
University of Leicester

FUNCTIONAL PROGRAMMING

THEORY

Course Notes

for lectures 18 to 36 of

MC 208

Dr. R. L. Crole

Department

of

Mathematics and Computer Science

Preface

These notes are to accompany the second half of the course MC 208. They contain all

of the core material for this part of the course. For more motivation and background, as

well as further comments about some of the details of proofs, please attend the lectures.

Please do let me know about any typos or other errors which you find in the notes. If you

have any other (constructive) comments, please tell me about them.

Books recommended for the second eighteen lectures of MC 208 are

• “Semantics with Applications” by H. R. Neilson and F. Nielson. Wiley 1992.

• “The Semantics of Programming Languages: An Introduction Using Structured Oper-

ational Semantics” by Matthew Hennessy. Wiley 1990.

• “The Syntax and Semantics of Programming Languages” by David Watt. Prentice Hall

Computer Science, 1991.

• “The Structure of Typed Programming Languages” by David Schmidt. MIT Press 1994.

• “Semantics of Programming Languages” by Carl Gunter. MIT Press 1992.

• “The Formal Semantics of Programming Languages” by Glynn Winskel. MIT Press

1993.

• “Functional Programming and Parallel Graph Reduction” by Rinus Plasmeijer and

Marko van Eekelen. Addison Wesley 1993.

If you are to do well in this course, you must attend the lectures. They

will give you additional examples, highlight key issues which may not appear

quite as important from the notes as in fact the issues are, and give guidance

towards what you need to know for the examinations.

Acknowledgements

These notes contain some material based on lectures given by L. Paulson and A. M. Pitts

of Cambridge University, and some material based on the above books.

Dr. R. L. Crole November 24, 2009

Contents

1 Mathematical Prerequisites 1

1.1 Introduction . 1

1.2 A Review of Sets . 3

1.3 Relations . 4

1.4 Inductively Defined Sets . 6

1.5 Closures of Relations . 11

1.6 Principles of Induction . 12

1.7 Recursively Defined Functions . 15

2 Untyped Functional Languages 16

2.1 Introduction . 16

2.2 The Syntax of UL . 16

2.3 Free and Bound Variables . 22

2.4 Substitution of Terms . 25

2.5 α-Equivalence . 27

2.6 Terms with Contexts for UL . 30

2.7 Programs and Values for UL . 31

2.8 An Evaluation Relation for UL . 32

2.9 A Transition Relation for UL . 36

2.10 Relating Evaluation and Transition Relations in UL 37

2.11 The Syntax, Programs and Values of UE 39

2.12 Evaluation and Transition Relations for UE 40

2.13 Further Examples and Comments . 41

3 The SECD Machine 45

3.1 Why Introduce the SECD Machine? . 45

3.2 The Definition of the SECD Machine . 46

3.3 Example Evaluations . 49

4 A Typed Functional Language 51

4.1 Introduction . 51

4.2 The Types and Terms of ML . 52

4.3 Type Assignment in ML . 54

4.4 Type Assignment Examples . 56

4.5 Formal Properties of Type Assignment . 58

4.6 Local Polymorphism in ML . 59

4.7 Further Examples . 60

List of Figures

1.1 Some Greek Characters . 2

1.2 Rule Induction . 14

2.1 Rules for Generating the Inductively Defined Set TermUL 19

2.2 Rules for Generating the α-Equivalence Relation M ∼α M
′ 28

2.3 Rules for Generating the Relation Γ ⊢M 31

2.4 Rules for Generating the Evaluation Relation P ⇓ V of UL 33

2.5 Rules for Generating the Transition Relation P Q in UL 36

2.6 Rules for Generating the Evaluation Relation P ⇓ V of UE 41

2.7 Rules for Generating the Transition Relation P Q in UE 42

3.1 Illustrating Three Kinds of Operational Semantics 46

4.1 Rules Generating the Type Assignments Γ ⊢M :: σ in ML 55

1

Mathematical Prerequisites

1.1 Introduction

Definitions 1.1.1 We shall begin by reviewing some mathematics which will be used

throughout this course. Some of the material you have seen before. For the material that

is new, you may need to flesh out the definitions and concepts using books or other sets

of notes. However, most of the basic ideas you have met in Discrete Structures (MC150).

We shall adopt a few conventions:

• If we give a definition, the entity being defined will be written in boldface; and when

we emphasise something it appears in an italic typeface.

• Variables will be denoted by notation such as x, x′, x′′, x1, x2, x3 and so on.

• If we wish to define a set A whose elements are known as widgets, then we shall simply

say “let A be the set of widgets.”

• ⇐⇒ means “if and only if”. In proofs of theorems which are of the form

statement 1 ⇐⇒ statement 2

we shall write

(⇒) . . . proof that statement 1 implies statement 2 . . .

(⇐) . . . proof that statement 2 implies statement 1 . . .

• Suppose we wish to speak of a set A, and indicate that the set A happens to be a subset

of a set X. We will write “consider the set A ⊆ X . . .” for this. For example, we might

say “let O ⊆ N be the set of odd numbers” to emphasise that we are considering the

set of odd numbers denoted by O, which happen to be a subset of the natural numbers

(denoted by N).

• We often use particular characters for particular purposes. For example, capital letters

such as A and X often represent sets, and lower case letters such as a and x represent

elements of sets. When you write down Mathematics or Computing, make sure your lower

and upper case letters are clearly distinguishable!

• We shall often use characters from the Greek alphabet; some of these appear in Table 1.1.

• If you read the notes and do not understand something, try reading ahead and looking

at examples. You may need to read definitions and look at examples of the definitions

simultaneously—each reinforces the other. When you read definitions, try to work out

your own simple examples, and see if you can understand the basic ideas behind the

technical details. Many of the examples have details omitted, which you need to fill in

using a pencil and paper.

2 Chapter 1. Mathematical Prerequisites

α alpha

β beta

γ gamma (lower case)

Γ gamma (upper case)

δ delta (lower case)

∆ delta (upper case)

ǫ epsilon

λ lambda (lower case)

Λ lambda (upper case)

ω omega (lower case)

Ω omega (upper case)

ρ rho (lower case)

σ sigma (lower case)

Σ sigma (upper case)

θ theta (lower case)

Θ theta (upper case)

τ tau

Figure 1.1: Some Greek Characters

1.2. A Review of Sets 3

1.2 A Review of Sets

Definitions 1.2.1 We assume that the idea of a set is understood, being an unordered

collection of distinct objects. A capital letter such as A or B or X or Y will often be used

to denote an arbitrary set. If a is any object in a set A, we say that a is an element of A,

and write a ∈ A for this. If a is not an element of A, we write a 6∈ A. The idea of union

A∪B, intersection A∩B, difference A \B, and powerset P(A) of sets should already be

known. We collect the definitions here:

Union A ∪B
def
= { x | x ∈ A or x ∈ B }

Intersection A ∩B
def
= { x | x ∈ A and x ∈ B }

Difference A \B
def
= { x | x ∈ A and x 6∈ B }

Powerset P(A)
def
= { S | S ⊆ A }

FinitePowerset Pf in(A)
def
= { S | S ⊆ A and S is finite }

Recall that the empty set, ∅, is the set with no elements, and that we say a set S is a

subset of a set A, written S ⊆ A, if any element of S is an element of A. Thus given sets

A and S we could write this definition of subset as

S ⊆ A ⇐⇒ ∀x (x ∈ S =⇒ x ∈ A). (∗)

Note that ⇐⇒ stands for “if and only if” and is used to give definitional equivalences.

We could read (∗) as S ⊆ A “is by definition the same as” for every x, x ∈ S =⇒ x ∈ A.

Note that ∅ ⊆ A for any set A, because x ∈ ∅ is always false. So ∅ ∈ P(A). We regard

∅ as a finite set.

Two sets A and B are equal, written A = B, if they have the same elements. So, for

example, { 1, 2 } = { 2, 1 }. Here, the critical point is whether an object is an element of

a set or not: if we write down the elements of a set, it is irrelevant what order they are

written down in. But we shall need a way of writing down “a set of objects” in which the

order is important.

To see this, think about the map references “1 along and 2 up” and “2 along and 1 up.”

These two references are certainly different, both involve the numbers 1 and 2, but we

cannot use the sets { 1, 2 } and { 2, 1 } as a mathematical notation for the map references

because the sets are equal. Thus we introduce the idea of a pair to model this. If A and

B are sets, with a ∈ A and b ∈ B, we shall write (a, b) for the pair of a and b. The crucial

property of pairs is that (a, b) and (a′, b′) are said to be equal iff a = a′ and b = b′. We

write

(a, b) = (a′, b′)

to indicate that the two pairs are indeed equal. We could write (1, 2) and (2, 1) for our

map references. Note that the definition of equality of pairs captures the exact property

required of map references. We can also consider n-tuples (a1, . . . , an) and regard such

an n-tuple as equal to another n-tuple (a′1, . . . , a
′

n) iff ai = a′i for each 1 ≤ i ≤ n. Note

that a pair is a 2-tuple.

4 Chapter 1. Mathematical Prerequisites

The cartesian product of A and B, written A×B, is a set given by

A× B
def
= { (a, b) | a ∈ A and b ∈ B }.

For example,

{ 1, 2 } × { a, b, c } = { (1, a), (1, b), (1, c), (2, a), (2, b), (2, c) }.

Examples 1.2.2

(1) { 1, 2, 3 } ∪ { x, y } = { 1, 2, 3, x, y } = { x, 1, y, 3, 2 } = . . . The written order of the

elements is irrelevant.

(2) { a, b } \ { b } = { a }.

(3) A \ A = ∅.

(4) P({ 1, 2 }) = { { 1, 2 }, { 1 }, { 2 },∅ }.

(5) { a } × { b } = { (a, b) }.

(6) (x, y) = (2, 100) ⇐⇒ x = 2 and y = 100.

1.3 Relations

Motivation 1.3.1 The idea here is to see how we can formalise the the notion of rela-

tionships. Some examples of relationships are

• Ron is the father of Roy;

• 0 ≤ 5;

• London is south of Leicester;

In each case, we have a pair of objects (for example 0 and 5) which are related in some

way. Note that the order in which the objects are written down is important: 0 ≤ 5, but

not 5 ≤ 0. Let us look for a general framework into which all of our examples fit.

Definitions 1.3.2 Given sets A and B, a relation R between A and B is a subset

R ⊆ A × B. Informally, R is the set whose elements are pairs (a, b) for which “a is in a

relationship to b”—see Examples 1.3.4. Given a set A, a binary relation R on A is a

relation between A and itself. So, by definition, R is a subset of A×A.

Remark 1.3.3 Note that a relation is a set: it is the set of all pairs for which the first

element of the pair is in a relationship to the second element of the pair. If R ⊆ A × B

is a relation, it is convenient to write a R b instead of (a, b) ∈ R. So, for example,

is the father of is a relation on the set Humans of humans, that is

is the father of ⊆ Humans × Humans

and if (Ron,Roy) ∈ is the father of then we can write instead Ron is the father of Roy.

Reading the latter statement corresponds much more closely to common parlance. Note

that if (a, b) 6∈ R then we write a 6R b for this.

1.3. Relations 5

Example 1.3.4 Being strictly less than is a binary relation, written <, on the natural

numbers N. So < ⊆ N × N, and

< = { (0, 1), (0, 2), (0, 3), (0, 4) . . . , (1, 2), (1, 3) . . . , (2, 3), . . .}.

Thus < is the set of pairs (m,n) for which m and n are natural numbers, and m is strictly

less than n. Being less than or equal to is also a binary relation on N, written ≤. We

have

≤ = { (0, 0), (0, 1), (0, 2), (0, 3), . . . , (1, 1), (1, 2), . . .}.

Definitions 1.3.5 We will be interested in binary relations which satisfy certain impor-

tant properties. Let A be any set and R any binary relation on A. Then

(i) R is reflexive iff for all a ∈ A we have a R a;

(ii) R is symmetric iff for all a, b ∈ A, a R b implies b R a;

(iii) R is transitive iff for all a, b, c ∈ A, a R b and b R c implies a R c;

(iv) R is anti-symmetric iff for all a, b ∈ A, a R b and b R a implies a = b.

Examples 1.3.6 Let A
def
= {α, β, γ } be a three element set, and recall the binary

relations < and ≤ on N from Example 1.3.4.

(1) R
def
= { (α, α), (β, β), (γ, γ), (α, γ) } is reflexive, but < is not reflexive.

(2) R
def
= { (α, β), (β, α), (γ, γ) } is symmetric, but ≤ is not.

(3) R
def
= { (α, β), (β, γ), (α, γ) } is transitive, as are < and ≤.

(4) R
def
= { (α, β), (β, γ), (α, γ) } is anti-symmetric. Both < and ≤ are anti-symmetric.

(5) Note that R in (1) is also transitive—what other properties hold of the other examples?

Motivation 1.3.7 Given any set A, the binary relation of equality on A is reflexive,

symmetric and transitive. For if a, b, c ∈ A are any elements of A, a = a, if a = b then

b = a, and if a = b and b = c, then a = c. An equivalence relation is any binary relation

which enjoys these three properties. Informally, such a relation can be thought of as

behaving like “equality” or “being the same as”. Later, we will use equivalence relations

to define a notion of equality between programs; two programs will be related when they

have the same execution behaviours, but possibly different codes.

Definitions 1.3.8 An equivalence relation on a set A, denoted by ∼, is any binary

relation on A which is reflexive, symmetric and transitive. Given any element a of A, the

equivalence class of a, denoted by a, is defined by

a
def
= { a′ | a′ ∈ A and a ∼ a′ }.

So the equivalence class of a is the set of all elements of A which are related to a by ∼.

Note that if x ∈ a then x = a because ∼ is an equivalence relation—check!! We call any

6 Chapter 1. Mathematical Prerequisites

element x of a a representative of a, because the equivalence class of x equals that of a.

We also say that a is represented by any of its elements; in particular, a is represented

by a. We shall write A/∼ for the set of equivalence classes of elements of A, that is,

A/∼
def
= { a | a ∈ A }.

Example 1.3.9 We can define an equivalence relation ∼ on the set Z of integers by

setting

∀x ∈ Z. ∀y ∈ Z x ∼ y ⇐⇒ x− y is even.

For example, 3 ∼ 5, 12 ∼ 14, but 100 6∼ 101. Examples of equivalence classes are:

1 = { . . . ,−5,−3,−1, 1, 3, 5, . . .} and 4 = { . . . ,−4,−2, 0, 2, 4, 6, 8, . . .}

Examples of representatives of 1 are −997, 31, 1, indeed any integer not divisible by 2.

Representatives of 4 are 4, −10000, −8 and so on. Note that Z/∼ is a two element set;

for example

Z/∼ = { 1, 2 } = { 31, 4 } = . . .

1.4 Inductively Defined Sets

Definitions 1.4.1 Let us first introduce some notation. Consider

statement 1 implies statement 2.

It is sometimes convenient to write this as

statement 1

statement 2

Consider

statement 1 iff statement 2.

It is sometimes convenient to write this as

statement 1
=========
statement 2

For example, we can write “x ≤ 4 =⇒ x ≤ 6” as

x ≤ 4

x ≤ 6

The usefulness of this notation will soon become clear.

Motivation 1.4.2 As motivation for this section, consider the following:

The set E ⊆ N of even natural numbers is the least/smallest subset of the natural numbers

satisfying

1.4. Inductively Defined Sets 7

(a) 0 ∈ E, and

(b) for all n, if n ∈ E then n+ 2 ∈ E.

Note that “least/smallest” means1 that if another subset S ⊆ N satisfies (a) and (b) (by

which we mean 0 ∈ S, and for any n if n ∈ S then n + 2 ∈ S) then E ⊆ S. The above

definition of E amounts to saying that the elements of E are created by the rules (a)

and (b), and that (by leastness) there can be no other elements in E. We say that E

is inductively defined by the rules (a) and (b). So E = { 0, 2, 4, 6, 8, . . .}, another set

satisfying (a) and (b) is (for example) S
def
= { 0, 2, 4, 5, 6, 7, 8, 9, . . .}, and indeed E ⊆ S.

More generally, an inductively defined set I is the least (or smallest) set for which

(a) certain elements are always in I, such as c ∈ I; and

(b) whenever certain elements h1 ∈ I and h2 ∈ I and . . . and hk ∈ I, then c′ ∈ I.

(a) is sometimes called the “base clause” and (b) the “inductive clause”. In the last

example, I is E, c is 0, h1 is n, k = 1, and c′ is n+ 2. We shall now give some machinery

in which we can give a very precise formulation of inductively defined sets.

Definitions 1.4.3 A rule R for inductively defining a set denoted by I is a pair (H, c)

where H is any finite set, and c is an element. Note that H might be ∅, in which case we

say that R is a base rule. If H is non-empty we say R is an inductive rule. In the case

that H is non-empty we might write H = { h1, . . . , hk } where 1 ≤ k. We can write down

a base rule R = (∅, c) for inductively defining the set I using the following notation

Base

(R)
c in I

and an inductive rule R = (H, c) = ({ h1, . . . , hk }, c) as

Inductive

h1 in I h2 in I . . . hk in I
(R)

c in I

Note that the order of the statements h1 in I h2 in I . . . hk in I appearing

above the line is irrelevant: the hi are elements of the set H . You may like to think of the

hi as hypotheses and c as a conclusion. The notation hi in I is meant to suggest that hi is

an element of the set I. (For the reason we have not written hi ∈ I see Proposition 1.4.7).

1So if E is the collection of sets satisfying (a) and (b), then E is the least element of E with respect to
the subset ordering.

8 Chapter 1. Mathematical Prerequisites

Any2 set S is closed under a base rule
c in I

if c ∈ S; and is closed under an inductive

rule h1 in I h2 in I ... hk in I

c in I
if whenever h1 ∈ S and h2 ∈ S and . . . and hk ∈ S, then

c ∈ S. The set S is closed under a set of rules R if I is closed under each rule in R.

We can now say that:

Inductively Defined Sets

A set I is inductively defined by a set of rules R if

IC I is closed under R; and

IL for every set S which is closed under R, we have I ⊆ S.

Note that a base rule corresponds to the “base clause” and an inductive rule corresponds

to the “inductive clause” as described in Motivation 1.4.2.

Example 1.4.4 A set3 R of rules for defining the set E of even numbers is R = { 1, 2 }

where

(1)
0 in E

e in E
(2)

e+ 2 in E

IC means that elements of the inductively defined set may be built up by applying the

rules: it says that
(1) 0 ∈ E

(2) ∀e, e ∈ E =⇒ e+ 2 ∈ E.

and thus the elements of E are 0, 2 (that is, 0 ∈ E implies 0 + 2 = 2 ∈ E), 4 and so

on. IL amounts to saying that there can be no elements of E other than those arising by

successive application of the rules: any other set S closed under the rules must contain E

as a subset. An example of such an S is { 0, 2, 4, 6, 7, 8, 9, 10, . . .}. Check this!!

≫ Warning 1.4.5 Note that rule (2) is, strictly speaking, a rule schema,

that is e is acting as a variable. There is a “rule” for each instantiation of

e—hence the “∀e” in the statement of closure of E above. A rule schema is

a template for a collection of rules.

Definitions 1.4.6 If I is inductively defined by a set of rules R, a deduction of x in I

is given by a list

y1 in I, y2 in I, . . . , ym in I (∗)

where

(i) y1 is a conclusion of a base rule;

2S is any set, and might well be I!
3Strictly speaking, the elements of the set R are the numbers 1 and 2. But these are just intended to

be labels for our two rules, and no confusion should result.

1.4. Inductively Defined Sets 9

(ii) for any 1 ≤ i ≤ m, yi is the conclusion of some rule R for which the hypotheses of R

form a subset of { y1, . . . , yi−1 } (the subset can be empty—in this case R will be a base

rule); and

(iii) ym = x.

Note that (∗) is a list—the order of the yi is crucial. Note also that in (ii) we sometimes

say that yi in I has been deduced using the rule R. The subset condition in (ii) simply

ensures that the hypotheses appearing in the rule have already been deduced.

A labelled deduction of x in I looks like

y1 in I (R1)
y2 in I (R2)
. . .

ym in I (Rm)

in which the sequence of yi in I’s is a deduction of x in I, and each Ri is the rule from

R which has been used to deduce yi in I.

Proposition 1.4.7 Suppose that I is inductively defined by a set of rules R. Then

I = { x | there exists a deduction of x in I },

that is

x ∈ I if and only if there exists a deduction of x in I.

Proof Non-examinable. Ask if you want details. �

≫ Warning 1.4.8 IC means that the elements of the Inductively defined set I

are Constructed by “applying” the rules in R—x ∈ I if there exists a deduction

of x in I. IL captures precisely the idea that I is the Least set satisfying the

rules, that is, there can be no elements of I other than those constructed by

the rules—x ∈ I only if there exists a deduction of x in I. Here, least refers

to the subset ordering ⊆ on sets.

Examples 1.4.9

(1) The set I of integer multiples of 3 can be inductively defined by a set of rules R =

{ a, b, c } where

(a)
0 in I

i in I
(b)

i+ 3 in I

i in I
(c)

i− 3 in I

and informally you should think of the symbol i as a variable, that is, (b) and (c) are rule

schemas. For example I being closed under (b) means that if i is any element of I (i ∈ I),

10 Chapter 1. Mathematical Prerequisites

so too is i+ 3 ∈ I. A deduction that 9 ∈ I is given by 0 in I, 3 in I, 6 in I, 9 in I,

and a labelled version of this deduction would be

0 in I (a)
3 in I (b)
6 in I (b)
9 in I (b)

(2) Suppose that Σ is any set, which we think of as an alphabet. Each element l of Σ

is called a letter. We inductively define the set Σ∗ of words over the alphabet Σ by the

set of rules R
def
= { 1, 2 } (so 1 and 2 are just labels for rules!) given by4

[l ∈ Σ] (1)
l in Σ∗

w in Σ∗ w′
in Σ∗

(2)
ww′

in Σ∗

A word is just a list of letters. IC says that Σ∗ is closed under the rules 1 and 2. Closure

under Rule 1 says that any letter l is a word, that is, l ∈ Σ∗. Closure under Rule 2 says

that if w and w′ are any two words, that is w ∈ Σ∗ and w′ ∈ Σ∗, then the list of letters

ww′ obtained by writing down the list of letters w followed immediately by the list of

letters w′ is a word (that is, ww′ ∈ Σ∗). Note that it may be helpful to think of l, w and

w′ in rules (1) and (2) as variables.

As an example, let Σ = { a, b, c }. One possible labelled deduction that abac ∈ Σ∗ is

a in Σ∗ (1)

b in Σ∗ (1)

ab in Σ∗ (2)

c in Σ∗ (1)

ac in Σ∗ (2)

abac in Σ∗ (2)

If we compare this labelled deduction with the general definition in Definitions 1.4.6, we

see that m = 6, and y1 = a, y2 = b, etc to y6 = abac. We have

(i) y1 = a is a conclusion to the base rule (1);

(ii) (for example if i = 5) y5 = ac is a conclusion to (2). Here, the set of hypotheses is

{ a, c }, and certainly the set of hypotheses is a subset of those elements of Σ∗ already

deduced:

{ a, c } ⊆ { a, b, ab, c } = { y1, . . . , y5−1 }.

(iii) ym = y6 = abac.

4In rule (1), [l ∈ Σ] is called a side condition. It means that in reading the rule, l can be any element
of Σ.

1.5. Closures of Relations 11

We can also write a deduction tree which makes explicit which hypotheses are used

when a rule is applied:

(1)
a in Σ∗

(1)
b in Σ∗

(2)
ab in Σ∗

(1)
a in Σ∗

(1)
c in Σ∗

(2)
ac in Σ∗

(2)
abac in Σ∗

(3) We can use sets of rules to define the language of propositional logic. Let Var be a

set of propositional variables with typical elements written P , Q or R. Then the set

Prpn of propositions of propositional logic is inductively defined by the rules

[P ∈ Var] (V)
P in Prpn

φ in Prpn ψ in Prpn
(∧)

φ ∧ ψ in Prpn

φ in Prpn ψ in Prpn
(∨)

φ ∨ ψ in Prpn

φ in Prpn ψ in Prpn
(→)

φ→ ψ in Prpn

φ in Prpn
(¬)

¬φ in Prpn

Clause IC of the definition of an inductively defined set says that Prpn is closed under each

of these rules. Thus the first rule says that any propositional variable P is a proposition.

Also (for example) rule ∧ tells us that if φ ∈ Prpn and ψ ∈ Prpn then φ ∧ ψ ∈ Prpn.

Clause IL captures formally the requirement that propositions can only arise through

applications of the above rules. Finally, an example of a labelled deduction that

((P → Q) ∨ (Q→ P)) ∧ R

is a proposition is

P in Prpn (V)

Q in Prpn (V)

P → Q in Prpn (→)

Q→ P in Prpn (→)

R in Prpn (V)

(P → Q) ∨ (Q→ P) in Prpn (∨)

((P → Q) ∨ (Q→ P)) ∧ R in Prpn (∧)

1.5 Closures of Relations

Motivation 1.5.1 Suppose that R is a binary relation on a set A. Recall (MC150) the

reflexive closure of R is the smallest5 binary relation on A, say Rr, which is reflexive and

contains R. Intuitively, we could obtain Rr from R by adding relationships to R until we

obtain a reflexive relation. We then stop adding relationships, because Rr is required to

be smallest.

5with respect to the subset order, ⊆.

12 Chapter 1. Mathematical Prerequisites

For example, if A
def
= {α, β, γ }, and R

def
= { (α, γ), (α, α) }, the smallest reflexive relation

on A which contains R must be

Rr def
= { (α, γ), (α, α), (β, β), (γ, γ) }

where we have added the relationships (β, β) and (γ, γ) to R.

The symmetric or transitive closures of R can also be constructed by adding relationships

to R to produce a symmetric or transitive relation. For example, if R contains (a, b) and

(b, c), but not (a, c), we must add the latter relationship (amongst others) to R, to obtain

Rt.

We can formulate the definitions of reflexive, symmetric and transitive closures as induc-

tively defined sets—see MC150. The basic idea that an inductively defined set is the

smallest set satisfying some rules is the key: for each kind of closure on R, we write down

rules which say exactly how relationships are added to R to form the closure. However,

the inductive definitions are difficult to work with, so we give alternative, but equivalent

definitions.

Definitions 1.5.2 Let R be a binary relation on a set A. Recall that we write

Rndef
= { (a, a′) | ∃a1, . . . , an ∈ A such that a = a1 R a2 R a3 . . . an−1 R an = a′ }

So, informally, a Rn a′ just when there is a finite sequence of n relationships from a to a′.

Then

(i) Rrdef
=R ∪{ (a, a) | a ∈ A };

(ii) Rsdef
=R ∪ Rop;

(iii) Rtdef
=

⋃
∞

n=1 R
n 6

Example 1.5.3 Let A
def
= {α, β, γ, δ } and R

def
= { (α, β), (β, γ), (γ, δ) }. Then

• Rr = R ∪ { (x, x) | x ∈ A } = { (α, β), (β, γ), (γ, δ)(α, α), (β, β), (γ, γ), (δ, δ) }.

• Rt = { (α, β), (β, γ), (γ, δ)(α, γ), (β, δ), (α, δ) } where for example we can deduce that

(α, δ) ∈Rt as follows: α Rt δ ⇐⇒ ∃m.α Rm δ. But we can see that α R β R γ R δ, and

so α R3 δ, and hence that α Rt δ as required.

1.6 Principles of Induction

Motivation 1.6.1 In this section we see how inductive techniques of proof which the

reader has met before fit into the framework of inductively defined sets. A property is a

statement which is either true or false. We shall write Prop(x) to denote a property of x.

6If Xi is a set for each i ≥ 1, then there is a set Y
def
= { y | y ∈ X1 or y ∈ X2 or y ∈ X3 or . . . }, that

is, y ∈ Y ⇐⇒ ∃m.y ∈ Xm for any y. We usually denote Y by
⋃

∞

i=1
Xi. Why?

1.6. Principles of Induction 13

For example, if Prop(x)
def
= x ≥ 2, then Prop(3) is true and Prop(0) is false. If Prop(a) is

true then we often say that Prop(a) holds.

The Principle of Mathematical Induction arises as a special case of a property of an

inductively defined set. We can regard the set N as inductively defined by the rules

(zero)
0 in N

n in N
(add1)

n + 1 in N

Suppose we wish to show that Prop(n) holds for all n ∈ N. Let

S
def
= { n | n ∈ N and Prop(n) holds }.

If we can show that S = N, then certainly Prop(n) holds for all n ∈ N—for if n ∈ N, then

n ∈ S and so Prop(n) holds. Now, S ⊆ N by definition, so we can prove S = N by showing

that S is closed under the rules zero and add1 (for then N ⊆ S by IL and we already

have S ⊆ N) and this amounts to precisely what one needs to verify for Mathematical

Induction:

• S is closed under zero iff 0 ∈ S iff Prop(0); and

• S is closed under add1 , iff for every natural number n, n ∈ S implies n + 1 ∈ S, iff for

every natural number n, Prop(n) implies Prop(n+ 1).

Next we shall see how the Principle of Structural Induction for the propositions of first

order logic fits into our general framework of inductively defined sets. Recall that this

says in order to prove that a property Prop(φ) holds for all propositions φ it is enough to

show that

• Prop(R) holds for each propositional variable R;

• if Prop(φ) and Prop(ψ) hold for any φ and ψ, then so do Prop(φ ∧ ψ), Prop(φ ∨ ψ),

Prop(φ→ ψ) and Prop(¬φ).

Now, we have specified the collection Prpn of propositions as an inductively defined set.

If we put

S
def
= { φ | φ ∈ Prpn and Prop(φ) }

then S ⊆ Prpn by definition. If also S is closed under the rules defining Prpn , then

Prpn ⊆ S by property IL, and so Prpn = S. But then for any proposition φ we must

have φ ∈ S, and so Prop(φ). Thus: showing S is closed under the rules defining Prpn

will prove that Prop(φ) holds for all φ. Let us examine one (typical) part of proving that

S is closed under the rules for defining Prpn . Take the rule

φ in Prpn ψ in Prpn

φ ∧ ψ in Prpn

Showing S is closed under this rule amounts to showing that for any φ and ψ, if φ ∈ S and

ψ ∈ S, then φ∧ψ ∈ S. But this is exactly proving that if Prop(φ) and Prop(ψ) hold, then

so does Prop(φ ∧ ψ). And this is just one of the steps which we check when applying the

14 Chapter 1. Mathematical Prerequisites

Rule Induction

Let I be inductively defined by a set of rules R. Suppose we wish to show that
a property Prop(i) holds for all elements i ∈ I, that is, we wish to prove

for all i ∈ I, Prop(i).

Then all we need to do is

• for every base rule
b in I

∈ R prove that (if b ∈ I then) Prop(b) holds; and

• for every inductive rule h1 in I, ..., hk in I

c in I
∈ R prove that if h1 ∈ I and . . . and

hk ∈ I, and Prop(h1) and Prop(h2) and . . . and Prop(hk) all hold, so doesa

Prop(c); that is

(hj ∈ I & Prop(hj) where 1 ≤ j ≤ k) =⇒ Prop(c)

We call the assertions Prop(hj) inductive hypotheses. We refer to carrying
out the bulleted (•) tasks as “verifying property closure”.

aand of course c ∈ I follows!

Figure 1.2: Rule Induction

Principle of Structural Induction—the remaining steps correspond to showing the closure

of S under the remaining rules used to define Prpn . Thus the Principle of Structural

Induction is a consequence of the properties of the inductively defined set Prpn .

Definitions 1.6.2 We present a useful inductive principle which subsumes the two prin-

ciples given above—we call it Rule Induction. See Figure 1.2.

To see that Rule Induction works, write

S
def
= { i | i ∈ I and Prop(i) holds }.

Notice that checking the bulleted (•) instructions above amounts to verifying that S is

closed under R. Thus property IL of I tells us that I ⊆ S. Also, S ⊆ I by definition.

Hence S = I. So if i is any element of I, then i ∈ S, and so Prop(i) holds.

Examples 1.6.3

(1) Let Σ = { a, b, c } and let a set7 S of words be defined inductively by the rules

(1)
b in S

(2)
c in S

w in S
(3)

aaw in S

w in S w′
in S

(4)
ww′

in S

7Note that S ⊆ Σ∗. So any element of S is a word, but there are some words based on the alphabet
Σ which are not in S.

1.7. Recursively Defined Functions 15

Suppose that we wish to prove that every word in S has an even number of occurrences

of a. Write #(w) for the number of occurrences of a in w, and

Prop(w)
def
= #(w) is even.

We prove that for every w ∈ S, Prop(w) holds, using Rule Induction; thus we need to

verify property closure for each of the rules (1) to (4):

(Rule (1)): #(b) = 0, even. So Prop(b) holds.

(Rule (2)): #(c) = 0, even. So Prop(c) holds.

(Rule (3)): Suppose that w ∈ S and Prop(w) holds, that is #(w) is even (this is the

inductive hypothesis). Then #(aaw) = 2 + #(w) which is even, so Prop(aaw) holds.

(Rule (4)): Suppose w,w′ ∈ S and #(w) and #(w′) are even (these are the inductive

hypotheses). Then so too is #(ww′) = #(w) + #(w′).

Thus by Rule Induction we are done: we have for every w ∈ S, Prop(w).

1.7 Recursively Defined Functions

Definitions 1.7.1 Let I be inductively defined by a set of rules R, and A any set. A

function f : I → A can be defined by

• specifying an element f(b) ∈ A for every base rule
b in I

∈ R; and

• specifying f(c) ∈ A in terms of f(h1) ∈ A and f(h2) ∈ A and f(hk) ∈ A for every

inductive rule h1 in I,...,hk in I

c in I
∈ R,

provided that each instance of a rule in R introduces a different element of I—why do we

need this condition? When a function is defined in this way, it is said to be recursively

defined.

Examples 1.7.2

(1) The factorial function F : N → N is usually defined recursively. We set

• F (0)
def
= 1 and

• ∀n ∈ N.F (n+ 1)
def
= (n+ 1) ∗ F (n).

Thus F (3) = (2 + 1) ∗ F (2) = 3 ∗ 2 ∗ F (1) = 3 ∗ 2 ∗ 1 ∗ F (0) = 3 ∗ 2 ∗ 1 ∗ 1 = 6. Are there

are brackets missing from the previous calculation? If so, insert them.

2

Untyped Functional Languages

2.1 Introduction

Motivation 2.1.1 The first half of this course taught you to program in a typed, lazy,

functional programming language, namely Haskell. Our aim now is to give a thorough

account of the operational theory of languages like Haskell. We shall see how the syntax

of programs can be rigorously defined, how to identify programs with different code but

similar computational behaviour, and how to define a formal execution mechanism for

a simple language. We shall also see how we can do simple formal reasoning about the

behaviours of programs.

In this chapter, we shall first consider the theory of an untyped, lazy language called UL .

Apart from being untyped, it resembles Haskell. Let us proceed . . .

2.2 The Syntax of UL

Motivation 2.2.1 When studying Haskell, you wrote programs which made use of a

particular language, and a particular way of putting words of the language together.

Failure to do this meant your program would not run. We need a way to make the

construction and structure of programs precise. Let us look at a simple program

sum(l) = if elist(l) then 0 else hd(l) + sum(tl(l))
︸ ︷︷ ︸

body

and think about the structure of the program body. It has the form

if B then M else N

where, for example, B is elist(l). The conditional expression requires three arguments, B,

M and N , and to make this clear it is helpful to write the conditional as

cond(elist(l) , 0 , hd(l) + sum(tl(l)))

and think of the conditional as a constructor which acts on three arguments, to “construct”

a new program (you might like to think of a constructor as a function). Now we look at

a sub-part of the program body, hd(l) + sum(tl(l)). We can think of + as a constructor

which acts on two arguments, and to make this visually clear, it is convenient to write

the latter expression as

+(hd(l) , sum(tl(l))).

Finally, looking at one of the sub-parts of this expression, namely hd(l), we can think of

hd(l) as a constructor hd acting on a single argument, l.

2.2. The Syntax of UL 17

In fact, all of the programs we shall meet in the remainder of this course arise formally

as “constructors applied to arguments”. We can make the idea precise by thinking about

finite trees, whose nodes are constructors and whose sub-trees are “sub-programs”. For

example, the body of the program written above is secretly just notation for the following

tree:
cond

elist
�

0
?

+

-

l
?

hd
�

sum

-

l
?

tl
?

l
?

Note that in this (finite) tree, we regard each node as a constructor. To do this, we can

think of both l and 0 as a constructors which take no arguments!!. We call construc-

tors which take no arguments and which are not variables, such as 0 or the Boolean T ,

constants. Let us move on to the precise definitions.

Definitions 2.2.2 We begin the formal definition of UL . Let Var be a fixed, countably

infinite, set of variables, for which we assume there is a specified enumeration (list).

Thus

Var
def
= { v0, v1, v2, . . . }.

We often denote variables by the letters x, y, z, u, v etc, but may on occasion use other

letters. Let Cst be a set of constants where

Cst
def
= { c | c ∈ Z ∪ B }

and Z is the set of integers and B
def
= {T ,F } is the set of Booleans. Let Opr be a set of

operators given by

Opr
def
= {=,≤,≥, <,>,+,−, ∗ }.

It is assumed that the intended meaning of these operators is the meaning you are familiar

with from Haskell.

We shall let the symbol c range over elements of Z ∪ B. Note that the operator symbols

will be regarded as denoting the obvious mathematical functions. For example, ≤ is the

function which takes a pair of integers and returns a truth value. Thus ≤ : Z×Z → B is

the function given by (m,n) 7→ m ≤ n, where

m ≤ n =

{
T if m is less than or equal to n

F otherwise

For example, 5 ≤ 2 = F .

18 Chapter 2. Untyped Functional Languages

Note that we write c to indicate that the constant c is “held in memory”. We shall

require that c = c′ if and only if c = c′. Given (for example) 2 and 3 we cannot add these

“numbers” until our programming language instructs that the contents of the memory

locations be added—thus 2 + 3 6= 5. However, when 2 is added to 3 by UL , the result is

5, and we shall write

2 + 3 = 5.

We now define the set TermUL of terms. For the time being, you can think of a term

informally as a program, but we warned that they are not quite the same thing. A term

is in fact a finite tree, and the set of terms, TermUL, is a subset of the collection of all

finite trees. We shall adopt the following notation for finite trees: If T1, T2, T3 and so on

to Tn is a (finite) sequence of finite trees, then we shall write root(T1, T2, T3, . . . , Tn) for

the finite tree which has the form

root

.8

�

T1 T2

�
T3

�

. . . Tn

-

and whose root is denoted by the symbol root.

The set of program constructors (recall Motivation 2.2.1) is given by

{ x, c, op, cond, λ, ap, rec, nil, hd, tl, cons, elist }

We say that c is a nullary constructor because it takes no arguments, cond is a ternary

constructor because it takes three arguments, and so on in the obvious way.

The set TermUL is inductively defined by the rules in Figure 2.1, where x can be any

variable, c can be any constant, and op can be any operator.

Motivation 2.2.3 We have now given a very precise definition of the syntax which we

shall use to denote terms. However, terms will be very difficult to read. We therefore

introduce notational abbreviations (syntactic sugar) which apply to the formal definitions

of terms:

Remark 2.2.4 We shall adopt the following notational abbreviations:

• We write M op N for op(M,N);

• if M then N else L for cond(M,N,L);

• λx.M for λ(x,M);

•M N for ap(M,N);

• rec x.M for rec(x,M); and

2.2. The Syntax of UL 19

VAR

x in TermUL
CONST

c in TermUL

M in TermUL N in TermUL

OP

op(M,N) in TermUL

M in TermUL N in TermUL L in TermUL

COND

cond(M,N,L) in TermUL

M in TermUL

ABS

λ(x,M) in TermUL

M in TermUL N in TermUL

AP

ap(M,N) in TermUL

M in TermUL

REC

rec(x,M) in TermUL

NIL

nil in TermUL

M in TermUL

HD

hd(M) in TermUL

M in TermUL

TL

tl(M) in TermUL

M in TermUL N in TermUL

CONS

cons(M,N) in TermUL

M in TermUL

ELIST

elist(M) in TermUL

Figure 2.1: Rules for Generating the Inductively Defined Set TermUL

20 Chapter 2. Untyped Functional Languages

•M : N for cons(M,N).

We shall often prove propositions of the form ∀M ∈ TermUL.Prop(M) by using Rule

Induction. Sometimes we say instead that the proof uses “induction on the (finite tree)

structure of M”. Why is this?

Example 2.2.5 Let us give an example deduction tree1 for a simple term. We shall

show that cond(= (x, 4), 0,+(x, 5)) is a term, that is,

cond(= (x, 4), 0,+(x, 5)) ∈ TermUL.

The formal tree looks like this:

VAR

x ∗
CONST

4 ∗
OP

= (x, 4) ∗
CONST

0 ∗

VAR

x ∗
CONST

5 ∗
OP

+(x, 5) ∗
COND

cond(= (x, 4), 0, +(x, 5)) ∗

and the corresponding tree using informal notation looks like:

VAR

x ∗
CONST

4 ∗
OP

x = 4 ∗
CONST

0 ∗

VAR

x ∗
CONST

5 ∗
OP

x + 5 ∗
COND

if x = 4 then 0 else x + 5 ∗

where ∗ denotes in TermUL to save space.

Definitions 2.2.6 Note that each “rule” in Figure 2.1 is really a rule schema. The rule

COND means that if M , N and L are any terms, then so too is if M then N else L. We can

also give the definition of the set of terms using a grammar, which uses less space than

the full set of rules, and is clearer to read:

M ::= x variables
| c constant
| M op M operator
| if M then M else M conditional
| λx.M function term
| MM function application
| rec x.M recursive term
| nil empty list
| hd(M) head of list
| tl(M) tail of list
| M : M cons for lists
| elist(M) test for empty list

Remember that the grammar is nothing other than a shorthand description of the rules

in Figure 2.1. It reads: “any term is either a variable x, or a constant c, or M op N

provided that M and N are already terms . . .”.

1See page 11

2.2. The Syntax of UL 21

Motivation 2.2.7 The intended meanings of most of the terms are just what you would

expect from Haskell, except for rec x.M . In order to explain its meaning, if P and P ′ are

two programs, we shall write P P ′ to mean that P “computes in one step” to P ′ (this

notation will be defined properly on page 36). We shall also write M [N/v] to mean “M

where v is replaced by N”. For example,

(2 + 5) + 1 7 + 1 8 and (x+ y)[4/y] = x+ 4.

\x->M in Haskell corresponds to λx.M in UL , and is code for the program which is a

function whose effect is to map x to M . More carefully, if f
def
= λx.M , then f a M [a/x].

Thus λx.x+ 2 is a program whose intended meaning is the function which “adds 2”, and

we can write (for example) (λx.x+ 2) 4 4 + 2.

Now, rec x.M is a recursive program on x, which is specified by the code in M . We

ilustrate by example. Write R
def
= rec x.M . The program R “computes in one step” to

M [R/x]. Thus if we take M
def
= 0 : x, then

R (0 : x)[R/x] ≡ 0 : R 0 : (0 : R) . . .

and so R is a program which recursively evaluates to an infinite list of zeros. We call each

step in the computation of R an unfolding.

Remark 2.2.8 We shall adopt a few conventions to make terms more readable:

• In general, we shall write our “formal” syntax in an informal manner, using brackets

“(” and “)” to disambiguate where appropriate—recall that in Haskell one can add such

brackets to structure programs. For example, the term ap(λ(x,M), N) (which is un-

ambiguous) will not be written λx.M N according to the abbreviation in Remark 2.2.4

(which is ambiguous) but will be written (λx.M)N .

• We also drop brackets on other occasions. For example, we take λ-term λx.M to mean

λx.(M). Thus we can write λx.λy.y + 2 instead of the more clumsy λx.(λy.(y + 2)). A

similar convention applies to rec x.M . We call M the body of λx.M and rec x.M .

•M1M2M3 . . .Mn is shorthand for (. . . ((M1M2)M3) . . .Mn). We say that the application

constructor (ap) associates to the left. For example, M1M2M3 is short for (M1M2)M3

(which is in turn a shorthand notation for the tree denoted by ap(ap(M1,M2),M3).

• We shall write M : N : L for M : (N : L) and say that the cons constructor (cons)

associates to the right.

• The op constructors associate to the left. Thus the term 3 op 10 op 5 is shorthand for

(3 op 10) op 5.

• We take if M then N else L to mean if (M) then (N) else (L).

Examples 2.2.9 Examples of actual terms, that is, elements of TermUL are

(1) x;

22 Chapter 2. Untyped Functional Languages

(2) hd(cons(2, 4));

(3) ap(x, ap(x, y));

(4) λ(x, λ(y, ap(ap(y, x), λ(z, z))));

(5) rec(x, op(x, 2)); and

(6) cons(x, cons(2, 3)).

These would normally be written as

(1) x;

(2) hd(2 : 4);

(3) x (x y);

(4) λx.λy.y x (λz.z);

(5) rec x.x op 2; and

(6) x : 2 : 3.

≫ Warning 2.2.10 There are many terms which do not represent “com-

monsense” programs. By commonsense, we mean “well typed” programs.

For example, hd(2 + 3), T − 3 and 4 ∗ (T : F) are all terms. In Chapter 4 we

shall show how to add typing information, which will prevent such terms

ever arising.

2.3 Free and Bound Variables

Motivation 2.3.1 We have seen the definition of a term as a finite tree which is formed

using certain rules. It is often convenient to refer to “parts” of a term. More precisely,

such “parts” are subtrees of terms. We refer to such subtrees as subterms. For example,

x op y is a subterm of (x op y) : 2, and this fact looks transparent if we draw the tree

which (x op y) : 2 denotes:
cons

op
�

2

-

x
�

y
-

We now make this idea precise:

Definitions 2.3.2 We shall use the symbol ≡ to mean syntactic identity. Two objects

are syntactically identical iff they “symbolically the same”. Thus, for example 2+2 ≡ 2+2,

but 2 + 2 6≡ 4.

We shall define the notion of a subterm of a term. We shall specify a binary relation ⊳

(meaning “is a subterm of”) on TermUL by the following clauses:

2.3. Free and Bound Variables 23

• M ⊳M for all terms M ;

• S ⊳M op N ⇐⇒ S ⊳M or S ⊳ N ;

• S ⊳ if M then N else L ⇐⇒ S ⊳M or S ⊳ N or S ⊳ L;

• S ⊳ λx.M ⇐⇒ S ≡ x or S ⊳M ;

• S ⊳M N ⇐⇒ S ⊳M or S ⊳ N ;

• S ⊳ rec x.M ⇐⇒ S ≡ x or S ⊳M ;

• S ⊳ hd(M) ⇐⇒ S ⊳ M ;

• S ⊳ tl(M) ⇐⇒ S ⊳ M ;

• S ⊳M : N ⇐⇒ S ⊳ M or S ⊳ N ; and

• S ⊳ elist(M) ⇐⇒ S ⊳M .

We say that a variable x occurs in a term M if x ⊳ M . We say that a term M lies in

the scope of λy or rec y in a term of the form λy.M or rec y.M respectively.

Example 2.3.3 u+ 2 is the scope of λu in λx.(λu.u+ 2) z. Example subterms are

z ⊳ λx.(λu.u+ 2) z and λu.u+ 2 ⊳ λx.(λu.u+ 2) z.

If N
def
= λx.xxyxzx then the underlined x is the fourth occurrence of x in N . x occurs in

N five times.

Motivation 2.3.4 The intended meaning of λx.x+2 is the function which adds 2 to its

argument. What about λy.y + 2? Well, it too should be a function which adds 2. The

name of the variable used to form such a term is not relevant to the intended meaning of

the term—the variables x and y are said to be bound. However, the terms x+2 and y+2

are certainly different—the value of each term is respectively 2 added to x and 2 added

to y, so the values will only be the same if x = y. Here, the variables x and y are said to

be free. Let us give the full definitions:

Definitions 2.3.5 One reason for defining the notion of a subterm is so that we can give

a formal definition of free and bound variables. Suppose that x is a variable which does

occur in a term M—of course x may occur more than once, possibly many times. Each

occurrence of x (in M) is either free or bound. We say that an occurrence of x is bound

in M if the occurrence of x in M is in a subterm of the form λx.N or rec x.N—this means

that whenever λ x or rec x appear in a term, only those occurrences of x which appear in

the scopes2 of λ x or rec x are bound (as well as the occurrence of x immediately after the

2See Definitions 2.3.2

24 Chapter 2. Untyped Functional Languages

λ or rec !!). If there is an occurrence of x in such N then we say that occurrence of x has

been captured by (the scope of) λx or rec x to mean that the occurrence of x is bound

by the respective λx or rec x. An occurrence of x in M is free iff the occurrence of x is

not bound. Before reading on, take a look at Examples 2.3.6.

We shall write var(M) for the set of all variables which occur in M , that is

var(M)
def
= { x | x ∈ Var and x ⊳M }.

We can give a recursive definition of the set var(M) which is obvious and omitted (cf

the definition of fvar(M) which follows). We write fvar(M) for the set of variables which

have free occurrences in M . We can define this recursively by the following (obvious!)

clauses:

• fvar(x)
def
= { x };

• fvar(c)
def
= ∅;

• fvar(M op N)
def
= fvar(M) ∪ fvar(N);

• fvar(if M then N else L)
def
= fvar(M) ∪ fvar(N) ∪ fvar(L);

• fvar(λx.M)
def
= fvar(M) \ { x }; occurrences of x in M are captured by the scope of λx,

and hence are not free;

• fvar(M N)
def
= fvar(M) ∪ fvar(N);

• fvar(rec x.M)
def
= fvar(M) \ { x }; occurrences of x in M are captured by the scope of

rec x, and hence are not free;

• fvar(nil)
def
= ∅;

• fvar(hd(M))
def
= fvar(M);

• fvar(tl(M))
def
= fvar(M);

• fvar(M : N)
def
= fvar(M) ∪ fvar(N); and

• fvar(elist(M))
def
= fvar(M)

We leave the (easy) recursive definition of the set bvar(M) of the set of variables with

bound occurrences in M to the reader.

Examples 2.3.6 Warning: Note that a variable may occur both free and bound in a

term. Here are two examples:

(1)

if (x = 2) then (λ y. y) else (rec z. z x y)

free

6

bound

6

bound

6

bound

6

bound

6

free

6

free

6

Here, the set of free variables is { x, y } and the set of bound variables is { y, z }. We could

say that the second occurrence of z in the conditional has been captured by rec z.

2.4. Substitution of Terms 25

(2)

(rec x. x)(λ y. y x)

bound

6

bound

6

bound

6

bound

6

free

6

Here, the set of free variables is { x } and the set of bound variables is { x, y }.

2.4 Substitution of Terms

Motivation 2.4.1 Suppose that M and N are terms. If one thinks of M as a functional

program, and the free occurrences of a variable x in M as places at which new code could

be executed, we might consider replacing the variable x by N . Such a replacement is

called a substitution. We substitute a term N for free occurrences of x in M simply by

replacing each free x with N ; this will produce a new term which will be denoted M [N/x].

For example, (if x then 4 else 5)[1 = 2 /x] denotes the term if 1 = 2 then 4 else 5.

But things are not entirely straightforward! Suppose that f
def
= λx.L. Given any term N ,

the intended meaning of f N is L[N/x]. Thus if L is y, then f N = y[N/x] = y. So if

M
def
= λx.y, the intended meaning of M is “the function with constant value y”. Now, y

occurs freely in M , and x is a term, so we can try substituting the term x for the free

occurrence of y, giving a new term denoted by M [x/y]. Now, M [x/y] ought to be “the

function with constant value x”. But in fact M [x/y] is clearly the term λx.x, which is

the identity function! The problem arises because when the variable x is substituted for

the free variable y in λx.y, x becomes captured by the scope of the abstraction λx.

Note that the terms λx.y and λz.y can be regarded as “the same” in the sense that

the intended meaning of each term is the “function with constant value” y. When we

attempted to substitute x for the free y in λx.y, we noted that x would become bound.

But if the intended meaning of λz.y is the same as λx.y, what about substituting x for

y in λz.y to get λz.x? The latter term is indeed what we were after—the function with

constant value x. Informally we say that we re-name the bound variable x in λx.y as a

new variable z so that when x is substituted for y it does not become bound.

Examples 2.4.2 Informal examples are

(λx.x+ y)[2/y] = λx.x+ 2 and (λx.x+ y)[x/y] = λu.u+ x.

In the second example, the substituted x will appear in the scope of λx, so we rename

(to u) the bound x’s to avoid capture.

Remark 2.4.3 We have now introduced a minor problem, which we shall deal with

below. In the previous example, should (λx.x + y)[x/y] be λu.u + x or λz.z + x or . . .?

We can make a unique choice by appealing to the fixed enumeration (list) of the variables

in Var (recall page 17). This is made clear in the following definition.

26 Chapter 2. Untyped Functional Languages

Definitions 2.4.4 We now give a formal definition of substitution of terms. In light

of Discussion 2.4.1, we shall re-name any free variables which would become bound when

the substitution takes place.

Given terms M and N , and a variable x, we shall define a new term denoted by M [N/x],

which is the term M with free occurrences of x replaced by N , by recursion on the finite

tree structure of M :

• x[N/x]
def
= N (if M ≡ x);

• y[N/x]
def
= y where x 6= y (if M ≡ y);

• c[N/x]
def
= c (if M ≡ c);

• (L op L′)[N/x]
def
= L[N/x] op L′[N/x] (if M ≡ L op L′ for some L and L′);

• (if L then L′ else L′′)[N/x]
def
= if L[N/x] then L′[N/x] else L′′[N/x] (if M ≡ . . . etc etc);

• (LL′)[N/x]
def
= L[N/x]L′[N/x];

• (λx.L)[N/x]
def
= λx.L; and

• (λy.L)[N/x]
def
= λy.L[N/x] if x 6= y and x 6∈ fvar(L) or y 6∈ fvar(N);

• (λy.L)[N/x]
def
= λz.L[z/y][N/x] if x 6= y and x ∈ fvar(L) and y ∈ fvar(N), where z is

chosen as the first variable in (the fixed enumeration of) Var for which z 6∈ var(N) ∪

var(L). So occurrences of y in λy.L will be renamed to the variable z to ensure that

occurrences of y in N will not be captured upon substitution;

• (rec x.L)[N/x]
def
= rec x.L; and

• (rec y.L)[N/x]
def
= rec y.L[N/x] if x 6= y and x 6∈ fvar(L) or y 6∈ fvar(N);

• (rec y.L)[N/x]
def
= rec z.L[z/y][N/x] if x 6= y and x ∈ fvar(L) and y ∈ fvar(N), where z

is chosen as the first variable in (the fixed enumeration of) Var for which z 6∈ var(N) ∪

var(L). So occurrences of y in rec y.L will be renamed to the variable z to ensure that

occurrences of y in N will not be captured upon substitution;

• nil[N/x]
def
= nil;

• hd(L)[N/x]
def
= hd(L[N/x]);

• tl(L)[N/x]
def
= tl(L[N/x]);

• (L : L′)[N/x]
def
= L[N/x] : L′[N/x];

• elist(L)[N/x]
def
= elist(L[N/x]).

Examples 2.4.5

(1)

((v1 + 2) : (v3v2))[10/v2] = (v1 + 2)[10/v2] : (v3v2)[10/v2]
= (v1[10/v2] + 2[10/v2]) : (v3[10/v2]v2[10/v2])
= (v1 + 2) : (v3 10)

2.5. α-Equivalence 27

Note that in the first example, we wrote down each of the recursive steps. It’s not too

difficult (!) to write the result of the substitution straight down, or at least miss out some

of the steps, as in the next example:

(2)

(rec v3.v6 v3 : nil)[v3 v1/v6] =∗ rec v2.(v6 v3 : nil)[v2/v3][v3 v1/v6]
= rec v2.(v6 v2 : nil)[v3 v1/v6]
= rec v2.((v3 v1) v2 : nil)

where at * note that v6 ∈ fvar(v6 v3 : nil) and v3 ∈ fvar(v3 v1), so we have to rename v3

to avoid capture. We rename v3 to be the first variable in Var not appearing in

fvar(v6 v3 : nil) ∪ fvar(v3 v1) = { v1, v3, v6 }

which is v2.

Motivation 2.4.6 We have claimed that for any two terms M and N , and variable x,

there is a term M [N/x] which is specified by the previous definition. We should, of course,

prove that M [N/x] is a term. While this can be done, the proof is a subtle induction,

and we omit it.

2.5 α-Equivalence

Motivation 2.5.1 We have seen that the two terms λx.y and λz.y have the same in-

tended meaning, namely that they both represent the function with constant value y.

You will also note the the definition of substitution is a little unwieldy due to the clauses

which involve a renaming of bound variables. Whenever a renaming takes place we have

to choose “the first variable in the enumeration v0, v1, . . . which does not appear in the

terms involved in the substitution”. Now, if we were to implement substitution, we would

have to be explicit about what we renamed variables to, when avoiding capture. But, in

fact, as regards the overall meaning of UL terms, it does not really matter what we re-

name variables to, provided we choose a fresh variable. Thus the computational meaning

of both λu.u+x and λz.z+x in Remark 2.4.3 is the same—they are both functions which

add x.

For these reasons, we shall regard terms which differ only in the names of their bound

variables as equivalent. We have to give a proper definition of what it means for two

terms to be “equal” if they “differ only in the names of their bound variables”.

Definitions 2.5.2 To do this we shall define an equivalence3 relation, denoted by ∼α,

on the set TermUL of terms. So formally ∼α is a set (of pairs), and in particular a subset

of TermUL × TermUL. We define it inductively by the rules4 in Figure 2.2.

3See Definitions 1.3.8.
4We shall write M ∼α M ′ instead of (M, M ′) in ∼α.

28 Chapter 2. Untyped Functional Languages

REF

M ∼α M

M ∼α M ′

SYM

M ′ ∼α M

M ∼α M ′ M ′ ∼α M ′′

TRAN

M ∼α M ′′

M ∼α M ′ N ∼α N ′

M op N ∼α M ′ op N ′

M ∼α M ′ N ∼α N ′ L ∼α L′

if M then N else L ∼α if M ′ then N ′ else L′

(1)
λv.M ∼α λv′.M [v′/v]

M ∼α M ′

λx.M ∼α λx.M ′

M ∼α M ′ N ∼α N ′

M N ∼α M ′ N ′

(2)
rec v.M ∼α rec v′.M [v′/v]

M ∼α M ′

rec x.M ∼α rec x.M ′

M ∼α M ′

hd(M) ∼α hd(M ′)

M ∼α M ′

tl(M) ∼α tl(M ′)

M ∼α M ′ N ∼α N ′

M : N ∼α M ′ : N ′

M ∼α M ′

elist(M) ∼α elist(M ′)

In (1) and (2), v′ may be any variable different from v and which does not occur in M

Figure 2.2: Rules for Generating the α-Equivalence Relation M ∼α M
′

2.5. α-Equivalence 29

The formal definition of two terms differing only in their bound variables is of course that

the terms are α-equivalent. We wish to consider a term as being “equal” to all other

α-equivalent terms, and we can do this by considering α-equivalence classes.

We define the set ExpUL of expressions to be the set of α-equivalence classes of terms:

ExpUL def
= TermUL/ ∼α = {M | M ∈ TermUL }.5

Example 2.5.3 We have

λu.u+ x = {M | λu.u+ x ∼α M } = { λu.u+ x, λz.z + x, . . . } = λz.z + x = . . .

Check this!! Rule (1) gives us (for example) λu.u+ x ∼α λz.z + x taking M to be u+ x,

v to be u and v′ to be z.

≫ Warning 2.5.4 The formal definition of α-equivalence amounts to saying

that two terms are α-equivalent if one can be transformed to the other by a

sequence of changes of bound variables. The definition in Figure 2.2 makes

this intuitive idea watertight. Instead of writing M for an expression, we

adopt the convention that we simply write M, that is we shall denote an α-

equivalence class by a representative. We shall “treat” expressions as though

they are terms, but whenever we give a definition involving expressions, we

must not forget that expressions are in fact α-equivalence classes and that

we have to check that the definition is well-defined.

If M,N ∈ TermUL and M ∼α N, then of course M = N . For example λx.x ∼α

λz.z and so λx.x = λz.z. Following the above convention, we can simply write

λx.x = λz.z. And magically, the convention also allows us to write

(λx.x+ y)[x/y] = λu.u+ x = λz.z + x.

Motivation 2.5.5 Finally, what about substitution of expressions? What expression

is M [N/x] when M and N are expresions, rather than terms? In practice, we can just

“forget” that M and N are α-equivalence classes, and take the “expression” M [N/x] to be

the equivalence class of the term M ′[N ′/x] where M ∼α M
′ and N ∼α N

′. Thus, it turns

out that because we are dealing with α-equivalence classes, when we rename variables

to avoid capture, we can choose any new name we like. And this avoids the hassle of a

specific choice of variable, as we had on page 26. It is actually quite tricky to prove that

this all works out, and we omit to do this. We look at one example:

Example 2.5.6 Dealing with α-equivalence classes we have

(λx.(x+ y)) [rec z.xz/y] = λu.(u+ rec z.xz).

5Recall that M = { M ′ | M ∼α M ′, M ′ ∈ TermUL }. See Definitions 1.3.8.

30 Chapter 2. Untyped Functional Languages

But (for example)

λx.x+ y = λw.w + y and rec z.xz = rec v.xv

and so we ought to have

λu.u+ rec z.xz = λw.w + rec v.xv. (∗)

It is “easy to see” that (∗) holds via a renaming of bound variables. Here is how we could

give a formal derivation:

REF

u ∼α u
(2)

rec z.xz ∼α rec v.xv

u + rec z.xz ∼α u + rec v.xv

λu.(u + rec z.xz) ∼α λu.(u + rec v.xv)
(1)

λu.(u + rec z.xz) ∼α λw.(w + rec v.xv)
TRAN

λu.(u + rec z.xz) ∼α λw.(w + rec v.xv)

2.6 Terms with Contexts for UL

Motivation 2.6.1 We will shortly use the concept of expressions to give an abstract

definition of a (functional) program. Before we do this, we need one further technical

device. It is very convenient, when dealing with expressions, to keep track of the free

variables appearing in an expression. We will do this by defining judgements of the form

Γ ⊢ M where Γ is a set of variables, M is a term, and the free variables of M all appear

in Γ. An example is
{ x, y, z }
︸ ︷︷ ︸

⊢ x+ y
︸ ︷︷ ︸

set of variables

6

term

6

For clarity, we usually drop the curly braces from the set of variables, writing this example

as x, y, z ⊢ x+ y.

Definitions 2.6.2 We shall define a relation ⊢ between finite sets of variables and terms.

More formally, ⊢ is a relation6 between Pf in(Var) and TermUL. We often write Γ for a

typical element of Pf in(Var), and it will be convenient to write Γ, x for Γ∪{ x } and Γ,Γ′

for Γ ∪ Γ′. We define ⊢ inductively by the rules in Figure 2.3, where instead of writing

(Γ,M) in ⊢, we use the more readable Γ ⊢M .

We define the set of terms whose free variables appear in a context Γ, denoted by

TermUL(Γ), and the set of expressions whose free variables appear in Γ, denoted

by ExpUL(Γ), by

TermUL(Γ)
def
= {M | Γ ⊢M } and ExpUL(Γ)

def
= TermUL(Γ)/ ∼α

6So ⊢ is a set of pairs, each pair being of the form (Γ, M).

2.7. Programs and Values for UL 31

[x ∈ Γ]
Γ ⊢ x Γ ⊢ c

Γ ⊢ M Γ ⊢ N

Γ ⊢ M op N

Γ ⊢ M Γ ⊢ N Γ ⊢ L

Γ ⊢ if M then N else L

Γ, x ⊢ M

Γ ⊢ λx.M

Γ ⊢ M Γ ⊢ N

Γ ⊢ M N

Γ, x ⊢ M

Γ ⊢ rec x.M

Γ ⊢ nil

Γ ⊢ M

Γ ⊢ hd(M)

Γ ⊢ M

Γ ⊢ tl(M)

Γ ⊢ M Γ ⊢ N

Γ ⊢ M : N

Γ ⊢ M

Γ ⊢ elist(M)

Figure 2.3: Rules for Generating the Relation Γ ⊢M

where you should note that the equivalence relation ∼α on TermUL induces an equivalence

relation (also written ∼α) on TermUL(Γ). Note that we write ⊢M when Γ is empty, that

is, ∅ ⊢M . If ⊢M we say that M is closed.

Proposition 2.6.3 If Γ ⊢M , then fvar(M) ⊆ Γ.

Proof We use Rule Induction for the inductively defined set ⊢. We wish to show that

∀(Γ,M) ∈ ⊢. Prop((Γ,M)) where Prop((Γ,M))
def
= fvar(M) ⊆ Γ. Thus all we need to do

is verify property closure of the rules in Figure 2.3. Let us give one example.

(Closure under the rule):
Γ, x ⊢M

Γ ⊢ λx.M

The inductive hypothesis is Prop((Γ ∪ { x },M)), that is fvar(M) ⊆ Γ ∪ { x }. We have

to prove that Prop((Γ, λx.M)), that is fvar(λx.M) ⊆ Γ. We calculate

fvar(λx.M)
def
= fvar(M) \ { x }
⊆ (Γ ∪ { x }) \ { x } using the inductive hypothesis
= Γ.

The rest of the proof, checking property closure for the other rules, is left as an exercise.

�

2.7 Programs and Values for UL

Motivation 2.7.1 A program will be a closed expression. A program is closed so that it

is a “self contained” expression, into which no further data need be input. A program is

required to be an expression, so that programs which differ only in their bound variables

are equal.

32 Chapter 2. Untyped Functional Languages

We shall soon give rules which tell us how a program can be “evaluated” or “computed”

to a value. A value will be a program that is as “fully evaluated as possible” according

to a particular kind of evaluation or computation strategy. For example, (λx.x+ 2)3 is a

program which computes to the value 5, and we can write this as

(λx.x+ 2)3 ⇓ 5

reading ⇓ as “evaluates to”. Note that 5 is a value, but it is also a very trivial program—it

is an expression with no free variables!! Functions, that is programs of the form λx.M ,

will also be regarded as values. The idea is that the body M of the function will not be

evaluated until an argument has been passed to the function. Finally, lists of the form

P : Q, where P and Q are programs, are also values. This may seem odd at first sight—

think of some examples. As we shall soon see in more detail, UL is a lazy language,

meaning that “program fragments are only evaluated if they are used”. Thus the head or

tail of a list will only be evaluated if “extracted” by a hd or tl function. So (3 + 4) : nil

is a value; it does not evaluate to 7 : nil.

Definitions 2.7.2 We define the set ProgUL of programs to be the set of closed ex-

pressions, that is, we put

ProgUL def
= ExpUL(∅).

We shall often denote a program, that is an element of ProgUL, by P or Q, though not

exclusively. A value is a program which is represented7 by a term given by the grammar

V ::= c | λx.M | nil | P : Q

where M is any element of TermUL(x) (that is x ⊢M) and P and Q are (representatives

for) programs. We shall write ValUL for the set of values.

2.8 An Evaluation Relation for UL

Definitions 2.8.1 We shall define an evaluation relation between programs (elements

of ProgUL) and values (elements of ValUL), which will take the form P ⇓ V . So, formally,

⇓ ⊆ ProgUL ×ValUL. It is defined by the rules8 in Figure 2.4. Note that in rule AP, λx.M

and Q must be programs, and so

M ∈ ExpUL(∅, x) and Q ∈ ExpUL(∅).

It can be proved that M [Q/x] ∈ ExpUL(∅) , that is, M [Q/x] is indeed a program. Hence

rule AP makes sense. A similar argument applies to rule REC.

Motivation 2.8.2 We refer to the definition of ⇓ as a structured operational se-

mantics for UL . The word semantics refers to the fact that the rules defining ⇓ give

7Up to α-equivalence. See Definitions 1.3.8 and 2.5.2.
8In the figure, we write P ⇓ V instead of (P, V) in ⇓.

2.8. An Evaluation Relation for UL 33

VAL

V ⇓ V

P ⇓ m Q ⇓ n
OP

P op Q ⇓ m op n

P ⇓ T Q ⇓ V
COND1

if P then Q else Q′ ⇓ V

P ⇓ F Q′ ⇓ V
COND2

if P then Q else Q′ ⇓ V

P ⇓ λx.M M [Q/x] ⇓ V
AP

P Q ⇓ V

M [rec x.M/x] ⇓ V
REC

rec x.M ⇓ V

P ⇓ P ′ : Q P ′ ⇓ V
HD

hd(P) ⇓ V

P ⇓ P ′ : Q Q ⇓ V
TL

tl(P) ⇓ V

P ⇓ nil
ELIST1

elist(P) ⇓ T

P ⇓ P ′ : Q
ELIST2

elist(P) ⇓ F

Figure 2.4: Rules for Generating the Evaluation Relation P ⇓ V of UL

a “meaning” to programs P . This “meaning” arises by showing how programs compute

to values, which is specified in a “computational” or “operational” manner—hence the

adjective operational. Finally, structured refers to the finite tree structure of P : whenever

we have P ⇓ V , we can see which rules might have been used to deduce P ⇓ V by looking

at the outermost constructor of P . See Warning 2.8.3.

≫ Warning 2.8.3 We re-emphasise the comments above about structured

semantics. Suppose that P ⇓ V . This judgement must be derived using the

rules in Figure 2.4—we know this, because the set ⇓ is inductively defined,

and its elements such as (P, V) only arise by application of the rules—see

Warning 1.4.8. But the program P has a unique syntactic term structure—

in particular, a unique outermost term constructor—so that P is either a

constant (P = c), an operator term (P = M op N), a conditional, and so on.

This tells us which rule(s) could be used to deduce P ⇓ V . For example, if we

know that hd(P) ⇓ V , this must have been deduced through the rule HD, and

hence there must exist programs P ′ and Q for which P ⇓ P ′ : Q and P ′ ⇓ V .

Motivation 2.8.4 You should note that the rules in Figure 2.4 yield a lazy operational

semantics for functions and lists. In general, lazy means that “subterms of programs are

only computed if absolutely necessary”. For a general program of the form

P ≡ C(M1,M2, . . . ,Mn)

34 Chapter 2. Untyped Functional Languages

where C is a program constructor, we only evaluate those Mi to values necessary for the

evaluation of P . We illustrate by example:

Consider P Q. Let us write this as the finite tree ap(P,Q) (as originally defined) where

ap is the program constructor. In order to evaluate ap(P,Q), we must evaluate P to a

function, say λx.M . But now we are lazy!! We do not bother to evaluate Q before passing

it to λx.M . Thus the next step of the computation is to evaluate M [Q/x]. If now M [Q/x]

evaluates to a value, say V , then so too does ap(P,Q). Now look at rule AP, and see how

it captures our intended operational semantics!

The same idea applies to lists. Consider H : T , that is cons(H, T) where cons is the

program constructor. We regard this as a fully evaluated program—very lazy!! We only

compute the subterms H or T if they are extracted by taking a head or tail. Thus to

evaluate hd(P), we first evaluate the list P to a value of the form cons(P ′, Q), but then

we only bother (lazy) to evaluate P ′ to a value, say V . Thus hd(P) evaluates to V , and

there is no need to evaluate Q. Now look at rules HD and TL.

We have seen that if P is a program, V is a value, and P ⇓ V , the latter means that “the

program P evaluates to the value V ”. But what would happen if there was another value

V ′ for which P ⇓ V ′? This would mean that one program could compute to two different

values. In fact, thankfully, this cannot happen! The relation ⇓ is deterministic, meaning

that a program can only compute to one value. We prove this formally by showing that

for each of the rules used to generate ⇓, if the programs in the hypothesis of the rule are

deterministic, so is the program in the conclusion of the rule.

Theorem 2.8.5 The relation ⇓ is deterministic: For any program P and values V

and V ′, if P ⇓ V and P ⇓ V ′, then9 V = V ′.

Proof We shall show that ∀P ⇓ V. Prop((P, V))10 where

Prop((P, V))
def
= ∀V ′ (P ⇓ V ′ =⇒ V = V ′).

To do this we apply rule induction: we have to verify property closure for the rules in

Figure 2.4.

(Closure under COND2): The inductive hypotheses are

H1 for all V ′, if P ⇓ V ′ then F = V ′, and

H2 for all V ′, if Q′ ⇓ V ′ then V = V ′.

We have to prove that

C for any V ′, if if P then Q else Q′ ⇓ V ′ then V = V ′.

9Do not forget that = here denotes equality of the two α-equivalence classes represented by V and V ′.
10Remember that this is shorthand for ∀(P, V) ∈ ⇓. Prop((P, V))

2.8. An Evaluation Relation for UL 35

Pick an arbitrary V ′ for which if P then Q else Q′ ⇓ V ′—(*). Now (*) could be deduced

from an application of either COND1 or COND2. If it were the former, then P ⇓ T . So

using H1, we would have F = T , a contradiction. Hence (*) must be a conclusion to an

instance of COND2, say

P ⇓ F Q′ ⇓ V ′

if P then Q else Q′ ⇓ V ′

Hence Q′ ⇓ V ′ for some program Q′. But using H2, it follows that V = V ′ as required.

(Closure under REC): The inductive hypothesis is

H for all V ′, if M [rec x.M/x] ⇓ V ′ then V = V ′.

We have to prove that

C for any V ′, rec x.M ⇓ V ′ implies V = V ′.

Pick an arbitrary V ′ for which rec x.M ⇓ V ′. This last relation must arise through the

rule REC, and so M [rec x.M/x] ⇓ V ′. That V = V ′ then follows from H. �

Examples 2.8.6 Prove that (λz.z ∗ 2) 3 ⇓ 6. To do this, we produce a deduction tree.

First note that the program being evaluated is an application. So it must arise by the rule

AP, hence we need to show that λz.z ∗ 2 ⇓ λx.M for some x and M , and that M [3/x] ⇓ 6.

The first of these is easy, being an instance of VAL with x ≡ z and M ≡ z ∗ 2. The second,

namely 3 ∗ 2 ⇓ 6, is also easy following from OP. Putting this altogether we get

VAL

λz.z ∗ 2 ⇓ λz.z ∗ 2

VAL

3 ⇓ 3
VAL

2 ⇓ 2
OP

(z ∗ 2)[3/z] ≡ 3 ∗ 2 ⇓ 6
AP

(λz.z ∗ 2) 3 ⇓ 6

Prove that hd((λx.x+ 2) 3 : nil) ⇓ 5. To do this, we derive a deduction tree:

T

VAL

λx.x+ 2 ⇓ λx.x+ 2

VAL

3 ⇓ 3
VAL

2 ⇓ 2
OP

(x+ 2)[3/x] ≡ 3 + 2 ⇓ 5
AP

(λx.x+ 2) 3 ⇓ 5
HD

hd((λx.x+ 2) 3 : nil) ⇓ 5

where T is the tree
VAL

(λx.x+ 2) 3 : nil ⇓ (λx.x+ 2) 3 : nil

36 Chapter 2. Untyped Functional Languages

P P ′

OP1
P op Q P ′ op Q

Q Q′

OP2
n op Q n op Q′

OP3
n op m n op m

P P ′

COND

if P then Q else Q′
 if P ′ then Q else Q′

COND1
if T then P else Q P

COND2
if F then P else Q Q

P P ′

AP1
P Q P ′ Q

AP2
(λx.M)Q M [Q/x]

REC

rec x.M M [rec x.M/x]

P P ′

HD1
hd(P) hd(P ′)

HD2
hd(P : Q) P

P P ′

TL1
tl(P) tl(P ′)

TL2
tl(P : Q) Q

P P ′

ELIST1
elist(P) elist(P ′)

ELIST2
elist(nil) T

ELIST3
elist(P : Q) F

Figure 2.5: Rules for Generating the Transition Relation P Q in UL

2.9 A Transition Relation for UL

Motivation 2.9.1 Not all programs compute to values! Some programs P loop or

diverge, by which we mean that there does not exist a value V for which P ⇓ V . An

example is rec x.x. However, when a program P does compute to a value, how can we

calculate that value? The rules for deriving the relation P ⇓ V do not lend themselves

to direct calculation. To overcome this problem, we shall define a new relation between

programs, written P Q. The intuitive idea is that if P and Q are related by , then

P “computes in one step” to Q. For example,

(λx.x+ 2)3 3 + 2 and 3 + 2 5.

Now we give the full definition:

Definitions 2.9.2 We shall define a transition relation between programs, that is a

binary relation on ProgUL. It takes the form P Q and is inductively defined by the

rules in Figure 2.5. If P Q we say that P computes in one step to Q.

2.10. Relating Evaluation and Transition Relations in UL 37

Motivation 2.9.3 Note again that is lazy. In order to compute P Q, we have to

(deterministically!) apply rule AP1 until P reduces to a value λx.M and then apply rule

AP2 which substitutes the function argument Q straight into M without first evaluating

Q to a value:

P Q AP1
P ′Q . . . AP1

(λx.M)Q AP2
M [Q/x]

Some programs cannot compute in one step to another program. An example is 2 + T

for which there is no program Q with

(2 + T) Q.

One can see this by inspecting the rules for generating . We say that such programs

are terminal. However, when a program P is not terminal, there is a unique program Q

for which P Q. Thus, the relation is, like ⇓, deterministic.

Theorem 2.9.4 The relation is deterministic: If P , Q and Q′ are any programs,

then if P Q and P Q′ we have Q = Q′.

Proof We want to prove that ∀P Q. Prop((P,Q)) where

Prop((P,Q))
def
= ∀Q′(P Q′ =⇒ Q = Q′).

So by rule induction, we show property closure for the rules in Figure 2.5. This routine

exercise is left to the reader. �

2.10 Relating Evaluation and Transition Relations in UL

Motivation 2.10.1 We need to find a connection between ⇓ and . Consider

hd((λx.x+ 2) 3 : nil) (λx.x+ 2) 3
 3 + 2
 5

and (see Examples 2.8.6)

hd((λx.x+ 2) 3 : nil) ⇓ 5

It appears that a program will compute to a value if there is a sequence of one-step

transitions from the program to the value. This suggests that ⇓ might be the transitive

closure of . In fact ⇓ is (more-or-less) the reflexive transitive closure ∗—reflexivity

arises from the fact that for any value V , we have V ⇓ V .

Theorem 2.10.2 For every program P and value V in UL , we have

P ⇓ V ⇐⇒ P ∗ V.

38 Chapter 2. Untyped Functional Languages

Proof

(⇒) We use Rule Induction for ⇓ to prove ∀P ⇓ V, P ∗ V . The details are an exercise.

(⇐) We can show that

X
def
= { (P,Q) | ∀V. (Q ⇓ V =⇒ P ⇓ V) }

is closed under the rules in Figure 2.5 which define .

(Closure under HD1): Suppose (P, P ′) ∈ X—(*). We have to prove (hd(P), hd(P ′)) ∈ X,

that is

∀V. (hd(P ′) ⇓ V =⇒ hd(P) ⇓ V) (†)

Pick an arbitrary value V and suppose that hd(P ′) ⇓ V . Then from rule HD of Figure 2.4

we know that there must be programs Q and Q′ for which P ′ ⇓ Q : Q′—(**) and Q ⇓ V .

Now, Q : Q′ is a value in UL , so using supposition (∗), and (∗∗), we have P ⇓ Q : Q′.

Hence
P ⇓ Q : Q′ Q ⇓ V

hd(P) ⇓ V

As V was arbitrary, (†) holds.

We can show closure under the other rules similarly, and the details are omitted. Hence

by IL for , we have ⊆ X, that is for any P and Q,

P Q =⇒ ∀V (Q ⇓ V =⇒ P ⇓ V).

Note that X is in fact a reflexive and transitive relation between programs—exercise:

check this!! But, by definition, ∗ is the smallest such relation which contains . Hence

 ∗ ⊆ X, and so for any P and Q,

P ∗ Q =⇒ ∀V (Q ⇓ V =⇒ P ⇓ V).

If we take Q
def
= V , and note that V ⇓ V , then we have

P ∗ V =⇒ P ⇓ V

as required. �

Definitions 2.10.3 Suppose that P is a program. Either P is terminal or it is not; let

us consider a non-terminal P . We say that P has a finite transition sequence if there

is a transition sequence of the form

P P1 P2 . . . Pm

for some natural number m ≥ 1 for which Pm is terminal. In such a case we say that P

is convergent, and call

P P1 P2 . . . Pm

the full transition sequence of P .

2.11. The Syntax, Programs and Values of UE 39

If such m does not exist, we say that P has an infinite transition sequence, which

must be of the form

P P1 P2 . . . Pn . . .

where each Pn is non-terminal. We say that P is divergent or loops.

It is easy to see from the definition of that a value V is terminal. Note also that

appealing to Theorem 2.9.4, any transition sequence must be a unique.

Example 2.10.4 Let M
def
= if x = 1 then 1 else x + f (x − 1), F

def
= λx.M and R

def
=

rec f.F . We give the full transition sequence of R 2 in UL .

R 2 F [R/f] 2 ≡ (λx.M [R/f]) 2

 M [R/f][2/x] ≡ if 2 = 1 then 1 else 2 +R (2 − 1)

 if F then 1 else 2 +R (2 − 1)

 2 +R (2 − 1)

 (1) 2 + (λx.M [R/f]) (2 − 1)

 2 +M [R/f][2 − 1/x]

≡ 2 + (if (2 − 1) = 1 then 1 else (2 − 1) +R ((2 − 1) − 1))

 2 + (if 1 = 1 then 1 else (2 − 1) +R ((2 − 1) − 1))

 2 + (if T then 1 else (2 − 1) +R ((2 − 1) − 1))

 2 + 1

 3

It is not too difficult to verify each of the transition steps. For example, the step (1) is

valid because:
REC

R F [R/f]
AP1

R (2 − 1) (λx.M [R/f]) (2 − 1)
OP2

2 +R (2 − 1) (1) 2 + (λx.M [R/f]) (2 − 1)

where of course F [R/f] = λx.M [R/f].

2.11 The Syntax, Programs and Values of UE

Motivation 2.11.1 We have seen that the language UL has lazy functions and lists,

in that subterms of such programs are only evaluated if the values of the subterms are

explicitly required in later computations. The language UE has the same syntax as UL

in which one may write programs, but a different operational semantics, that is, a new

definition of ⇓ and . The operational semantics of UE is eager which, roughly, means

that subterms of programs are always computed to values before the program itself is

evaluated.

40 Chapter 2. Untyped Functional Languages

Consider P Q. Let us write this as the finite tree ap(P,Q) (as originally defined) where ap

is the program constructor. In order to evaluate ap(P,Q) eagerly, we must evaluate P to

a function, say λx.M , and Q to a value, say V ′. The next step of the computation is to

evaluate M [V ′/x]. If now M [V ′/x] evaluates to a value, say V , then so too does ap(P,Q).

Now look at rule AP, and see how it captures our intended operational semantics!

Look at the operational rules for lists and notice that they capture eager evaluation.

Definitions 2.11.2 In order to specify UE , we have to define the sets of terms, ex-

pressions, terms whose free variables appear in a context Γ, expressions whose

free variables appear in a context Γ, and programs. These are all exactly the same

as for UL :
TermUE def

= TermUL

ExpUE def
= ExpUL

TermUE(Γ)
def
= TermUL(Γ)

ExpUE(Γ)
def
= ExpUL(Γ)

ProgUE def
= ProgUL

The values of UE are different. The set of values ValUE in UE consists of those programs

in UE which are represented11 by terms which appear in the grammar

V ::= c | λx.M | nil | V : V ′.

The crucial difference of UE to UL is that lists consist of values, rather than programs.

2.12 Evaluation and Transition Relations for UE

Motivation 2.12.1 We specify a structured operational semantics for UE just as we

did for UL . The difference is that the rules enforce an eager computation strategy. The

evaluation relation ⇓ is deterministic which means that (up to α-equivalence) a (non

looping) program must evaluate to a unique value. So Theorem 2.8.5 holds for UE . We

omit the proof, but you should be aware of the statement of the theorem.

Definitions 2.12.2 The evaluation relation ⇓ for UE is generated by modifying the

rules in Figure 2.4. The new rules are given in Figure 2.6.

Motivation 2.12.3 We shall give a transition relation for UE . The motivation is the

same as that for UL . The difference here is that the computation strategy is eager. For

example, in UL we have

(λx.x ∗ 2)(3 + 10) (3 + 10) ∗ 2

but in UE we have to compute the argument first

(λx.x ∗ 2)(3 + 10) (λx.x ∗ 2)13 13 ∗ 2.

11That is, representatives for α-equivalence—see Definitions 1.3.8 and Warning 2.5.4.

2.13. Further Examples and Comments 41

VAL

V ⇓ V

P ⇓ m Q ⇓ n
OP

P op Q ⇓ m op n

P ⇓ T Q ⇓ V
COND1

if P then Q else Q′ ⇓ V

P ⇓ F Q′ ⇓ V
COND2

if P then Q else Q′ ⇓ V

P ⇓ λx.M Q ⇓ V ′ M [V ′/x] ⇓ V
AP

P Q ⇓ V

M [rec x.M/x] ⇓ V
REC

rec x.M ⇓ V

P ⇓ V : V ′

HD

hd(P) ⇓ V

P ⇓ V : V ′

TL

tl(P) ⇓ V ′

P ⇓ V Q ⇓ V ′

CONS

P : Q ⇓ V : V ′

P ⇓ nil
ELIST1

elist(P) ⇓ T

P ⇓ V : V ′

ELIST2
elist(P) ⇓ F

Figure 2.6: Rules for Generating the Evaluation Relation P ⇓ V of UE

Just as for UL , the transition relation is deterministic. So Theorem 2.9.4 holds for UE .

Again, we omit the proof, but you should be aware of the theorem.

Definitions 2.12.4 We define a transition relation between programs, that is a binary

relation on ProgUE. The transition relation for UE is generated by modifying the rules

in Figure 2.5. The new rules are given in Figure 2.7. If P Q we say that P computes

in one step to Q.

Motivation 2.12.5 The connection between and ⇓ is the same for UE as for UL .

Roughly, a program can compute in a finite number of transition steps to a value iff it

evaluates to the value. This is made precise in the following theorem, whose routine proof

is omitted:

Theorem 2.12.6 For every program P and value V in UE , we have

P ⇓ V ⇐⇒ P ∗ V.

2.13 Further Examples and Comments

Examples 2.13.1

(1) We have seen that a number of programs will loop in UE but converge to a value in

UL . One reason that eager languages are used is that they are easier to implement than

their lazy counterparts. We do not go into the details here.

42 Chapter 2. Untyped Functional Languages

P P ′

OP1
P op Q P ′ op Q

Q Q′

OP2
n op Q n op Q′

OP3
n op m n op m

P P ′

COND

if P then Q else Q′
 if P ′ then Q else Q′

COND1
if T then P else Q P

COND2
if F then P else Q Q

P P ′

AP1
P Q P ′ Q

Q Q′

AP2
(λx.M)Q (λx.M)Q′

AP3
(λx.M)V M [V/x]

REC

rec x.M M [rec x.M/x]

P P ′

HD1
hd(P) hd(P ′)

HD2
hd(V : V ′) V

P P ′

TL1
tl(P) tl(P ′)

TL2
tl(V : V ′) V ′

P P ′

CONS1
P : Q P ′ : Q

Q Q′

CONS2
V : Q V : Q′

P P ′

ELIST1
elist(P) elist(P ′)

ELIST2
elist(nil) T

ELIST3
elist(V : V ′) F

Figure 2.7: Rules for Generating the Transition Relation P Q in UE

2.13. Further Examples and Comments 43

(2) Let M
def
= if x = 1 then 1 else x+ f (x− 1), F

def
= λx.M and R

def
= rec f.F . We give the

full transition sequence of R 2 in UE . Compare Example 2.10.4.

R 2 F [R/f] 2 ≡ (λx.M [R/f]) 2

 M [R/f][2/x] ≡ if 2 = 1 then 1 else 2 +R (2 − 1)

 if F then 1 else 2 +R (2 − 1)

 2 +R (2 − 1)

 2 + (λx.M [R/f]) (2 − 1)

 (∗) 2 + (λx.M [R/f]) 1

 2 +M [R/f][1/x] ≡ 2 + (if 1 = 1 then 1 else 1 +R (1 − 1))

 2 + (if T then 1 else 1 +R (1 − 1))

 2 + 1

 3

Note that in step (∗) the argument 2 − 1 is evaluated eagerly, that is, evaluated before

being passed to λx.M [R/f].

(3) We write a program P in UL which supplies an infinite list of the positive odd numbers.

Clearly hd(P) should compute to 1, hd(tl(P)) to 3 and so on. Let

R
def
= rec f.λn.n : f (n+ 2) and P

def
= R 1.

Then
hd(P) hd((λn.n : R (n+ 2)) 1)

 hd(1 : R (1 + 2))

 1

and
hd(tl(P)) ∗ hd(tl(1 : R (1 + 2)))

 hd(R (1 + 2))

 ∗ hd((1 + 2) : R ((1 + 2) + 2))

 1 + 2

 3

However in UE we would have

hd(P) hd((λn.n : R (n + 2)) 1)

 hd(1 : R (1 + 2))

 hd(1 : R 3)

 ∗ hd(1 : 3 : R 5)

 ∗ hd(1 : 3 : 5 : 7 : R 9)

 . . .

44 Chapter 2. Untyped Functional Languages

and hd(P) diverges (or loops)—the list has to be evaluated to a list of values before the

head is taken.

(4) This example uses the programs of example (3). We shall prove that

∀k ≥ 1 ∈ N. hd(tlk(P)) ⇓ 2k + 1

where tlk(ξ) means k applications of the tail constructor to ξ.

To do this, write Sm
def
= 1 + 2 + . . . 2

︸ ︷︷ ︸

m times

. We first prove that

∀k ∈ N. tlk(P) ⇓ Sk : R (Sk + 2)
︸ ︷︷ ︸

Prop(k)

(∗)

by Mathematical Induction. (Note that the idea for Sm comes from example (3)).

(Case Prop(1)): This is tl(P) ⇓ (1 + 2) : R ((1 + 2) + 2) which follows from example (3).

(Case ∀k,Prop(k) implies Prop(k + 1)): We assume the result holds for an arbitrary k

and show that it must hold at k + 1. It is quite easy to derive the following tree:

IH

REC

R ⇓ λn.n : R (n+ 2)

VAL

(n : R (n+ 2))[(Sk + 2)/n] ⇓ (Sk + 2) : R ((Sk + 2) + 2)?
AP

R (Sk + 2) ⇓ (Sk + 2) : R ((Sk + 2) + 2)
TL

tl(tlk(P)) ⇓ (Sk + 2) : R ((Sk + 2) + 2)

where IH
def
= tlk(P) ⇓ Sk : R (Sk + 2) is the inductive hypothesis Prop(k), and so we

have shown that

tlk+1(P) ⇓ Sk+1 : R (Sk+1 + 2)

as required. Hence by induction, (∗) holds. Therefore, for any k ∈ N we have

tlk(P) ⇓ Sk : R (Sk + 2) Sk ⇓ 2k + 1

hd(tlk(P)) ⇓ 2k + 1

where it is easy to see that Sk ⇓ 2k + 1, and so we are done.

3

The SECD Machine

3.1 Why Introduce the SECD Machine?

Motivation 3.1.1 We have seen how to define a transition relation for the language

UE . Given a program P , it is fairly easy for a human to give the full transition sequence

for P . However, this does require a careful scrutiny of the rules which define : It is

one thing to observe the rules and find, through a process of inspection, the unique P ′ for

which P P ′. It is quite another to take P and effectively compute P ′.

For example, while with practice seeing that

(3 + 2) ≤ 6 5 ≤ 6

is easy (for humans!) one must not forget that proving this actually involves producing

the deduction tree
OP3

3 + 2 5
OP1

(3 + 2) ≤ 6 5 ≤ 6

(∗)

Ultimately, we seek a formal execution mechanism which can take a program P , and

mechanically produce the value V of P :

P ≡ P0 7→ P1 7→ P2 7→ . . . 7→ V

Now, “mechanically produce” can be made precise by saying that we require a relation

P 7→ P ′ between programs, which is defined by a set of rules in which there are no

hypotheses. Such rules are called rewrites. Thus establishing P 7→ P ′ will not require

the construction of a deduction tree, as is the case with (which we illustrated with

(*)):

deduction tree

P P ′

An evaluation semantics, ⇓, is very much an opposite to the notion of a rewrite relation 7→.

To show that P ⇓ V requires a “large” proof search for a deduction tree, and completely

suppresses any notion of “mechanistic evaluation” of P to V . However, ⇓ is more useful

for proving general properties of programs—cf (4) of Examples 2.13.1. We illustrate these

ideas in Figure 3.1.

We will define a “machine”, the SECD machine, which will “mechanically compute”

certain programs to values, using rewrite rules. Landin invented the SECD machine.

Originally, it was developed as an interpreter for a programming language based upon

lambda terms and function applications. SECD machines can be implemented directly

46 Chapter 3. The SECD Machine

P0 7→ P1 7→ P2 7→ P3 7→ P4 . . . 7→ V

Rewrite Rules (Abstract Machine)

deduction tree deduction tree deduction tree deduction tree

P0 P1 P2 P3 . . . V

Transition Semantics

deduction tree

P ⇓ V

Evaluation Semantics

Figure 3.1: Illustrating Three Kinds of Operational Semantics

on silicon. The original evaluation strategy was eager. There are lazy evaluation strategies

for SECD machines, but such machines are slow.

In this chapter we shall show how to perform such mechanical computations for a fragment

of the language UE . The terms of this language fragment are given by the grammar

M ::= x | c | MM | λx.M |M op M

and the definition of ProgUE is just as in Chapter 2 but using this restricted set of terms.

The reason for making this restriction is simply to illustrate the SECD machine, without

being cluttered by too many computation rules which deal with the various kinds of

program which normally appear in UE .

3.2 The Definition of the SECD Machine

Motivation 3.2.1 Before we outline the structure of the SECD machine, we introduce

the notion of a closure. Consider (λx.λy.(x + y)) 3 5 (λy.(3 + y)) 5. The transition

involves the substitution of 3 for the free variable x in λy.(x + y). The SECD machine

implements substitution via an environment which records the values of variables. The

SECD machine represents (λx.λy.(x+ y)) 3, that is (λy.(x+ y))[3/x], as a closure, which

3.2. The Definition of the SECD Machine 47

is a triple consisting of the bound variable, the scope, and the current environment:

CLO(y , x+ y , x = 3)

bound variable

6

function scope

6

environment

6

A closure stores data representing a function (plus current environment). When the

SECD machine applies this particular function value to the argument 5, it restores the

environment to x = 3, adds the binding y = 5, and evaluates x + y in this updated

environment.

The SECD machine has a typical state (S,E, C,D) consisting of four components:

(i) The stack S is a (possibly empty) list consisting of constants and closures. The empty

list is denoted by −.

(ii) Let the symbol a denote either a constant c or a closure. The environment E takes

the form x1 = a1 ; . . . ; xn = an, meaning that the variables x1, . . . , xn currently have the

values a1, . . . , an respectively. The environment may be empty (−).

(iii) The control C is a list of commands. A command is either a term of the restricted

language, an operator op, or the word APP.

(iv) The dump D is either empty (−) or is another machine state (S,E, C,D′). So a

typical dump looks like

(S1, E1, C1, (S2, E2, C2, . . . (Sn, En, Cn,−) . . .))

It is essentially a list of triples (S1, E1, C1), (S2, E2, C2), . . . , (Sn, En, Cn) and serves as the

function call stack.

Definitions 3.2.2 Let us write SECD machine states as arrays:

S Stack, S
E Environment, E
C Control, C
D Dump, D

To evaluate the (restricted) UE program P , the machine begins execution in the initial

state, where P is in the Control and all other components are empty:

S −
E −
C P
D −

If the control is non-empty, then its first command triggers a state rewrite, whereby the

SECD machine changes to a new state. The rewrites are deterministic, and are determined

by the element at the head of the Control list. Here are the possible rewrites:

48 Chapter 3. The SECD Machine

A constant is pushed onto the stack:

S S
E E
C c ; C
D D

cst
7−→

S c ; S
E E
C C
D D

The value of a variable is taken from the environment and pushed onto the stack. If the

variable is x and E contains x = a then a is pushed:

S S
E E
C x ; C
D D

var
7−→

S a ; S
E E
C C
D D

An operator term is replaced by code to compute the arguments:

S S
E E
C M op N ; C
D D

optm
7−→

S S
E E
C N ; M ; op ; C
D D

An operator op is computed:

S c ; c′ ; S
E E
C op ; C
D D

op
7−→

S c op c′ ; S

E E
C C
D D

An abstraction is converted to a closure and then pushed onto the stack:

S S
E E
C λx.M ; C
D D

abs
7−→

S CLO(x,M,E) ; S
E E
C C
D D

A function application is replaced by code to compute the argument and the function

with an explicit APP instruction:

S S
E E
C M N ; C
D D

fapp
7−→

S S
E E
C N ; M ; APP ; C
D D

The closure CLO(x,M,E ′) is called by creating a new state to evaluate M in the envi-

ronment E ′, extended with a binding for the argument. The old state is saved in the

dump:
S CLO(x,M,E ′) ; a ; S
E E
C APP ; C
D D

clo
7−→

S −
E x = a ; E ′

C M
D (S,E, C,D)

3.3. Example Evaluations 49

The function call terminates in a state where the Control is empty but the Dump is not.

To return from the function, the machine restores the state (S,E, C,D) from the Dump,

then pushes a onto the stack:

S a
E E ′

C −
D (S,E, C,D)

res
7−→

S a ; S
E E
C C
D D

The result of the evaluation, say a, is obtained from a final state where the Control and

Dump are empty, and a is the sole value on the stack:

S a
E −
C −
D −

3.3 Example Evaluations

Examples 3.3.1

(1) Use the SECD machine to calculate (λy.y + 2) 4.

S −
E −
C (λy.y + 2) 4
D −

fapp
7−→

S −
E −
C 4 ; λy.y + 2 ; APP

D −

cst
7−→

S 4
E −
C λy.y + 2 ; APP

D −

abs
7−→

S CLO(y, y + 2,−) ; 4
E −
C APP

D −

clo
7−→

S −
E y = 4
C y + 2
D (−,−,−,−)

optm
7−→

S −
E y = 4
C 2 ; y ; +
D (−,−,−,−)

cst
7−→

S 2
E y = 4
C y ; +
D (−,−,−,−)

var
7−→

S 4 ; 2
E y = 4
C +
D (−,−,−,−)

op
7−→

S 6
E y = 4
C −
D (−,−,−,−)

res
7−→

S 6
E −
C −
D −

Hence λy.(y + 2) 4 ⇓ 6.

(2) Use the SECD machine to calculate (λx.x) 3 ≤ 5.

S −
E −
C (λx.x) 3 ≤ 5
D −

optm
7−→

S −
E −
C 5 ; (λx.x) 3 ;≤
D −

cst
7−→

S 5
E −
C (λx.x) 3 ;≤
D −

fapp
7−→

50 Chapter 3. The SECD Machine

S 5
E −
C 3 ; λx.x ; APP ;≤
D −

cst
7−→

S 3 ; 5
E −
C λx.x ; APP ;≤
D −

abs
7−→

S CLO(x, x,−) ; 3 ; 5
E −
C APP ;≤
D −

clo
7−→

S −
E x = 3
C x
D (5,−,≤,−)

var
7−→

S 3
E x = 3
C −
D (5,−,≤,−)

res
7−→

S 3 ; 5
E −
C ≤
D −

op
7−→

S F
E −
C −
D −

Hence (λx.x) 3 ≤ 5 ⇓ F .

4

A Typed Functional Language

4.1 Introduction

Motivation 4.1.1 Types are the names of collections of expressions (programs) of the

same “kind” (type!). Such expressions will have the same use/behaviour. Types are

used to eliminate certain kinds of error in code—recall your experiences with Haskell!!

Examples of types are int, (int → int) → bool, (bool, bool) → int and so on.

The time at which types are assigned to expressions and type errors checked for varies

among languages. Statically typed languages carry out type checking by static analysis

of code at compile-time. Haskell is an example of such a language. This is useful, but

the richer the type system, the harder it is to achieve without putting in a lot of explicit

type information—you may have found that with some of your Haskell programs, you

had to add in a type declaration to make a program compile. Pascal requires much

typing information within program code. Dynamically typed languages carry out type

checking at run time.

A language is strongly typed if every legal expression has at least one type. A strongly

typed language is monomorphic if every legal expression has a unique type (for example

Pascal). A strongly typed language is polymorphic if a legal expression can have several

types (for example Standard ML and Haskell). As an example, recall that the function

until of Haskell is polymorphic:

until :: (a-> bool)->(a->a)->a->a

In this chapter we shall study type inference in a language called ML . We shall be able to

study some of the formal properties of types and type inference, without being cluttered

by the full complexities of Haskell typing.

ML has so-called implicit polymorphism, and we discuss this later on. Two other common

forms of polymorphism are

• Overloading: The same symbol is used to denote (finitely many) functions, imple-

mented by different algorithms—context determines which is meant.

• Parametric: One expression belongs to a (usually infinite) family of structurally related

types. A parametrically polymorphic procedure is given by a single algorithm which

may be applied to arguments which possess different, but structurally similar, types.

This minimizes duplication of code. Type expressions involve parameters, that is, type

variables. Haskell enjoys parametric polymorphism.

52 Chapter 4. A Typed Functional Language

4.2 The Types and Terms of ML

Motivation 4.2.1 The types we see in ML are a subset of those in Haskell. This

will make it easier to illustrate the ideas of type inference. We shall use capital letters

to denote type variables. In this section we give the types of ML and define rules for

assigning types to expressions.

Definitions 4.2.2 Let us write TyVar for a countably infinite set of type variables

{ V1, V2, V3, . . . }. We shall often write X, Y , Z, U , W etc for type variables. The set Type

of types of ML is inductively specified by the grammar which follows:

σ ::= X type variable
| int type of Integers
| bool type of Booleans
| σ → σ function type
| (σ, σ) product type
| [σ] type of lists of elements of type σ

and in general we denote types by the Greek letters σ, τ and ρ and their primed variants,

σ′, τ ′ and ρ′. We adopt the convention that σ → σ′ → σ′′ means σ → (σ′ → σ′′), with

the obvious extension to four or more types just as in Haskell.

Each type is a finite syntax tree (recall that the terms of Chapter 2 are also finite syntax

trees). Of course two finite trees are syntactically equal iff their corresponding subtrees

are syntactically equal. Thus it follows that (for example) σ → τ ≡ σ′ → τ ′ iff σ ≡ σ′

and τ ≡ τ ′. Also, note that (for example) int 6≡ [σ] for any type σ. Why?

Definitions 4.2.3 The set TermML of terms of ML is specified inductively by the

following grammar:

M ::= x variable
| c constant
| M op M arithmetic operator
| if M then M else M conditional
| let x = M in M local declaration
| λx.M function term
| MM function application
| (M,M) pairing
| fst(M) first projection
| snd(M) second projection
| nil empty list
| M : M cons
| hd(M) head of list
| tl(M) tail of list
| elist(M) test for empty list

We do not bother to give the full set of rules for inductively defining TermML; by now,

it should be clear to you what the rules would say. The definition of the subterm

4.2. The Types and Terms of ML 53

binary relation ⊳ on TermML is defined as you expect, but we do give the clause for local

declarations:

S ⊳ let x = M in N ⇐⇒ S ≡ x or S ⊳ M or S ⊳ N.

Note that λx binds variables just as in the previous chapters. There is also variable

binding in local declarations of the form let x = M in N . In fact, the occurrence of x

just after the let, and occurrences of the variable x in N are bound. More precisely, an

occurrence of a variable x in a term M of ML is bound if either

• the occurrence is in a subterm of M of the form λx.L; or

• the occurrence of x is immediately to the right of a let, or in L′ in a subterm of M of

the form let x = L in L′.

The scope of x in let x = M in N is N . An occurrence of x in M is free if it is not bound.

We can give a recursive definition of the set of free variables of a term. The definition is

the same as that on page 24, extended by the following clauses:

• fvar(let x = M in N)
def
= fvar(M) ∪ (fvar(N) \ { x }) ⋆ ⋆ ⋆ NB!! ⋆ ⋆ ⋆

• fvar((M,N))
def
= fvar(M) ∪ fvar(N);

• fvar(fst(M))
def
= fvar(M);

• fvar(snd(M))
def
= fvar(M);

The reader can provide (exercise!!) definitions of var(M) and bvar(M).

Example 4.2.4 In let x = x+ y in xyz, the first and third occurrences of x are bound,

but the second (underlined) is free.

Definitions 4.2.5 The formal definition of α-equivalence of terms is omitted; by now,

the basic idea should be clear—see the examples below. The set ExpML of expressions

of ML is defined to be the set of terms identified up to α-equivalence. As usual, we

notationally confuse a term with the α-equivalence class it denotes. The definition of

substitution of expressions for free occurrences of variables is the obvious one, changing

variables to avoid capture.

Examples 4.2.6

(1) x ∗ 3 ⊳ (λx.x ∗ 3) y.

(2) λx.x+ y ∼α λu.u+ y.

(3) nil[2/x] = nil.

(4) (λx.x ≤ y)[x z/y] = λu.u ≤ x z.

(5) fst(4) ∼α fst(4).

(6) let z = z in z ∼α let y = z in y.

54 Chapter 4. A Typed Functional Language

(7) let x = λy.x in x+ y ∼α let u = λy.x in u+ y.

(8) (x, y)[z/x] = (z, y).

(9) (let x = x+ z in xyz)[(x+ 2)/z] = let u = x+ (x+ 2) in uy(x+ 2). Here, the

occurrences of x which are bound in the local declaration are renamed to u.

4.3 Type Assignment in ML

Motivation 4.3.1 In Chapter 2 we defined a relation Γ ⊢M in which the free variables

of M all appeared in the context Γ. Thus Γ is an environment of all declared variables.

In the untyped setting, Γ ⊢ M did not play a very significant role—we used it to define

the set of programs (expressions which are closed)—but we could simply have said that

programs were expressions with no free variables without defining Γ ⊢ M . However, in

the typed setting, terms with contexts take on an important role. They allow us to write

down rules from which only “sensible” or “well typed” terms can arise. In UL , 2 + T is

a program. In ML , programs are those (closed) expressions which have been assigned a

type, and (as we shall see) 2 + T is untypable in ML .

In ML , contexts Γ are sets of variables which “carry a type”. The (binary) relation

x1, . . . , xn ⊢M is replaced by a (ternary) relation

x1 :: σ1, . . . , xn :: σn ⊢M :: σ

which one reads as “in an environment in which the variables xi are assigned the types

σi, it follows that the expression M is assigned the type σ”.

Definitions 4.3.2 Let Γ be a finite set of (variable, type) pairs { (x1, σ1), . . . , (xn, σn) }

in which all the variables are distinct. We call such a finite set a (typed) context, and a

typical such context will be written

Γ = x1 :: σ1, . . . , xn :: σn

where we write xi :: σi for the pair (xi, σi). Note that Γ is a set, so the order of the

pairs does not matter. We write Cxt for the set of all contexts, and var(Γ) for the set of

variables appearing in Γ. If Γ and Γ′ are contexts, and the variables in Γ are distinct from

those in Γ′ then Γ∪Γ′ is a context, and we denote it by Γ,Γ′. We also write Γ∪ { x :: σ }

as Γ, x :: σ. We shall define a (ternary) relation ⊢ between (typed) contexts and terms

and types. Formally, then, ⊢ is a subset

⊢ ⊆ (Cxt × TermML × TypeTL)

and we shall write Γ ⊢ M : σ if (Γ,M, σ) ∈ ⊢. We define ⊢ inductively by the rules in

Figure 4.1. Given a term M ∈ TermML, if there exists a context Γ and some type σ for

which Γ ⊢M :: σ, then we say that M is typable.

4.3. Type Assignment in ML 55

[x :: σ ∈ Γ] VAR

Γ ⊢ x :: σ
INT

Γ ⊢ n :: int

TRUE

Γ ⊢ T :: bool
FALSE

Γ ⊢ F :: bool

Γ ⊢ M :: int Γ ⊢ N :: int
OP1 op ∈ {+,−, ∗ }

Γ ⊢ M op N :: int

Γ ⊢ M :: int Γ ⊢ N :: int
OP2 op ∈ {≤,≥,= }

Γ ⊢ M op N :: bool

Γ ⊢ B :: bool Γ ⊢ N :: σ Γ ⊢ L :: σ
COND

Γ ⊢ if B then N else L :: σ

Γ ⊢ M :: σ Γ ⊢ N [M/x] :: σ′

LET

Γ ⊢ let x = M in N :: σ′

Γ, x :: σ ⊢ M :: τ
ABS

Γ ⊢ λx.M :: σ → τ

Γ ⊢ M :: σ → τ Γ ⊢ N :: σ
AP

Γ ⊢ M N :: τ

Γ ⊢ M :: σ Γ ⊢ N :: σ′

PAIR

Γ ⊢ (M,N) :: (σ, σ′)

Γ ⊢ M :: (σ, σ′)
FST

Γ ⊢ fst(M) :: σ

Γ ⊢ M :: (σ, σ′)
SND

Γ ⊢ snd(M) :: σ′

NIL

Γ ⊢ nil :: [σ]

Γ ⊢ M :: σ Γ ⊢ N :: [σ]
CONS

Γ ⊢ M : N :: [σ]

Γ ⊢ M :: [σ]
HD

Γ ⊢ hd(M) :: σ

Γ ⊢ M :: [σ]
TL

Γ ⊢ tl(M) :: [σ]

Γ ⊢ M :: [σ]
ELIST

Γ ⊢ elist(M) :: bool

Figure 4.1: Rules Generating the Type Assignments Γ ⊢M :: σ in ML

56 Chapter 4. A Typed Functional Language

4.4 Type Assignment Examples

Motivation 4.4.1 Suppose that you are asked, given some Γ, M and σ, to prove that

Γ ⊢M :: σ. So, you have to give a deduction of Γ ⊢ M :: σ using the rules in Figure 4.1.

To figure out the deduction tree, suppose that the tree has the general form

deduction tree

R
Γ ⊢M :: σ

where R was the final rule used in the deduction. Which rule is R? To see this, look at

the expression M . You will then see that only one of the rules in Figure 4.1 applies, and

this will allow you to work out what the hypotheses of the rule R must be. You can then

continue to work backwards until the deduction tree is complete.

Examples 4.4.2

(1) Prove that ⊢ T : nil :: [bool].

We produce a deduction tree for this type assignment. The expression is a list, so this

typing assertion must have been deduced using the rule CONS. It is clear what the (two)

hypotheses of CONS must be; and it is also clear that the two hypotheses are deduced using

instances of base rules (such as ⊢ T :: bool, an instance of TRUE where Γ = ∅):

TRUE

⊢ T :: bool
NIL

⊢ nil :: [bool]
CONS

⊢ T : nil :: [bool]

(2) Show that Γ ⊢ λx.0 : x :: [int] → [int] for any context Γ.

We produce a deduction tree: note that the expression is a function, so the final rule used

in the deduction must be ABS, where M ≡ 0 : x, and σ ≡ τ ≡ [int].

INT

Γ, x :: [int] ⊢ 0 :: int
VAR

Γ, x :: [int] ⊢ x :: [int]
CONS

Γ, x :: [int] ⊢ 0 : x :: [int]
ABS

Γ ⊢ λx.0 : x :: [int] → [int]

(3) Prove that T : 2 : nil is not typable in ML .

To do this, we try to derive a deduction tree, starting out with an arbitrary context Γ.

The last rule applied must have been CONS, with M ≡ T and N ≡ 2 : nil and so there

4.4. Type Assignment Examples 57

has to be a type, say σ, for which the expression has type [σ]. We produce the deduction

tree:

TRUE

Γ ⊢ T :: σ

INT

Γ ⊢ 2 :: σ
NIL

Γ ⊢ nil :: [σ]
CONS

Γ ⊢ 2 : nil :: [σ]
CONS

Γ ⊢ T : 2 : nil :: [σ]

It follows that σ ≡ int and σ ≡ bool and this cannot be. So no typing for T : 2 : nil exists.

(4) Show that hd(y : 3) is not typable in ML .

Working backwards we have:

VAR

Γ ⊢ y :: σ
INT

Γ ⊢ 3 :: [σ]
CONS

Γ ⊢ y : 3 :: [σ]
HD

Γ ⊢ hd(y : 3) :: σ

Looking at the rule INT (which must be used to type 3) we must have int ≡ [σ], a

contradiction. So the expression cannot be typable.

(5) Show that in ML we have ⊢ λx.x : nil :: X → [X] where X is a type variable.

To do this, we note that a unique rule from Figure 4.1 must be used to derive the typing

assertion, and it has to be ABS. A careful inspection shows us that we have Γ = ∅,

M ≡ x : nil, σ ≡ X and τ ≡ [X]. From this we can see that the hypothesis of ABS must

be x :: X ⊢ x : nil :: [X]. The rest of the backward steps are equally easy, and we simply

give the final tree:

VAR

x :: X ⊢ x :: X
NIL

x :: X ⊢ nil :: [X]
CONS

x :: X ⊢ x : nil :: [X]
ABS

⊢ λx.x : nil :: X → [X]

(6) Show that ⊢ λf.(f nil,T) :: ([X] → Y) → (Y, bool).

VAR

f :: [X] → Y ⊢ f :: [X] → Y

NIL

f :: [X] → Y ⊢ nil :: [X]?
AP

f :: [X] → Y ⊢ f nil :: Y
TRUE

f :: [X] → Y ⊢ T :: bool
PAIR

f :: [X] → Y ⊢ (f nil,T) :: (Y, bool)
ABS

⊢ λf.(f nil,T) :: ([X] → Y) → (Y, bool)

(7) Show that ⊢ λf.λx.f (f x) :: (X → X) → X → X. Writing Γ for f :: X → X, x :: X

58 Chapter 4. A Typed Functional Language

we have

VAR

Γ ⊢ f :: X → X
VAR

Γ ⊢ x :: X
AP

Γ ⊢ f x :: X
VAR

Γ ⊢ f :: X → X
AP

Γ ⊢ f (f x) :: X
ABS

f :: X → X ⊢ λx.f (f x) :: X → X
ABS

⊢ λf.λx.f (f x) :: (X → X) → X → X

(8) Show that (λx.xy) y is not typable for any context of the form y :: τ . (Note that y is

the only free variable).

We suppose, for a contradiction, that the expression is typeable. Let us call this type σ1,

say. We have:

VAR

y :: τ, x :: σ2 ⊢ x :: σ3 → σ1

VAR

y :: τ, x :: σ2 ⊢ y :: σ3
AP

y :: τ, x :: σ2 ⊢ xy :: σ1
ABS

y :: τ ⊢ λx.xy :: σ2 → σ1

VAR

y :: τ ⊢ y :: σ2
AP

y :: τ ⊢ (λx.xy) y :: σ1

You should be familiar with producing deduction trees by now! For example, suppose we

had worked back to the hypothesis y :: τ, x :: σ2 ⊢ xy :: σ1 of ABS. x y is an application, so

must have been deduced from rule AP. xy has type σ1, hence rule AP tells us that x must

have type σ3 → σ1 and y has type σ3 for some type σ3. But the final rules at the tree top

must be instances of VAR. So we must have σ2 ≡ σ3 → σ1 and τ ≡ σ3 and τ ≡ σ2. Thus

we deduce σ3 → σ1 ≡ σ3 and this cannot be. So the expression is not typable.

4.5 Formal Properties of Type Assignment

Motivation 4.5.1 It is easy to see that there are expressions of ML which are not

typable. It is also possible for an expression to have exactly one type, for example ⊢ 1 :: σ

holds only for σ ≡ int. However, if a closed expression is typable, it usually has many

types. For example, ⊢ λx.x :: σ → σ holds for any type σ. However, in ML , of all the

types that can be assigned to an expression, there is a most general one, in the sense that

all other assigned types are instances of the most general type. We now make all this

precise, and give a number of general results about ML type inference:

Definitions 4.5.2 Suppose that S: TyVar⇀Type is a partial function and that σ is an

ML type. We define S∗σ to be the type resulting from replacing each type variable X of

σ with the type S(X) whenever S(X) is defined. We call S∗ a type substitution. We

write S∗Γ for . . . , xi :: S∗σi, If S is defined at just one type variable, say S(Y)
def
= τ ,

then we write σ[τ/Y] instead of S∗σ—an obvious notational convention. We say that σ

generalises σ′ if there exists a type substitution S∗ for which σ′ = S∗σ. We say that σ′

is an instance of σ. Note that if S(X) is defined, then it follows that S∗X = S(X).

4.6. Local Polymorphism in ML 59

Examples 4.5.3

(1) Define S by setting S(X) = U , S(Y) = bool and S is otherwise undefined. Let

σ
def
= (X, Y → Z) and Γ

def
= x :: X, y :: Y → Z. Then

S∗σ = (U, bool → Z) and S∗Γ = x :: U, y :: bool → Z

(2) Note that (X, Y) → Z generalises ([bool], Y) → int for

([bool], Y) → int = S∗ ((X, Y) → Z)

where S is defined by S(X) = [bool] and S(Z) = int.

Motivation 4.5.4 In ML , if ⊢M :: σ, the type σ assigned to the (closed) expression M

is principal if σ generalises any other type which can be assigned to M . The principal

type of λx.x is X → X. If an expression has a principal type, there is an algorithm (due

to Hindley; Damas-Milner) which will compute it—but this is a story for another time.

In Standard ML, program values are returned to the user with their principal types. Note

that “principal type” is simply another phrase for “most general type”.

It can be shown that if ⊢M :: σ and X is a type variable, then for any type σ′ we have

Γ ⊢M :: σ[σ′/X]. (∗)

Note that (by definition!) the type σ generalises σ[σ′/X]. Thus if ⊢ λx.x : nil :: X → [X],

and σ is any type, then (X → [X])[σ/X] ≡ σ → [σ], and so ⊢ λx.x : nil :: σ → [σ] using

(∗).

4.6 Local Polymorphism in ML

Motivation 4.6.1 The LET rule permits different occurrences of x in N to have dif-

ferent implicit types in a local declaration let x = M in N . Thus, M can be used

polymorphically in the body N . This idea is best explained by example.

Example 4.6.2 We first note that ⊢ λx.x :: X → X:

DT(X)

{

VAR

x :: X ⊢ x :: X

ABS

⊢ λx.x :: X → X

where we label the upper tree by DT(X). Note that replacing X by any type σ in DT(X)

yields a deduction DT(σ) for ⊢ λx.x :: σ → σ. Hence

DT1







DT(bool)

⊢ λx.x :: bool → bool (2)
TRUE

⊢ T :: bool

AP

⊢ (λx.x) T :: bool

60 Chapter 4. A Typed Functional Language

and

DT2







DT([X])

⊢ λx.x :: [X] → [X] (3)
NIL

⊢ nil :: [X]

AP

⊢ (λx.x) nil :: [X]

Putting things together we get

DT3







DT1
AP

⊢ (λx.x) T :: bool

DT2
AP

⊢ (λx.x) nil :: [X]

PAIR

⊢ ((λx.x) T , (λx.x) nil) :: (bool, [X])

Note that (f T , f nil)[(λx.x)/f] = ((λx.x) T , (λx.x) nil). So we have

DT(Y)
ABS

⊢ λx.x :: Y → Y

DT3

⊢ (f T , f nil)[(λx.x)/f] :: (bool, [X])
LET

⊢ let f = (λx.x) in (f T , f nil) :: (bool, [X])

If we look at the above deduction of

⊢ let f = (λx.x)
︸ ︷︷ ︸

(1)

in (f
︸︷︷︸

(2)

T , f
︸︷︷︸

(3)

nil) :: (bool, [X])

then we can observe that the occurrence of f labelled (2) has implicit type bool → bool

and that labelled (3) has implicit type [X] → [X]. Now, the principal type of λx.x is

Y → Y and both of the implicit types of f are substitution instances of this most general

type, with S(Y) = bool and S(Y) = [X], respectively.

Motivation 4.6.3 We can summarize the last example by noting that

Variables which are bound in local declarations (such as f above) can have polymorphic

instances in the body of the declaration.

It is only possible for bound variables to possess polymorphic instances. Now, ML has one

other variable binding operation, that in function terms λx.M . Can such bound variables

have polymorphic instances within the scope of λx abstractions? The answer is in fact

no. An example in the final section illustrates this.

4.7 Further Examples

Examples 4.7.1

4.7. Further Examples 61

(1) Show that the implicit type of f in ⊢ let f = λx.x in f 3 :: int is int → int.

The deduction tree must look like

T1

⊢ λx.x :: σ

T2

⊢ (λx.x) 3 :: int
LET

⊢ let f = λx.x in f 3 :: int

(for some σ) and it is easy to produce the remainder of the deduction tree T2 to obtain

⊢ λx.x :: int → int. This is the implicit type of f (and of course we can take σ to be this

type—what is T1?).

(2) λf.(f T , f nil) is not typable (in the empty context) in ML .

To see this, we derive a possible deduction tree.

VAR

f :: σ2 ⊢ f :: σ6 → σ4

TRUE

f :: σ2 ⊢ T :: σ6 ≡ bool
AP

f :: σ2 ⊢ f T :: σ4

VAR

f :: σ2 ⊢ f :: σ7 → σ5

NIL

f :: σ2 ⊢ nil :: σ7 ≡ [σ8]
AP

f :: σ2 ⊢ f nil :: σ5?

f :: σ2 ⊢ (f T , f nil) :: σ3 ≡ (σ4, σ5)
ABS

⊢ λf.(f T , f nil) :: σ1 ≡ σ2 → σ3

We conclude from the two instances of VAR that σ2 ≡ [σ8] → σ5 and σ2 ≡ bool → σ4 so

that [σ8] ≡ bool, a contradiction. (Also σ5 ≡ σ4 but this does not tell us anything useful).

Index

α-equivalence, 27, 53

alphabet, 10

anti-symmetric, 5

associates, 21

base, 7

binary relation, 4

body, 21

bound, 23, 53

captured, 24

cartesian product, 4

closed, 8, 31

closed under a set of rules, 8

compile-time, 51

computes in one step, 36, 41

constants, 17

constructors, 18

context, 54

control, 47

convergent, 38

deduced, 9

deduction, 8

deduction tree, 11

deterministic, 34, 37, 40

difference, 3

divergent, 39

dump, 47

dynamically typed, 51

element, 3

empty, 3

environment, 47, 54

equal, 3

equivalence, 5

equivalence class, 5

evaluation relation, 32

expressions, 29, 40, 53

expressions with contexts, 30, 40

final state, 49

finite

— transition sequence, 38

free, 24, 53

full transition sequence, 38

generalises, 58

holds, 13

implicit type, 59

inductive, 7

inductive hypotheses, 14

inductively defined, 8

infinite

— transition sequence, 39

initial state, 47

instance, 58

intersection, 3

labelled, 9

lazy, 33, 37

letter, 10

loops, 39

monomorphic, 51

nullary, 18

occurs, 23

operational, 33

operators, 17

overloading, 51

pair, 3

parametric, 51

polymorphic, 51

powerset, 3

principal, 59

programs, 32, 40

property, 12

property closure, 14

62

Index 63

propositional variables, 11

propositions, 11

recursively, 15

reflexive, 5

relation, 4

representative, 6

represented, 6

rewrites, 45

rule, 7

rule induction, 14

schema, 8

scope, 23, 53

semantics, 32

set, 3

side condition, 10

stack, 47

statically typed, 51

strongly typed, 51

structured, 33

structured operational semantics, 32

subset, 3

substitution, 26, 53

subterm, 52

symmetric, 5

syntactic identity, 22

terminal, 37

terms, 18, 40, 52

terms with contexts, 30, 40

ternary, 18

transition relation, 36, 41

transition sequence

— finite, 38

— infinite, 39

transitive, 5

tuples, 3

typable, 54

type substitution, 58

type variables, 52

types, 52

unfolding, 21

union, 3

value, 32

variables, 17

words, 10

