Service-Oriented Architectures

A Web service is a component deployed on a Web accessible platform provided by a service provider to be discovered and invoked over the Web by a service requestor.

Not enough to allow dynamic discovery and binding!
Example: Car Rental Service

```plaintext
<<interface>>
RentalServiceRequired

reserveCar(c: Customer, car: Car, ri: RentalInfo)
```

```plaintext
<<interface>>
RentalServiceProvided

makeReserv(c: Customer, car: Car, ri: RentalInfo): EContract...
```

Matching **provider** and **requestor** specification within registry must ensure compatibility of:

Data types
- Does Customer have the same meaning for requestor and provider?

Operation signatures
- Can provider operation be supplied with suitable parameters from a call of requestor operation?

Behavior
- Does provided operation actually carry out what is expected by a requestor?

Data Types and Signatures

```plaintext
<<interface>>
RentalServiceRequired

reserveCar(c: Customer, car: Car, ri: RentalInfo)
```

```plaintext
<<interface>>
RentalServiceProvided

makeReserv(c: Customer, car: Car, ri: RentalInfo): EContract...
```

Data types: parties use common domain model (ontology)

Operation signatures:

- Reorder and rename pars
- Skip input of requestor
- Ignore output of provider
Behavior: Operation Contracts

Pre-condition:
Customer provides rental info and chooses car

Effect:
Car is reserved for customer

Required
- Formal specification (logic, graph transformation, …) for automatic matching
- Integration into mainstream SW development methods (UML) for wider applicability

Outline
- Contracts as graph transformation rules
- Semantics of rules
- Semantic / syntactic compatibility, soundness

Contracts as Graph Transformation Rules

Signature:
`reservCar(c:Customer, my_car:Car, ri:RentInfo)`

Behavior:
GT rule

Pre-condition:
- `c:Customer` provides `my_car:Car`
- `ri:RentInfo`

Effect:
- `c:Customer` reserves `my_car:Car`
- `ri:RentInfo`

Typed DPO
[Corradini et al 96]

Data types:
type graph
What is the right notion of compatibility? That depends on…

how services should interact:

1. Requestor guarantees \(\text{pre}_R \)
 \(\Rightarrow \) Provider assumes \(\text{pre}_P \)
2. Provider guarantees \(\text{effect}_P \)
 \(\Rightarrow \) Requestor assumes \(\text{effect}_R \)

… a contravariant relation.

what it should mean, that:

- an assumption is correct
- a guarantee is fulfilled

… a question about the semantics of contracts.

Operational Semantics: The DPO Approach

- \(L \) is embedded into graph \(G \).
- The elements of \(G \) matched by \(L - l(K) \) are removed.
- The elements matched by \(R - r(K) \) are added to \(D \).
Loose Semantics of Contracts

Requestor has only loose idea of behavior of the other service

\[\text{Requestor} \]

\[\text{pre}_R \rightarrow \text{effect}_R \]

1. call

\[\text{pre}_P \rightarrow \text{effect}_P \]

2. return

Provider has complete info, but may prefer not to publish everything

\[\text{Provider} \]

\[\rightarrow \text{Contracts are incomplete specifications of service behavior} \]

\[\text{G} \rightarrow \text{D} \]

Formally: Double-Pullback (DPB), allows unspecified

Deletion: at least elements of G matched by L - I(K) are removed

Creation: at least elements matched by R - r(K) are added to D

(faithful) transition vs. transformation

Contracts as Rules, revisited

\[\rightarrow \text{Positive Application Conditions} \]

Precondition: what must be present before, no matter what happens later

- deleted
- preserved
- created

Effect: what must be

- provides
- reserves

unnamed

c1:Customer

name="upb"

r1:RentalInfo

pick-upDate=21.02.04
returnDate=25.02.04
location=Pisa

c1:Car

id="VWMultiVan01"

G

D

H
What is the right notion of compatibility?
That depends on …

how services should interact:
1. Requestor guarantees \(\text{pre}_R \)
 \(\Rightarrow \) Provider assumes \(\text{pre}_P \)
2. Provider guarantees \(\text{effect}_P \)
 \(\Rightarrow \) Requestor assumes \(\text{effect}_R \)

… a contravariant relation.

what it should mean, that:
- an assumption is correct
- a guarantee is fulfilled

… a question about the semantics of contracts.

Semantic Compatibility

1. \(\text{pre}_R \Rightarrow \text{pre}_P \) : applicability of requestor rule \textbf{implies} applicability of provider rule

2. \(\text{effect}_P \Rightarrow \text{effect}_R \) : transition via provider rule \textbf{implies} transition via requestor rule.
Semantic Compatibility

\begin{align*}
\text{R:} & \quad c_{\text{Customer}} \rightarrow r_{\text{RentInfo}} \\
& \quad \downarrow \quad \downarrow \\
& \quad \text{my_carCar} \\
& \quad \text{L}_r \\
\text{P:} & \quad c_{\text{Customer}} \rightarrow r_{\text{RentInfo}} \\
& \quad \uparrow \quad \uparrow \\
& \quad \text{carCar} \\
& \quad \text{L}_p \\
\end{align*}

Semantic Compatibility: formally

\begin{align*}
\hat{L}_1 \rightarrow d_{L_1} \rightarrow L_1 \\
\hat{L}_2 \rightarrow d_{L_2} \rightarrow L_2 \\
G \rightarrow d_G \rightarrow \hat{G} \\
\end{align*}

\begin{align*}
\text{R:} & \quad c_{\text{Customer}} \rightarrow r_{\text{RentInfo}} \\
& \quad \downarrow \quad \downarrow \\
& \quad \text{my_carCar} \\
& \quad \text{L}_r \\
\text{P:} & \quad c_{\text{Customer}} \rightarrow r_{\text{RentInfo}} \\
& \quad \uparrow \quad \uparrow \\
& \quad \text{carCar} \\
& \quad \text{L}_p \\
\end{align*}

\begin{itemize}
\item[(i)] For all graphs G, if there exists $d_{L_1} : \hat{L}_1 \rightarrow G$ s.t. $d_{L_1} \circ \hat{L}_1$ satisfies IC of p_1, then there exists $d_{L_2} : \hat{L}_2 \rightarrow G$ s.t. $d_{L_2} \circ \hat{L}_2$ satisfies IC of p_2, and
\item[(ii)] For all spans $t : \langle G, d_G, L_1, \hat{G}, L_2, \hat{H} \rangle$, if there exists a transition $G \xrightarrow{p_1/d_1} H$, then there exists a transition $G \xrightarrow{p_1/d_1} H$ using the same bottom span t.
\end{itemize}
What do we have?

Semantic compatibility relation \models over rules
- quantified over sets of all graphs and transitions
- cannot be verified directly

Goal: syntactic matching relation \vdash over rules such that
- Soundness: $p_2 \vdash p_1$ implies $p_2 \models p_1$
- Completeness: $p_2 \models p_1$ implies $p_2 \vdash p_1$

Syntactic Matching Relation

$pre_R \rightarrow pre_P$: requestor must provide all information necessary for the execution of the provider operation,

$effect_R \rightarrow effect_P$: effect of the provided operation must include those expected by the requestor.
Syntactic Matching: formally

\[(p_1, \hat{L}_1)\text{ syntactically matches } (p_2, \hat{L}_2), \text{ in symbols } (p_2 : s_2, \hat{L}_2) \vdash_{\text{match}} (p_1 : s_1, \hat{L}_1), \text{ iff:}\]

(i) there exists an injective graph homomorphism \(h_L : \hat{L}_2 \rightarrow \hat{L}_1\) s.t. \(h_L \circ \hat{L}_2\) satisfies IC’ of \(p_2\), and

(ii) there exist graph homomorphisms \(h_L : L_1 \rightarrow L_2\), \(h_K : K_1 \rightarrow K_2\), and \(h_R : R_1 \rightarrow R_2\) s.t. the diagrams (a), (b), and the diagram on the left commute, and the diagrams (a) and (b) represent a faithful transition.

What do we have?

Semantic compatibility relation \(\models\) over rules

- quantified over sets of all graphs and transitions
- cannot be verified directly

Goal: syntactic matching relation \(\vdash\) over rules such that

- Soundness: \(p_2 \vdash p_1\) implies \(p_2 \models p_1\)
- Completeness: \(p_2 \models p_1\) implies \(p_2 \vdash p_1\)
Summary & Future Work

- Formal approach to service specification matching.
- Operation contracts are GT-rules with loose semantics.
- Semantic and syntactic matching relations.
- Soundness of matching.

- Refinement of semantic compatibility (→ completeness of syntactic matching).
- Extension to typed graphs with attributes and subtyping.
- Logic / XML-representation of contracts: RDF in DAML-S
- Tool support for computing syntactic matching based on RDF graph matching with RDQL

Proof of Soundness

To prove: \(\mathcal{p}_2 \vDash_{\text{match}} \mathcal{p}_1 \) implies \(\mathcal{p}_2 \nvdash_{\text{match}} \mathcal{p}_1 \)

(i) for all graphs \(G \), if there exists \(d_{\mathcal{L}_1} : \mathcal{L}_1 \rightarrow G \) s.t. \(d_{\mathcal{L}_1} := d_{\mathcal{L}_2} \circ h \) satisfies IC of \(\mathcal{p}_1 \), then there exists \(d_{\mathcal{L}_2} : \mathcal{L}_2 \rightarrow G \) s.t. \(d_{\mathcal{L}_2} := d_{\mathcal{L}_3} \circ h \) satisfies IC of \(\mathcal{p}_2 \).

\(d_{\mathcal{L}_2} \circ h \) is diagram (3) commutes.

\(d_{\mathcal{L}_3} = d_{\mathcal{L}_2} \circ h \) satisfies IC of \(\mathcal{p}_2 \) because of this commutativity and the fact that \(h \circ d_{\mathcal{L}_2} \) satisfies IC of \(\mathcal{p}_2 \).
(ii) for all spans \(t : (G \xrightarrow{a} D \xrightarrow{b} H) \), if there exists a transition \(G \xrightarrow{p_2/d_2} H \),
then there exists a transition \(G \xrightarrow{p_1/d_1} H \) using the same bottom span \(t \).

Both transitions can be vertically composed using the composition of the underlying pullback squares.

Faithfulness of the composed transition follows from the fact that IC of \(d_{L_1} \) follows from that of \(h_L \) and \(d_{L_2} \) (analogously for the right-hand side).