MGS 2015, 7-11 April, University of Sheffield, UK

Category Theory Exercises

Roy L. Crole, University of Leicester, UK

Please note that these Exercises sometimes refer to the accompanying MGS 2015 slides on **Category Theory**.

If X is a set, then a **preorder** on X is a binary relation \leq on X which is *reflexive* and *transitive*. If the relation \leq is also **anti-symmetric**, that is for any $x, y \in X$ we have $x \leq y$ and $y \leq x$ implies x = y, then we call \leq a **partial order**. We will often simply refer to a preorder X or partial order (poset) X, though sometimes refer to (X, \leq) or (X, \leq) if we wish to make the (name of) the set and order clear.

1 Categories

- (1) For the category of sets and functions, *Set*, check *in detail* that the axioms of a category hold. In the case of *Set*, what *exactly* are the morphisms? What are the identities? What is morphism composition? Verify the equations for identities and associativity.
- (2) If X is a set, check that $\mathcal{P}(X)$ is a *preorder* by inclusions \subseteq and is hence a category, checking all of the details. (Of course $\mathcal{P}(X)$ also happens to be a partial order . . .)
- (3) Verify that there is a category C with one object * and the set of morphisms C(*,*) consists of the algebraic terms $t := x_0 \mid f(t) \mid g(t,t)$ where x_0 is one given variable and f and g are two given function symbols; and composition is substitution $t[t'/x_0]$ (where "t' replaces x_0 in t is defined recursively).
- (4) Verify that any monoid (M,b,e) is a single object category \mathcal{C} with one object * and $\mathcal{C}(*,*) \stackrel{\text{def}}{=} M$.
- (5) Verify that $\mathcal{M}on$, all monoids and all monoid homomorphisms, is a category. Make sure you are clear that this, and the last example, are related but entirely different.
- (6) Choose some other examples of categories of your choice and verify the axioms.
- (7) Check that X^{op} is the usual "opposite preorder" when X is a preorder regarded as a category.
- (8) If X and Y are preorders check that so is the cartesian product $X \times Y$ (of underlying sets) ordered coordinate-wize.
- (9) Given categories \mathcal{C} and \mathcal{D} , the objects of the category $\mathcal{C} \times \mathcal{D}$ are pairs (A,B) of objects from \mathcal{C} and \mathcal{D} respectively. Convince yourself that there is an obvious category $\mathcal{C} \times \mathcal{D}$. Compare to the previous question by regarding X and Y as categories.
- (10) If $f: X \to Y$ and $g: Y \to Z$ are both monotone functions between preorders, then so too is the **composition** $f \circ g: X \to Z$ defined by $(g \circ f)(x) \stackrel{\text{def}}{=} g(f(x))$ for any $x \in X$. Verify this fact, and hence that preorders and monotone functions form a category.

2 Functors

- (1) Check that there is an identity functor on any category C.
- (2) Let (X, \leq_X) and (Y, \leq_Y) be categories and $m: X \to Y$ a monotone function. Then m gives rise to a functor

$$M:(X,\leq_X)\to (Y,\leq_Y)$$

defined by $M(x) \stackrel{\text{def}}{=} m(x)$ on objects $x \in X$ and by $M(\leq_X) = \leq_Y$ on morphisms; since m is monotone,

$$\leq_X : X \to X'$$
 implies $M(\leq_X) : M(X) \to M(X')$. Verify!

- (3) Check that there is a functor $F : Set \to Mon$ defined by $FA \stackrel{\text{def}}{=} [A]$ and $Ff \stackrel{\text{def}}{=} map(f)$ (either see the notes, or go straight ahead if you know Haskell!)
- (4) The diagonal functor $\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}$ maps $f: A \to B$ to $(f, f): (A, A) \to (B, B)$. Check that it is indeed a functor.
- (5) Check that the **covariant powerset** functor $\mathcal{P}: \mathcal{S}et \to \mathcal{S}et$ which is given by

$$f: A \to B \quad \mapsto \quad \mathcal{P}(f) \equiv f_*: \mathcal{P}(A) \to \mathcal{P}(B),$$

where $f: A \to B$ is a function and f_* is defined by $f_*(A') \stackrel{\text{def}}{=} \{f(a') \mid a' \in A'\}$ where $A' \in \mathcal{P}(A)$ actually is a functor.

(6) Do the same for the **contravariant powerset** functor $\mathcal{P}: \mathcal{S}et^{op} \to \mathcal{S}et$ by setting

$$f^{op}: B \to A \quad \mapsto \quad f^{-1}: \mathcal{P}(B) \to \mathcal{P}(A),$$

where $f: A \to B$ is a function in *Set*, and the function f^{-1} is defined by

$$f^{-1}(B') \stackrel{\text{def}}{=} \{ a \in A \mid f(a) \in B' \}$$

where $B' \in \mathcal{P}(B)$.

(7) Define $G: Set \to Mon$ by $GA \stackrel{\text{def}}{=} lists(A)$ and $Gf \stackrel{\text{def}}{=} mapsq(f)$, where

$$mapsq(f): lists(A) \rightarrow lists(B)$$

is defined by

$$mapsq(f)([a_1,...,a_n]) = [f^2(a_1),...,f^2(a_n)], mapsq(f)([]) = []$$

with $[a_1, \ldots, a_n]$ any element of lists(A) and $f: A \to B$ a function. Show that G is a not a functor.

(8) * Let us say that a category \mathcal{C} is **tiny** if the collection of objects forms a set and \mathcal{C} is discrete, that is, the only morphisms are identities; prove that a category \mathcal{C} is tiny iff given any category \mathcal{D} with a set of objects $ob \mathcal{D}$ and any set function $f: ob \mathcal{C} \to ob \mathcal{D}$, then f extends uniquely to a functor $F: \mathcal{C} \to \mathcal{D}$. (Extends means that if A is an object of \mathcal{C} , then $FA = f(A) \in ob \mathcal{D}$.)

3 Natural Transformations

- (1) Verify that there is an identity natural transformation for any functor $F: \mathcal{C} \to \mathcal{C}$.
- (2) For the functor $F : Set \to Mon$ above, verify in detail that there is a natural transformation $rev : F \to F$ whose components at a set A reverse lists in [A].
- (3) Verify in detail that there is a category $\mathcal{D}^{\mathcal{C}}$ with objects functors from \mathcal{C} to \mathcal{D} , morphisms *natural transformations* between such functors. We can define a natural transformation $\beta \circ \alpha : F \to H$ by setting the components to be

$$(\beta \circ \alpha)_A \stackrel{\text{def}}{=} \beta_A \circ \alpha_A$$
.

and this is the composition of $\mathcal{D}^{\mathcal{C}}$. Note: this category is often denoted by $[\mathcal{C},\mathcal{D}]$.

4 Isomorphisms

- (1) Suppose that a bijection f in Set is specified as a one-to-one and onto function (injection and surjection). Check that f is an isomorphism.
- (2) Check that the relation \cong of isomorphism is an equivalence relation.
- (3) Find a counterexample to the following statement. A monotone function $f: X \to Y$ between posets X and Y which is a bijection on the underlying sets (an isomorphism in Set) is necessarily an isomorphism in ParSet.

5 Products and Coproducts

- (1) Verify in detail that binary products and coproducts exist in Set (see the notes if required).
- (2) Let X and Y be preorders and $X \times Y$ the cartesian product of the underlying sets ordered coordinate-wize. Check that there are monotone functions $\pi_X : X \times Y \to X$, $(x,y) \mapsto x$ and $\pi_Y : X \times Y \to Y$, $(x,y) \mapsto y$ where $(x,y) \in X \times Y$. Verify that given monotone

functions $f: Z \to X$ and $g: Z \to Y$ where Z is any given preorder, there is a unique monotone function $m: Z \to X \times Y$ for which $f = \pi_X \circ m$ and $g = \pi_Y \circ m$. Conclude that $\operatorname{\textit{ParSet}}$ has binary products.

- (3) Suppose that F_1 and F_2 are objects (that is, functors) of $\mathcal{D}^{\mathcal{C}}$ and that \mathcal{D} has finite (co)products. Then both $F_1 \times F_2$ and $F_1 + F_2$ exist and are defined pointwize. Using the notes if need be, verify this in detail; this is an important example and we will use the notation a lot in the final lecture or so.
- (4) Check that there are functors $B \times (-)$, B + (-): $C \to C$ for any B so long as C has binary coproducts (see the notes if required).
- (5) In $(\mathcal{P}(X),\subseteq)$, binary meets (products) and joins (coproducts) are given by the operations of *intersection* and *union*. Verify this. What are the top and bottom elements?
- (6) Think of some simple finite posets in which meets and joins do not exist.
- (7) Suppose that X is a poset. Show that meets in a poset are unique if they exist. Hint: Suppose that, in each case, there are at least two possibilities m and m' and prove that m and m' are equal.
- (8) Show that a category C has *all* finite products just in case it has binary products and a terminal object.
- (9) Define the partial order | on \mathbb{N} by $\forall d, n \in \mathbb{N}.d | n$ to mean that $(\exists k \in \mathbb{N})(n = k*d)$. With this order, binary meets and joins are given simply by *highest common factor* and *lowest common multiple* respectively. Give some informal arguments to show that this is correct (a complete answer requires some simple undergraduate level properties of the natural numbers, such as prime factorisation).
- (10) Investigate the notion of a binary product in a category C^{op} .
- (11) Prove the coproduct of any set-indexed family of objects is unique up to isomorphism if it exists.
- (12) In a category with binary (co)products, suppose that $f_1: A_1 \to B_1$ and $f_2: A_2 \to B_2$. Then

$$\begin{array}{ccc} f_1 \times f_2 & \stackrel{\mathrm{def}}{=} & \langle f_1 \circ \pi_{A_1}, f_2 \circ \pi_{A_2} \rangle : A_1 \times A_2 \to B_1 \times B_2 \\ f_1 + f_2 & \stackrel{\mathrm{def}}{=} & [\iota_{B_1} \circ f_1, \iota_{B_2} \circ f_2] : A_1 + A_2 \to B_1 + B_2 \end{array}$$

Convince yourself that

$$\begin{array}{rcl} \pi_{B_i} \circ (f_1 \times f_2) & = & f_i \circ \pi_{A_i} \\ (f_1 + f_2) \circ \iota_{A_i} & = & \iota_{B_i} \circ f_i \end{array}$$

(13) Let C be a category with finite products and let

$$\begin{array}{ll} l: X \to A & f: A \to B \\ h: B \to D & k: C \to E \end{array} \qquad g: A \to C$$

be morphisms of C. Show that $(h \times k) \circ \langle f, g \rangle = \langle h \circ f, k \circ g \rangle$ and $\langle f, g \rangle \circ l = \langle f \circ l, g \circ l \rangle$.

- (14) Formulate an analogue of the previous question in terms of coproducts, and prove your conjecture.
- (15) * Find an example of a functor $F: \mathcal{C} \to \mathcal{D}$ for which

$$F(A \times B) \cong FA \times FB$$

in \mathcal{D} for all pairs of objects A and B in C, but such that F does not preserve binary products. Hint: think about countably infinite sets.

6 More Natural Transformations and Equivalences

- (1) Verify that $F_X : Set \to Set$ is a functor and that $ev : F_X \to id_{Set}$ is a natural transformation (see slides).
- (2) Given categories C and D, verify that the functor category D^{C} is indeed a category.
- (3) Show that any category Set^{C} has finite products and coproducts.
- (4) Given a diagram of categories and functors

$$\mathcal{C} \xrightarrow{I} \mathcal{D} \xrightarrow{F,G,H} \mathcal{E} \xrightarrow{J} \mathcal{F}$$

and natural transformations $\alpha: F \to G$ and $\beta: G \to H$, we can define $J^*: \mathcal{E}^{\mathcal{D}} \to \mathcal{F}^{\mathcal{D}}$ by $J^*(F) \stackrel{\text{def}}{=} J \circ F$ on any object F and $(J^*(\alpha))_D \stackrel{\text{def}}{=} J(\alpha_D)$ where D is an object of \mathcal{D} . Show that $J^*(\beta \circ \alpha) = J^*(\beta) \circ J^*(\alpha)$. There is also a functor $I_*: \mathcal{E}^{\mathcal{D}} \to \mathcal{E}^{\mathcal{C}}$. Try to define I_* and show that $I_*(\beta \circ \alpha) = I_*(\beta) \circ I_*(\alpha)$.

Note: make sure you understand in which categories the compositions are defined.

(5) Let S be the category of non-empty sets and set functions. Define a functor $\mathcal{P}: S \to S$ by sending $f: X \to Y$ in S to the function

$$\mathcal{P}(f): \mathcal{P}(X) \to \mathcal{P}(Y) \qquad A \mapsto f(A) \stackrel{\mathrm{def}}{=} \{f(a) \mid a \in A\}.$$

Show that there is no natural transformation $\alpha : \mathcal{P} \to id_{\mathcal{S}}$. ($\mathcal{P}(f)$ is sometimes written f_* .)

(6) * Two categories are said to be equivalent, if, roughly speaking, we can write down a one to one correspondence between isomorphism classes of objects obtained from the categories. More precisely, two categories \mathcal{C} and \mathcal{D} are *equivalent* if there are functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{e}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{D} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathfrak{g}: \mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathfrak{g}: F \circ G \cong id_{\mathcal{D}}$ and $\mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathcal{C} \to \mathcal{C}$ together with natural isomorphisms $\mathcal{C} \to \mathcal{C}$ together $\mathcal{C} \to$

 $id_{\mathcal{C}} \cong G \circ F$. We say that F is an equivalence with an inverse equivalence G and denote the equivalence by $F : \mathcal{C} \simeq \mathcal{D} : G$.

Let Part be the category of sets and partial functions. Write 1 for a singleton set. An object of the category $1/\operatorname{Set}$ is a function $f: 1 \to A$ where A is a set (and hence in particular A is non-empty). A morphism $m: f \to f'$ (where $f': 1 \to A'$) is a function $m: A \to A'$ for which $m \circ f = f'$. Prove that $\operatorname{Part} \simeq 1/\operatorname{Set}$. Hint: Note that an object $f: 1 \to A$ amounts to specifying an element $a \in A$.

(7) * The slice category Set/B is often referred to as the category of B-indexed families of sets with functions preserving the indexing. It is defined analogously to the category 1/Set. First try to work out the definition of this category.

Then to understand the description of the category, note that a function $f: X \to B$ gives rise to the family of sets $(f^{-1}(b) \mid b \in B)$, and the family of sets $(X_b \mid b \in B)$ gives rise to the function

$$f: \{(x,b) \mid x \in X_b, b \in B\} \rightarrow B$$

where $f(x,b) \stackrel{\text{def}}{=} b$.

Note that we can regard the set B as a discrete category; then there is an equivalence between the functor category Set^B and the slice Set/B. Formulate this equivalence carefully and prove that your definitions really do give an equivalence.

7 Algebras

- (1) There is a category C^F of algebras and algebra homomorphisms (details omitted) in which initial algebras are initial objects. Verify!
- (2) Show that the functor $1 + (-) : Set \rightarrow Set$ has an initial algebra

$$[z,s]:1+\mathbb{N}\to\mathbb{N}$$

where $z: 1 \to \mathbb{N}$ maps * to 0 and $s: \mathbb{N} \to \mathbb{N}$ adds 1. This example illustrates the paradigm of "datatypes as initial algebras".

8 Case Study: Modelling (Haskell) Algebraic Datatypes

(1) LONG EXERCISE: work through all of the details of the material presented in the notes. Try to do two things: (i) make a high level architectural picture of the main ingredients of the datatype model, including the types, expressions, categories, functors and the initial algebra; (ii) after you have a clear picture of the main ingredients,

play/calculate with the finer technical details and make sure you can manipulate the definitions with some confidence.

9 Adjunctions

- (1) Let *X* be a preorder. If $\Delta: X \to X \times X$ is given by $\Delta(x) \stackrel{\text{def}}{=} (x, x)$, verify that there are adjoints $(\vee \dashv \Delta \dashv \wedge)$.
- (2) Verify that the functions

$$\overline{(-)_{A,M}}: \mathcal{M}on(lists(A),M) \cong \mathcal{S}et(A,UM): \widehat{(-)_{A,M}}$$

given in the slides do indeed yield a natural bijection.

- (3) Verify that the diagonal functor $\Delta: Set \to Set \times Set$ taking a function $f: A \to B$ to $(f,f): (A,A) \to (B,B)$ has right adjoint Π taking any morphism $(f,g): (A,A') \to (B,B')$ of $Set \times Set$ to $f \times g \stackrel{\text{def}}{=} \langle f \circ \pi_A, g \circ \pi_B \rangle : A \times A' \to B \times B'$.
- (4) Do the same for coproducts.
- (5) If categories C and D are locally small, that is, the collection C(A,B) of morphisms forms a set (ditto D), then $L \dashv R$ provided that there is an isomorphism

$$\boxed{\mathcal{D}(-,+)\circ(L^{op}\times id)\stackrel{\mathrm{def}}{=}} \quad \mathcal{D}(L-,+)\cong \mathcal{C}(-,R+) \quad \boxed{\stackrel{\mathrm{def}}{=} \mathcal{C}(-,+)\circ(id\times R)}$$

in the functor category $\mathcal{S}et^{\mathcal{C}^{op} \times \mathcal{D}}$ where $L^{op}: \mathcal{C}^{op} \to \mathcal{D}^{op}$ is defined by

$$L^{op}(f:A'\to A) \stackrel{\text{def}}{=} (Lf)^{op}:LA'\to LA$$

Verify that in such a situation this is precisely the definition given in the slides.

(6) Verify in detail that a category C is a cartesian closed category (CCC) if and only if there is a right adjoint R to the functor $(-) \times B : C \to C$ for each object B of C.

10 Colimits

- (1) Show that if $\mathbb{I} \stackrel{\text{def}}{=} \{1,2\}$ is a discrete category, then a colimit for $D : \mathbb{I} \to \mathcal{C}$ is a binary coproduct.
- (2) In *Set* show that a colimit object for $D : \mathbb{I} \to Set$ where $ob \mathbb{I} \stackrel{\text{def}}{=} \{1,2\}$ and there is a single (non-identity) morphism $1 \le 2$ is given by D2.

- (3) What is the colimit when \mathbb{I} is (the category generated by) $ob \mathbb{I} \stackrel{\text{def}}{=} \{1, \dots, n\}$ where i < i+1 for each object i.
- (4) Now let $\mathbb{I} \stackrel{\text{def}}{=} \omega$. Let U be the disjoint union of the sets D(i) as i runs over the elements of ω ; formally $U \stackrel{\text{def}}{=} \bigcup \{\{i\} \times Di \mid i \in \omega\}$ and a typical element of U is a pair (i,x) where $x \in D(i)$. Define a relation on U by asking that $(i,x) \sim (j,y)$ just in case there is an object k of ω where $i \leq k$, $j \leq k$ for which $D(\leq)(x) = D(\leq)(y)$ in D(k).

Prove that \sim is an equivalence relation.

Set $col_iD(i) \stackrel{\text{def}}{=} U/\sim$ and define a function $\iota_i:D(i)\to col_iD(i)$ by $x\mapsto [x]$ where $x\in D(i)$. Prove that $(\iota_i:D(i)\to col_iD(i)\mid i\in\mathbb{I})$ is a colimit for D.

- (5) In the light of the last question, does a "finite analogue" of the result for $\underline{n} \stackrel{\text{def}}{=} \{0,1,\ldots,n-1\}$ in place of ω , which you should try to formulate, yield a colimit that corresponds to the ones of the previous questions?
- (6) Verify that if $D: \mathbb{I} \to \mathcal{C}$, $L: \mathcal{C} \to \mathcal{D}$ and $L \dashv R$ for some R, then

$$L(col_IDI) \cong col_ILDI$$

is witnessed by $[L(\iota_{DI}) \mid I \in \mathbb{I}] : col_I LDI \rightarrow L(col_I DI)$.

- (7) In fact Set has all colimits. Let $D: \mathbb{I} \to Set$ be a diagram. Again let U be the disjoint union of the DI and define a relation R on U by asking that (I,x) R (J,y) just in case there is a morphism $\alpha: I \to J$ in \mathbb{I} for which $y = D\alpha(x)$. Let \sim be the equivalence relation generated by R, write $col_IDI \stackrel{\text{def}}{=} U/\sim$, and let $\iota_I: DI \to col_IDI$ map elements to their equivalence classes. Prove that this gives rise to a colimit for D. Try to tie up this construction of a general colimit with the previous questions.
- (8) Suppose that X is a poset viewed as a category. A colimit for $\Delta: \omega \times \omega \to X$ exists if and only if a colimit for $\Delta': \omega \to X$ where $\Delta'(\xi) \stackrel{\text{def}}{=} \Delta(\xi, \xi)$ exists, and when they exist they are isomorphic. Such colimits are in fact given by joins, namely

$$\bigvee_{i,j} x_{(i,j)} \text{ and } \bigvee_{k,k} x_{(k,k)} \text{ and } \bigvee_{i} (\bigvee_{j} x_{(i,j)}) \text{ and } \bigvee_{j} (\bigvee_{i} x_{(j,i)})$$

where we write $x_{(i,j)}$ for $\Delta(i,j)$. Prove this fact. Hint: Do this simply by making use of the definition of joins.

(9) Recall from the slides that a colimit for $\Delta:\omega\times\omega\to\mathcal{C}$ exists if and only if a colimit for $\Delta':\omega\to\mathcal{C}$ where $\Delta'(\xi)\stackrel{def}{=}\Delta(\xi,\xi)$ exists, and when they exist they are isomorphic, that is

$$col_k \Delta'(k) \cong col_{(i,j)} \Delta(i,j)$$

Further (exercise: what does $col_i\Delta(i, j)$ mean ...)

$$col_i(col_i\Delta(i,j)) \cong col_i(col_i\Delta(j,i))$$

Prove this. Hint: Do this simply by making use of the definition of colimit.

- (10) Review the final slides which cover the existence of initial algebra: Suppose that F preserves colimits of the form $D: \omega \to \mathcal{C}$, that \mathcal{C} has an initial object 0, and a colimit for D where $D(i \le i+1) \stackrel{\text{def}}{=} F^i!_X : F^i 0 \to F^{i+1} 0$ for $i \in \omega$ exists. Then $I \stackrel{\text{def}}{=} col_i Di$ is an initial algebra for F.
- (11) * Read up on *limits* and prove that *Set* has all limits . . . OR can you work out for yourself what the construction is? Think about $D: \mathbb{I} \to Set$ where $ob \mathbb{I} \stackrel{\text{def}}{=} \{1,2\}$ and there is a single (non-identity) morphism $\alpha: 1 \to 2$; in general, the construction is based around a "form of" cartesian product, and in this special case the product is a certain subset of $D1 \times D2$ which you should try to work out.