new_rate=1;

const int disconnected_rate=0;

module M s : [0..604] init 438;

[new] s=176 -> 1*new_rate:(s’=80);

[kill] s=359 -> 2*kill_rate:(s’=537);

...

[disconnected] s=101 -> 4*disconnected_rate:(s’=422);

endmodule

// label "smart" = (s= 227, 159, 587, 247, 194);

// label "kill" = (s= 359, 174, 202, 151, 264, 126, ...);

// label "new" = (s= 176, 341, 324, ...);

// label "disconnected" = (s= 95, 364, 302, 116, 402, ...);

The limitation in the number of states requires a style of specification where
all operations are specified by single rules, rather than breaking them down into
smaller steps. The latter would lead to simpler rules, but create intermediate
states. The use of path expressions and application conditions is essential for
this style of specification.

The results of applying the tool chain to the two stochastic graph transfor-
mation systems defined in the previous section are visualised in Fig. 7.

Both systems have been restricted to a maximum of 7 peers and one registry.
The bottom graph represents the behaviour of Gsmart whose transition graph
has 798 states and 16293 transitions.

We observe that, increasing the rate of rule smart by a factor of 10 we de-
crease the long-term probability for a disconnected network by about the same
factor: from 0.225300 for ρ(smart) = 10 to 0.000244 for ρ(smart) = 10000. In-
deed, for rates at least 10 times higher than those of kill and new, the probability
seems to go against 2.4 · ρ(smart)−1. That means, an estimate of the average
time it takes to execute (the implementation of) smart in relation with the rate
of peers entering and leaving the system would provide us with an estimate of
the networks reliability.

The upper graph in Fig. 7 represents the system Grandom which has 487 states
and 9593 transitions. We observe that the added redundancy does not have a
relevant effect on the reliability, even if the number of additional edges created
is roughly the same as in the other system (the overall number of states is only
slightly smaller). This shows the superiority of the first system.



Fig. 7. Results of stochastic model checking

5 Conclusion

In this paper we have developed a case study in stochastic graph transformation
to validate the practicability of the approach and understand its limitations. The
problem addressed, a protocol for adding redundant links in a P2P network, has
been modelled and analysed using an experimental tool chain. Let us conclude
this paper by discussing some of the issues and lessons learned in this exercise.

First, the model in this paper captures only a simplified version of the original
protocol. A complete presentation would have required even more advanced fea-
tures, like rule priorities or multi-objects, which are partly beyond the abilities
of available analysis tools. Alternatively, a high amount of encoding of standard
graph algorithms would have rendered the approach useless for model checking.

A possible solution to this problem is the use of procedural abstractions
as provided by programming-oriented graph transformation approaches like
Fujaba [26]. Ideas for structuring stochastic graph transformation systems
into modules could be used to encapsulate the implementation of these pro-
cedures [12].

Second, P2P networks often contain thousands or even millions of nodes.
Hence, the validity of the results of our analysis, which only considers seven peers,
can be questioned. However, this is not so much an issue of the formalism itself,
but of the analysis techniques and tools. We expect that much more realistic data
can be obtained by complementing model checking with stochastic simulation.

Finally, it depends on the specific application domain whether user behaviour,
as expressed in rules like new, kill, or system behaviour like in smart, random is



exponentially distributed. Future work will extend the approach to allow different
kinds of distributions.
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