
Category Theory

Roy L. Crole

University of Leicester, UK

April 2018

MGS 2018, 9-13 April, University of Nottingham, UK 1/48

Introductory Remarks

▶ A theory of abstraction (of algebraic structure).
▶ It had its origins in Algebraic Topology with the work of

Eilenberg and Mac Lane (1942-45).
▶ It provides tools and techniques which allow the formulation

and analysis of common features amongst apparently different
mathematical/computational theories.

▶ We can discover new relationships between things that are
seemingly unconnected.

▶ Category theory concentrates on how things behave and not on
internal details (e.g. on properties of sets but not expressed in
terms of their elements).

▶ As such, category theory can clarify and simplify our ideas—and
indeed lead to new ideas and new results.

MGS 2018, 9-13 April, University of Nottingham, UK 2/48

Introductory Remarks

▶ Connections with Computer Science were first made in the
1980s, and the subject has played a central role ever since.

▶ Some contributions (chosen by me . . . there are many many
more) are

▶ Categories for Types by Roy L. Crole. CUP.
▶ Cartesian closed categories as models of pure functional

languages.
▶ The use of strong monads to model notions of computation

(well incorporated into Haskell).
▶ Precise correspondences between categorical structures and

type theories.
▶ The categorical solution of domain equations as models of

recursive types.
▶ Nominal categories as models of variable binding.

MGS 2018, 9-13 April, University of Nottingham, UK 2/48

Introductory Remarks

A set of hand-written slides accompanies these typed slides. Their
purpose is to elaborate the definitions, concepts and examples
presented here. Hopefully they will aid digestion of the material; see
the OHP flags.
Note that the material in the hand-written slides is informal; the
lectures provide clarifications of the informality:
Examples of informality include omitting some or all identity
morphisms from pictures of categories; omitting subscripts from
natural transformations; omitting formal insertions when calculating
with coproducts; and others
There is also a collection of exercises. To learn the subject well it is
very important to tackle these.

MGS 2018, 9-13 April, University of Nottingham, UK 2/48

Course Outline
Categories

Functors
Natural Transformations
Products, Coproducts

Adjunctions

Algebras

Case Study: The Mini Yoneda Lemma for Type Theorists

Case Study: CCCs via Adjunctions

Case Study: Modelling (Haskell) Algebraic Datatypes via Algebras

Case Study: Colimits–Building Initial Algebras

MGS 2018, 9-13 April, University of Nottingham, UK 3/48

Definition of A Category

OHP A category C is specified by the following data:

▶ A collection obC of entities called objects. An object will
often be denoted by a capital letter such as A, B, C . . .

▶ For any two objects A and B, a collection C(A, B) of entities
called morphisms. A morphism in C(A, B) will often be
denoted by a small letter such as f , g, h

▶ If f ∈ C(A, B) then A is called the source of f , and B is the
target of f and we write (equivalently) f : A→ B.

MGS 2018, 9-13 April, University of Nottingham, UK 4/48

Definition of A Category

A category C is specified by the following data (continued):

▶ There is an operation assigning to each object A of C an
identity morphism idA : A→ A.

▶ There is an operation

C(B, C)×C(A, B) −→ C(A, C)

assigning to each pair of morphisms f : A→ B and
g : B→ C their composition which is a morphism denoted by
g ◦ f : A→ C or just g f : A→ C.

▶ Such morphisms f and g, with a common source and target B,
are said to be composable.

MGS 2018, 9-13 April, University of Nottingham, UK 4/48

Definition of A Category

A category C is specified by the following data (continued):

▶ These operations are unitary

idB ◦ f = f : A→ B
f ◦ idA = f : A→ B

▶ and associative, that is given morphisms f : A→ B,
g : B→ C and h : C→ D then

(h ◦ g) ◦ f = h ◦ (g ◦ f).

If we say “ f is a morphism” we implicitly assume that the source
and target are recoverable, that is, we can work out f ∈ C(A, B)
for some A and B.

MGS 2018, 9-13 April, University of Nottingham, UK 4/48

Outline Examples of Categories

▶ The collection of all sets and all functions
▶ Each set has an identity function; functions compose;

composition is associative.
▶ The collection of all elements of a preorder and all instances of

the order relation (relationships) ≤
▶ Each element has an identity relationship (reflexivity);

relationships compose (transitivity); composition is associative.
▶ The collection of all elements of a singleton { ∗ } (!) and any

collection of algebraic terms with just one variable x0
▶ ∗ has an identity term x0; terms compose (substitution);

composition is associative.

MGS 2018, 9-13 April, University of Nottingham, UK 5/48

More Examples
▶ The category Part with obPart all sets and morphisms
Part(A, B) the partial functions A→ B.

▶ The identity function idA is a partial function!
▶ Given f : A→ B, g : B→ C, then for each element a of A,
(g ◦ f)(a) is defined with value g(f (a)) if and only if both
f (a) and g(f (a)) are defined.

▶ OHP Given a category C, the opposite category Cop has
▶ obCop def

= obC and Cop(A, B) = { f op | f ∈ C(B, A) }.
▶ The identity on an object A in Cop is defined to be idop

A .
▶ If f op : A→ B and gop : B→ C are morphisms in Cop, then

f : B→ A and g : C→ B are composable morphisms in C.
We define gop ◦ f op def

= (f ◦ g)op : A→ C.
▶ * Opposite categories can have surprising structure. The

category Setop is equivalent to the category of complete
atomic Boolean algebras. *

MGS 2018, 9-13 April, University of Nottingham, UK 6/48

More Examples

▶ A discrete category is one for which the only morphisms are
identities.

▶ A semigroup (S, b) is a set S together with an associative
binary operation b : S× S→ S, (s, s′) 7→ s · s′. An identity
element for a semigroup S is some (necessarily unique)
element e of S such that for all s ∈ S we have
e · s = s · e = s. A monoid (M, b, e) is a semigroup (M, b)
with identity element e. Any monoid is a single object
category C with C(∗,∗) def

= M; identities and composition
are given by e and b.

▶ Concrete examples are
▶ Addition on the natural numbers, (N,+, 0).
▶ OHP Concatenation of finite lists over a set A, (list(A), ++, []).

MGS 2018, 9-13 April, University of Nottingham, UK 6/48

More Examples

▶ OHP Mon has objects monoids and morphisms monoid
homomorphisms: h : M→ M′ is a homomorphism if
h(e) = e and h(m1 ·m2) = h(m1) · h(m2) for all mi ∈ M.

▶ PreSet has objects preorders and morphisms the monotone
functions; and ParSet has objects partially ordered sets and
morphisms the monotone functions.

▶ The category of relations Rel has objects sets and morphisms
binary relations on sets; composition is relation-composition.

▶ The category of lattices Lat has objects lattices and morphisms
the lattice homomorphisms.

▶ The category CLat has objects the complete lattices and
morphisms the complete lattice homomorphisms.

▶ The category Grp of groups and homomorphisms.

MGS 2018, 9-13 April, University of Nottingham, UK 6/48

Isomorphisms and Equivalences

▶ A morphism f : A→ B is an isomorphism if there is some
g : B→ A for which f ◦ g = idB and g ◦ f = idA.

▶ g is an inverse for f and vise versa.
▶ A is isomorphic to B, A ∼= B, if such a mutually inverse pair

of morphisms exists.
▶ Bijections in Set are isomorphisms. There are typically many

isomorphisms witnessing that two sets are bijective.
▶ In the category determined by a partially ordered set, the only

isomorphisms are the identities, and in a preorder X with
x, y ∈ X we have x ∼= y iff x ≤ y and y ≤ x. Note that in
this case there can be only one pair of mutually inverse
morphisms witnessing the fact that x ∼= y.

MGS 2018, 9-13 April, University of Nottingham, UK 7/48

Definition of a Functor

OHP

A functor F : C → D is specified by

▶ an operation taking objects A in C to objects FA in D, and
▶ an operation sending morphisms f : A→ B in C to morphisms

F f : FA→ FB in D, such that
▶ F(idA) = idFA, and
▶ F(g ◦ f) = Fg ◦ F f provided g ◦ f is defined.

MGS 2018, 9-13 April, University of Nottingham, UK 8/48

Examples of Functors

▶ Let C be a category. The identity functor idC : C → C is
defined by idC(A)

def
= A on objects and idC(f) def

= f on
morphisms; so f : A→ B =⇒ idC(f) : idC(A)→ idC(B).

▶ Let (X,≤X) and (Y ,≤Y) be categories and m : X → Y a
monotone function. Then m gives rise to a functor

M : (X,≤X)→ (Y ,≤Y)

defined by M(x) def
= m(x) on objects x ∈ X and by

M(≤X) = ≤Y on morphisms; since m is monotone,
≤X : x→ x′ =⇒ M(≤X) : M(x)→ M(x′).

MGS 2018, 9-13 April, University of Nottingham, UK 9/48

Examples of Functors

▶ We may define a functor F : Set→Mon by FA def
= list(A)

and if f : A→ B then F f def
= map(f), where

map(f) : list(A)→ list(B) is defined by
map(f)([]) def

= []

map(f)([a1, . . . , an])
def
= [f (a1), . . . , f (an)]

It is easy to see that map(f) is a homomorphism of monoids.
▶ Note that F(idA) = idFA

F(idA)([a1, . . . , an])
def
= map(idA)([a1, . . . , an])

= idlist(A)([a1, . . . , an])

def
= idFA([a1, . . . , an])

MGS 2018, 9-13 April, University of Nottingham, UK 9/48

Examples of Functors

▶ . . . and note that F(g ◦ f) = Fg ◦ F f

F(g ◦ f)([a1, . . . , an])
def
= map(g ◦ f)([a1, . . . , an])

= [(g ◦ f)(a1), . . . , (g ◦ f)(an)]

= [g(f (a1)), . . . , g(f (an))]

= map(g)([f (a1), . . . , f (an)])

= map(g)(map(f)([a1, . . . , an]))

= (Fg ◦ F f)([a1, . . . , an]).

MGS 2018, 9-13 April, University of Nottingham, UK 9/48

* More Functor Examples *

▶ Given a set A, recall that the powerset P(A) is the set of
subsets of A. We can define the covariant powerset functor
P : Set→ Set which is given by

f : A→ B 7→ P(f) ≡ f∗ : P(A)→P(B),

where f : A→ B is a function and f∗ is defined by
f∗(A′) def

= { f (a′) | a′ ∈ A′} where A′ ∈ P(A).
▶ f∗ is sometimes called the direct image of f .

MGS 2018, 9-13 April, University of Nottingham, UK 10/48

* More Functor Examples *

▶ We can define a contravariant powerset functor
P : Setop→ Set by setting

f op : B→ A 7→ f−1 : P(B)→P(A),

where f : A→ B is a function in Set, and the function f−1 is
defined by f−1(B′) def

= {a ∈ A | f (a) ∈ B′} where
B′ ∈ P(B).

▶ f−1 is sometimes called the inverse image of f (and
sometimes written f ∗).

MGS 2018, 9-13 April, University of Nottingham, UK 10/48

Definition of a Natural Transformation

Let F, G : C → D be functors. Then a natural transformation α
from F to G, written α : F→ G, is specified by giving a morphism
αA : FA→ GA in D for each object A in C, such that for any
f : A→ B in C, we have a commutative diagram

FA
αA- GA

FB

F f
?

αB

- GB

G f
?

The αA are the components of the natural transformation.

MGS 2018, 9-13 April, University of Nottingham, UK 11/48

Examples of Natural Transformations

▶ Recall F : Set→Mon where FA def
= list(A) and

F(f : A→ B) def
= map(f) : list(A)→ list(B). Define a

natural transformation rev : F→ F, by specifying functions
revA : list(A)→ list(A) where

revA([])
def
= [] revA([a1, . . . , an])

def
= [an, . . . , a1]

We check naturality OHP

(F f ◦ revA)([a1, . . . , an]) = [f (an), . . . , f (a1)]
= (revB ◦ F f)([a1, . . . , an]).

MGS 2018, 9-13 April, University of Nottingham, UK 12/48

Examples of Natural Transformations

▶ Let C and D be categories and let F, G, H be functors from
C to D. Also let α : F→ G and β : G→ H be natural
transformations. We can define a natural transformation
β ◦ α : F→ H by setting the components to be

(β ◦ α)A
def
= βA ◦ αA.

▶ OHP This yields a category DC with objects functors from C to
D, morphisms natural transformations between such functors,
and composition as given above.

▶ Exercise: α is an isomorphism in DC just in case each αA is an
isomorphism in D.

▶ We will use SetSet when we model the Haskell datatype.
MGS 2018, 9-13 April, University of Nottingham, UK 12/48

* Examples of Natural Transformations *

▶ See slide 22 and OHP on CCCs.
▶ Define a functor FX : Set→ Set by

▶ (! Products) FX(A)
def
= (X ⇒ A)× X on objects

▶ (! Products) FX(f) def
= (f ◦−)× idX on morphisms

Then define a natural transformation ev : FX → idSet with
components evA : (X ⇒ A)× X → A by
evA(g, x) def

= g(x) where (g, x) ∈ (X ⇒ A)× X. To see
that we have defined a natural transformation let f : A→ B
and note that

(idSet(f) ◦ evA)(g, x) = f (evA(g, x))
= . . . (evB ◦ FX(f))(g, x).

MGS 2018, 9-13 April, University of Nottingham, UK 13/48

Universal Properties

Consider Set. Let T def
= { ∗ }. For any set X there exists a function

fX : X → T. This function is unique; it can only map x ∈ X to ∗:

∀X. ∃! fX . fX : X → T . Φ(T)

Also, any set T ′ with this property Φ(T ′) is unique up to
isomorphism (that is, bijection): T ∼= T ′. Indeed any T is a one
element set. We often write 1 for it.
This is a simple example of a universal property. These are
properties that define a particular structure up to isomorphism in
terms of how the structure interacts uniquely with all other similar
structures in the category.

MGS 2018, 9-13 April, University of Nottingham, UK 14/48

Definition of Binary Products
OHP A binary product of objects A and B in C is specified by

▶ an object A× B of C, together with
▶ two projection morphisms πA : A× B→ A and

πB : A× B→ B,

for which given any object C and morphisms f : C→ A,
g : C→ B, there exists a unique morphism ⟨ f , g⟩ : C→ A× B
for which

A �πA A× B
πB - B

C

∃! ⟨ f , g⟩
6

g

-
�

f

⟨ f , g⟩ : C→ A× B is the mediating morphism for f and g.

MGS 2018, 9-13 April, University of Nottingham, UK 15/48

Examples of Binary Products
▶ Let (X,≤) be a preorder. l ∈ X is a lower bound of

x, y ∈ X just in case l ≤ x, y. u ∈ X is a upper bound of
x, y ∈ X just in case x, y ≤ u.

▶ x ∈ S ⊆ X is greatest in S if (∀s ∈ S)(s ≤ x) and is least
in S if (∀s ∈ S)(x ≤ s).

▶ In a preorder a greatest lower bound x∧ y of x and y (if it
exists) is a binary product x× y of the category determined by
(X,≤) with projections x∧ y ≤ x and x∧ y ≤ y. x∧ y is
also called the meet of x and y.

x y

x

wwww
x∧ y

-
�

y

www
l
6
....

-
�

MGS 2018, 9-13 April, University of Nottingham, UK 16/48

Examples of Binary Products

▶ The binary product of A and B in Set has

A× B def
= { (a, b) | A ∈ A, b ∈ B }

with projection functions πA(a, b) def
= a and πB(a, b) def

= b.
The mediating function for any f : C→ A and g : C→ B is

⟨ f , g⟩(c) def
= (f (c), g(c)).

▶ In any C, if pi : P→ Ai is any product of A1 and A2 then
A1× A2

∼= P. All binary products are determined up to
isomorphism: Existence yields mediating morphisms
ϕ : A1× A2→ P and ψ : P→ A1× A2; uniqueness means
that ϕ and ψ witness an isomorphism (e.g. ϕ ◦ψ = idP).

MGS 2018, 9-13 April, University of Nottingham, UK 16/48

* Definition of Finite Products *

A product of a non-empty finite family of objects (Ai | i ∈ I) in C,
where I def

= { 1, . . . , n }, is specified by

▶ an object A1× . . .× An (or Πi∈I Ai) in C, and

▶ for every j ∈ I, a morphism πj : A1× . . .× An → Aj in C called
the jth product projection

such that for any object C and family of morphisms
(fi : C→ Ai | i ∈ I) there is a unique morphism

⟨ f1, . . . , fn⟩ : C→ A1× . . .× An

for which given any j ∈ I, we have πj ◦ ⟨ f1, . . . , fn⟩ = fj.

Note: We get binary products when I def
= { 1, 2 }!

MGS 2018, 9-13 April, University of Nottingham, UK 17/48

* Examples of Finite Products *

▶ A finite product of (A1, . . . , An) ≡ (Ai | i ∈ I) in Set is
given by the cartesian product A1× . . .× An with the obvious
projection functions. Given functions (f : C→ Ai | i ∈ I)
then

⟨ f1, . . . , fn⟩(c) def
= (f1(c), . . . , fn(c))

▶ In a preorder (X,≤), a finite product x1× . . .× xn, if it
exists, is a meet (greatest lower bound) of (x1, . . . , xn).

▶ A terminal object 1 in a category C has the property that
there is a unique morphism !A : A→ 1 for every A ∈ obC. It
is the finite product of an empty family of morphisms (check
this!). Such a 1 may not exist, but is unique up to isomorphism
if it does.

MGS 2018, 9-13 April, University of Nottingham, UK 18/48

Definition of Finite Coproducts

OHP A coproduct of a non-empty family of objects (Ai | i ∈ I) in C,
where I = { 1, . . . , n }, is specified by

▶ an object A1 + . . . + An (Σi∈I Ai), together with

▶ insertion morphisms ιj : Aj→ A1 + . . . + An,

such that for any C and any family of morphisms (fi : Ai → C | i ∈ I)
there is a unique morphism

[f1, . . . , fn] : A1 + . . . + An→ C

for which given any j ∈ I, we have [f1, . . . , fn] ◦ ιj = fj.

MGS 2018, 9-13 April, University of Nottingham, UK 19/48

Definition of Finite Coproducts

In the case that I def
= { 1, 2 } we have

A1
ι2- A1 + A2 �ι2 A2

C

∃! [f1, f2]

?�

f 2f1
-

(Compare to the diagrams for colimits later on.)

MGS 2018, 9-13 April, University of Nottingham, UK 19/48

Examples of (Co)Products

▶ In Set the binary coproduct of sets A1 and A2 is given by their
disjoint union A1 ⊎ A2, defined as the union
(A1×{ 1})∪(A2×{ 2}) with the insertion functions

ιA1 : A1→ A1 ⊎ A2← A2 : ιA2

where ιA1 is defined by a1 7→ (a1, 1) for all a1 ∈ A1, and ιA2

by a2 7→ (a2, 2) for all a2 ∈ A2.
▶ Let preorder (X,≤) have top and bottom elements and all

finite meets and joins (least upper bounds). Then the top of X
is terminal, the bottom of X initial, and finite meets and joins
are finite products and coproducts respectively.

MGS 2018, 9-13 April, University of Nottingham, UK 20/48

Examples of (Co)Products

▶ OHP Given (X,≤) and (Y ,≤) in PreSet, the binary product is
the cartesian product X× Y in Set, with the pointwize order
(x, y) ≤ (x′, y′) iff x ≤ x′ and y ≤ y′, together with the
(monotone) set-theoretic projection functions. The binary
coproduct is X ⊎ Y , with (z, δ) ≤ (z′, δ′) iff δ = δ′

(δ, δ′ ∈ { 1, 2}), and z ≤ z′ (either in X or in Y).
▶ An initial object 0 in a category C has the property that there

is a unique morphism !A : 0→ A for every A ∈ obC. It is the
finite coproduct of an empty family of morphisms (check this!).
Such a 0 may not exist, but is unique if it does.

MGS 2018, 9-13 April, University of Nottingham, UK 20/48

* Useful “Fact” for (Co)Products *

▶ Suppose that we have (fi : C→ Ai | i ∈ { 1, 2}) and
θ : C→ A1× A2. In order to prove that θ = ⟨ f1, f2⟩ it is
sufficient to show that πAi ◦ θ = fi for each i.

▶ Suppose that we have (fi : Ai→ C | i ∈ { 1, 2})and
θ : A1 + A2→ C. In order to prove that θ = [f1, f2] it is
sufficient to show that θ ◦ ιAi = fi for each i.

Note: this “fact” is simply a consequence of uniqueness of
mediating morphisms. It is crucial to the proof that (co)products are
unique up to isomorphism, where both ϕ ◦ψ and id (from an
earlier slide) are shown to be mediating, and hence equal.

MGS 2018, 9-13 April, University of Nottingham, UK 21/48

Further Notation for (Co)Products

▶ Suppose that f1 : A1→ B1 and f2 : A2→ B2. Then

f1× f2
def
= ⟨ f1 ◦πA1 , f2 ◦πA2⟩ : A1× A2→ B1× B2

f1 + f2
def
= [ιB1 ◦ f1, ιB2 ◦ f2] : A1 + A2→ B1 + B2

and hence it is immediate that (useful in calculations)

πBi ◦ (f1× f2) = fi ◦πAi

(f1 + f2) ◦ ιAi = ιBi ◦ fi

▶ This notation is easily extended to finite families
(Ai | i ∈ { 1, . . . , n }) and (Bi | i ∈ { 1, . . . , n }) . . . or
indeed infinite families (Ai | i ∈ I) and (Bi | i ∈ I) where I
is any set.

MGS 2018, 9-13 April, University of Nottingham, UK 22/48

A Useful Functor in Adjunctions

The category CAT which has objects categories and morphisms
functors. This category has products.
Let C and D be categories. The product category C ×D has
objects and morphisms of the form

(f , g) : (C, D) −→ (C′, D′)

with composition defined coordinatewise. Check this is a product!
Given functors F : C → E and G : D → F the functor

F×G : C ×D −→ E ×F

takes (f , g) to (F f , Gg) : (FC, GD)→ (FC′, GD′).
Again, check this using the definitions on slide 22.

MGS 2018, 9-13 April, University of Nottingham, UK 23/48

A Useful Functor in Adjunctions

There is a functor

C(−,+) : Cop×C −→ Set

defined by

(f op, g) : (A, A′)→ (B, B′) 7→ C(f op, g) : C(A, A′)→ C(B, B′)

where C(f op, g)(θ) = g ◦ θ ◦ f : B→ A→ A′→ B′ for
θ : A→ A′.
If R : D → C then C(−, R+) : Cop×D −→ Set is defined to
be

C(−,+) ◦ (idCop × R) : (C, D) 7→ C(C, RD)

MGS 2018, 9-13 April, University of Nottingham, UK 23/48

Adjunctions (between Preorders)

▶ A pair of monotone functions

(X,≤X)
l -�
r

(Y ,≤Y)

is said to be an adjunction if for all x ∈ X and y ∈ Y ,

l(x) ≤Y y⇐⇒ x ≤X r(y)

▶ We say that l is left adjoint to r and that r is right adjoint to
l. We write l ⊣ r.

MGS 2018, 9-13 April, University of Nottingham, UK 24/48

Examples

▶ Let 1 def
= { ∗ } be the one element preorder. Then there are

adjunctions (⊥ ⊣ ! ⊣ ⊤)

X
! -�
⊥

1 X
! -�
⊤

1

provided that X has both top and bottom elements. For
example, for any x ∈ X,

!(x) def
= ∗ ≤ ∗ ⇐⇒ x ≤ ⊤(∗) def

= ⊤

MGS 2018, 9-13 April, University of Nottingham, UK 25/48

Examples

▶ Define ∆ : X → X× X by ∆(x) def
= (x, x). Then there are

adjoints (∨ ⊣ ∆ ⊣ ∧)

X
∆-�
∨

X× X X
∆-�
∧

X × X

just in case X has all binary meets and joins: for any l ∈ X,

∆(l) def
= (l, l) ≤ (x, x′)⇐⇒ l ≤ ∧(x, x′) def

= x∧ x′

▶ This structure corresponds to X having binary products and
coproducts.

MGS 2018, 9-13 April, University of Nottingham, UK 26/48

Adjunctions (between Categories)

▶ Let L : C → D and R : D → C be functors. L is left adjoint
to R, written L ⊣ R, if given any objects A of C and B of D
we have

▶ a bijection between morphisms LA→ B in D and A→ RB
in C, that is, between D(LA, B) and C(A, RB),

f : LA→ B

f : A→ RB

g : A→ RB

ĝ : LA→ B

▶ OHP this bijection is natural in A and B: given morphisms
ϕ : A′→ A in C and ψ : B→ B′ in D we have

ψ ◦ f ◦ Lϕ = Rψ ◦ f ◦ϕ and/or (Rψ ◦ g ◦ϕ)∧ = ψ ◦ ĝ ◦ Lϕ.

(Recall slide 12.)

MGS 2018, 9-13 April, University of Nottingham, UK 27/48

Examples of Adjunctions

▶ The forgetful functor U :Mon→ Set taking a monoid to its
underlying set, and the functor list(−) : Set→Mon taking
a set to finite lists over the set, are adjoints:

list(−) ⊣ U

So there is a natural bijection betweenMon(list(A), M) and
Set(A, U M)

f : list(A)→ M

f : A→ U M

g : A→ U M

ĝ : list(A)→ M

OHP

MGS 2018, 9-13 April, University of Nottingham, UK 28/48

Examples of Adjunctions
▶ This is given by

g : A −→ U M 7→

ĝ : list(A)
[a1, . . . , an] 7→ g(a1) . . . g(an)

[] 7→ e
- M,

and

f : list(A) −→ M - f : A
a 7→ f ([a])- U M.

▶ Note that

f̂ [a1, . . . , an] = f (a1) . . . f (an)
= f ([a1]) . . . f ([an]) = f ([a1]++ . . . ++[an])

It is an exercise to verify that ĝ = g and that this bijection is
natural.

MGS 2018, 9-13 April, University of Nottingham, UK 28/48

Examples of Adjunctions

▶ OHP The diagonal functor ∆ : C → C ×C taking a function
f : A→ B to (f , f) : (A, A)→ (B, B) has right and left adjoints
Π and Σ taking any morphism (f1, f2) : (A1, A2)→ (B1, B2) of
C × C to

f1× f2 : A1× A2→ B1× B2

f1 + f2 : A1 + A2→ B1 + B2

respectively,
▶ where the bijection for Π is

(f , g) m̂ def
= (πA ◦m, πB ◦m) : ∆C −→ (A, B)

================================
(f , g) def

= ⟨ f , g⟩ m : C −→ Π(A, B)

MGS 2018, 9-13 April, University of Nottingham, UK 28/48

Algebras for F : C → C
▶ An algebra for F is a morphism σ : FA→ A in C. The

algebra is sometimes written (A, σ). OHP

▶ Given any other algebra f : FX → X and h : A→ X, then h
is a homomorphism if

FA
σ - A

FX

Fh
? f - X

h
?

▶ There is a category CF of algebras and algebra homomorphisms.
▶ An initial object σ : FI→ I is called an initial algebra. If

f : FX → X the unique mediating homomorphism is denoted
by f .

MGS 2018, 9-13 April, University of Nottingham, UK 29/48

Useful Functors in Algebras

▶ Suppose that C has binary (co)products. The functors
B× (−), B + (−) : C → C are defined by

f : A −→ A′ 7→ idB× f : B× A −→ B× A′

f : A −→ A′ 7→ idB + f : B + A −→ B + A′

Note that it is common to write f × B instead of f × idB;
ditto +.

▶ One can also define functors (−)× (−) and (−) + (−) . . .

MGS 2018, 9-13 April, University of Nottingham, UK 30/48

Examples of Algebras
▶ OHP 1 + (−) : Set→ Set has an initial algebra

[z, s] : 1 + N→N

where z : 1→N maps ∗ to 0 and s : N→N adds 1. If
f : 1 + X → X

letting
x̂ def

= f ◦ ι1 : 1→ 1 + X

ϕ
def
=

def
= f ◦ ιX : X → 1 + X

we have f = [x̂, ϕ]. Then the function f : N→ X is uniquely
defined by

f (0) def
= x̂(∗) def

= x

f (n + 1) def
= ϕn+1(x) = ϕ(f (n))

▶ The function (+n) : N→N which adds n, for any n ∈N,
is definable as [n̂, s] where

1 + N
[n̂, s]- N

and also
(∗n) def

= [z, (+n)] : N→N

▶ A monoid (M, b, e) is an algebra

1 + (M×M)
[ê, b]- M

plus the relevant equations.

MGS 2018, 9-13 April, University of Nottingham, UK 31/48

Examples of Algebras

▶ The function (+n) : N→N which adds n, for any n ∈N,
is definable as [n̂, s] where

1 + N
[n̂, s]- N

and also
(∗n) def

= [z, (+n)] : N→N

▶ A monoid (M, b, e) is an algebra

1 + (M×M)
[ê, b]- M

plus the relevant equations.

MGS 2018, 9-13 April, University of Nottingham, UK 31/48

Case Study: The Mini Yoneda Lemma for Type Theorists

Consider a typical constructor R

x : γ ⊢ M : α
(R)

x : γ ⊢ R(M) : β

Suppose m def
= [[x : γ ⊢ M : α]] ∈ C(G, A); in the case M ≡ x

and α ≡ γ we’d expect this to be idG. So what is

r def
= [[x : γ ⊢ R(M) : β]] ∈ C(G, B) ?

We could define a family of functions

ρG : C(G, A) −→ C(G, B) and set r def
= ρG(m)

MGS 2018, 9-13 April, University of Nottingham, UK 32/48

Case Study: The Mini Yoneda Lemma for Type Theorists

Let x : γ ⊢ M : α and y : γ′ ⊢ N : γ be modelled by m ∈ C(G, A)
and n ∈ C(G′, G).
Principle of Categorical Type Theory: Model substitution by composition.

We assert that [[y : γ′ ⊢ M[N/x] : α]] = m ◦ n. Now notice that
we have two syntactically identical typed expressions

y : γ′ ⊢ R(M)[N/x] : β and y : γ′ ⊢ R(M[N/x]) : β.

Hence we should also have

ρG(m) ◦ n = ρG′(m ◦ n) (♮)

We have seen this kind of thing before . . . OHP

MGS 2018, 9-13 April, University of Nottingham, UK 32/48

Case Study: The Mini Yoneda Lemma for Type Theorists

The categorical interpretation of expression formation (by unary rules), in
C, requires the existence of certain natural transfomations in SetC

op
.

▶ For every object A and B of C there is a natural transformation

ρ : C(−, A) −→ C(−, B) : Cop −→ Set.

▶ ρ determines a morphism in θ ∈ C(A, B) such that

r = ρG(m) = θ◦m (= C(G, θ)(m))

▶ In fact any θ ∈ C(A, B) determines a natural transformation
ρ

def
= C(−, θ).

▶ These processes are inverses: This is the (Mini) Yoneda Lemma.

MGS 2018, 9-13 April, University of Nottingham, UK 32/48

Case Study: The Mini Yoneda Lemma for Type Theorists

So given R we can take simply choose any θ : A→ B and set

[[x : γ ⊢ M : α]] = m : G→ A

[[x : γ ⊢ R(M) : β]]
def
= θ◦m : G→ B

Moreover we know that, assuming we model substitution by
composition, all possible models of the rule R arise in this way.
Note that if there are equations that R satisfies then these will
impose conditions on θ, and may determine θ completely. For
example if we have a pair type M : α× α′and R is Fst (with other
rules for Snd and pairing of terms), then θ is forced to be πA.

MGS 2018, 9-13 April, University of Nottingham, UK 32/48

Case Study: The Mini Yoneda Lemma for Type Theorists

Mini Yoneda Lemma: There is a (canonical) bijection

Φ : C(A, B) ∼= SetC
op
(C(−, A),C(−, B)) : Ψ

With Ψ(ρ)
def
= ρA(idA) ∈ C(A, B), Ψ is injective since

ρG(m) = ρA(idA) ◦m

With Φ(θ)
def
= C(−, θ) (well defined!), Ψ is injective since

∀ξ. C(A, ξ)(idA) = ξ

Further, there is a natural isomorphism

C(⊞,⊟) ∼= SetC
op
(C(−,⊞),C(−,⊟))

in the category SetC
op×C .

MGS 2018, 9-13 April, University of Nottingham, UK 32/48

Case Study:
CCCs via Adjunctions

▶ We define a Cartesian Closed Category (CCC) OHP

▶ Show that Set is a CCC. OHP

▶ Show that Set CCC structure has the properties of an
adjunction.

▶ Show that any CCC can be defined equivalently in terms of an
adjunction.

We first introduce some new notation for finite (co)products . . .

MGS 2018, 9-13 April, University of Nottingham, UK 33/48

The CCC Set has an Adjunction Structure

For a fixed set A, the functor (−)× B : Set→ Set has a right
adjoint B⇒ (−) : Set→ Set. On an object C the right adjoint
returns B⇒ C. There is a bijection

f : A× B→ C

f def
= λa.λb. f (a, b) : A→ B⇒ C

g : A→ B⇒ C

ĝ def
= λ(a, b).g(a)(b) : A× B→ C

In Set it is immediate that we have a bijection; naturality is an
exercise.

MGS 2018, 9-13 April, University of Nottingham, UK 34/48

Defining CCCs via Adjunctions

Let C be a category with finite products. Existence of a right adjoint RB
to the functor (−)× B : C → C for each object B of C, is equivalent to
C being cartesian closed.

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Defining CCCs via Adjunctions

Let C be a category with finite products. Existence of a right adjoint RB
to the functor (−)× B : C → C for each object B of C, is equivalent to
C being cartesian closed.

(⇒) Given an object B of C set B⇒ C def
= R(C) for any object C of C.

Given a morphism f : A× B→ C we define λ(f) : A→ (B⇒ C) to
be the mate of f across the given adjunction. The morphism

ev : (B⇒ C)× B→ C

is the mate ̂(idB⇒C) of the identity idB⇒C : (B⇒ C)→ (B⇒ C).

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Defining CCCs via Adjunctions

Let C be a category with finite products. Existence of a right adjoint RB
to the functor (−)× B : C → C for each object B of C, is equivalent to
C being cartesian closed.
Next, we need to show that ev ◦ (λ(f)× idB) = f . This follows
directly from the naturality of the adjunction; we consider naturality in A
and C at the morphisms λ(f) : A→ (B⇒ C) and idC : C→ C:

idB⇒C - ev

R(idC) ◦ idB⇒C ◦ λ(f)
?

- λ̂(f) = idC ◦ ev ◦ (λ(f)× idB)

?

We let the reader show that λ(f) is the unique morphism satisfying the
latter equation.

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Defining CCCs via Adjunctions

(⇐) Conversely, let B be an object of C. We define a right adjoint to
(−)× B denoted by B⇒ (−), by setting

c : C −→ C′ 7→ B⇒ c def
= λ(c ◦ ev) : (B⇒ C)→ (B⇒ C′)

for each morphism c : C→ C′ of C (this matches our earlier definition –
check). We define a bijection by declaring the mate of f : A× B→ C
to be λ(f) : A→ (B⇒ C) and the mate of g : A→ (B⇒ C) to be

ĝ def
= ev ◦ (g× idB) : A× B→ C.

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in
the required sense. We only check one part of naturality. Let
a : A′→ A and c : C→ C′ be morphisms of C. Then

ev ◦ ((λ(c ◦ ev) ◦ λ(f) ◦ a)× id) =

ev ◦ (λ(c ◦ ev)× id) ◦ (λ(f)× id) ◦ (a× id) =

c ◦ ev ◦ (λ(f)× id) ◦ (a× id) =

c ◦ f ◦ (a× id)

implying that λ(c ◦ f ◦ (a× id)) = (B⇒ c) ◦ λ(f) ◦ a since C is a
CCC.
The steps above are: categorical properties of ×; cartesian closure of C;
cartesian closure again.

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in
the required sense. We only check one part of naturality. Let
a : A′→ A and c : C→ C′ be morphisms of C. Then

ev ◦ ((λ(c ◦ ev) ◦ λ(f) ◦ a)× id) =

ev ◦ (λ(c ◦ ev)× id) ◦ (λ(f)× id) ◦ (a× id) =

c ◦ ev ◦ (λ(f)× id) ◦ (a× id) =

c ◦ f ◦ (a× id)

implying that λ(c ◦ f ◦ (a× id)) = (B⇒ c) ◦ λ(f) ◦ a since C is a
CCC.
The steps above are: categorical properties of ×; cartesian closure of C;
cartesian closure again.

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in
the required sense. We only check one part of naturality. Let
a : A′→ A and c : C→ C′ be morphisms of C. Then

ev ◦ ((λ(c ◦ ev) ◦ λ(f) ◦ a)× id) =

ev ◦ (λ(c ◦ ev)× id) ◦ (λ(f)× id) ◦ (a× id) =

c ◦ ev ◦ (λ(f)× id) ◦ (a× id) =

c ◦ f ◦ (a× id)

implying that λ(c ◦ f ◦ (a× id)) = (B⇒ c) ◦ λ(f) ◦ a since C is a
CCC.
The steps above are: categorical properties of ×; cartesian closure of C;
cartesian closure again.

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Defining CCCs via Adjunctions

It remains to verify that we have defined a bijection which is natural in
the required sense. We only check one part of naturality. Let
a : A′→ A and c : C→ C′ be morphisms of C. Then

ev ◦ ((λ(c ◦ ev) ◦ λ(f) ◦ a)× id) =

ev ◦ (λ(c ◦ ev)× id) ◦ (λ(f)× id) ◦ (a× id) =

c ◦ ev ◦ (λ(f)× id) ◦ (a× id) =

c ◦ f ◦ (a× id)

implying that λ(c ◦ f ◦ (a× id)) = (B⇒ c) ◦ λ(f) ◦ a since C is a
CCC.
The steps above are: categorical properties of ×; cartesian closure of C;
cartesian closure again.

MGS 2018, 9-13 April, University of Nottingham, UK 35/48

Case Study:
(Haskell) Algebraic Datatypes

We shall

▶ Define a Haskell (recursive) datatype grammar.
▶ Show that any datatype declaration D gives rise to a functor

F ≡ FD : Set→ Set.
▶ Demonstrate that D can be modelled by an initial algebra

σ : FI→ I, where I is the set ExpD of expressions of type D
(up to isomorphism).

Later on we will

▶ Show that the functor F preserves colimits of diagrams of the
form D : ω→ Set, and such colimits exist . . .

▶ and (hence) that F must have an initial algebra for purely
categorical reasons.

MGS 2018, 9-13 April, University of Nottingham, UK 36/48

A Recursive Datatype

▶ A set of type patterns T is defined by

T ::= D | Unit | Int | T × T

▶ A datatype is specified by the statement

D = K1 T1 | . . . | Km Tm

▶ A collection of type assignments is defined inductively by the
following rules

() :: Unit
z ∈ Z

z :: Int

E :: Ti

Ki E :: D

E1 :: T1 E2 :: T2

(E1, E2) :: T1× T2

and ExpT
def
= { E | E :: T }.

MGS 2018, 9-13 April, University of Nottingham, UK 37/48

Products and Coproducts of Functors

To define F we need these definitions:
Suppose that G1 and G2 are objects (that is, functors) of DC and
that D has finite (co)products. Then both G1×G2 and G1 + G2
exist in DC and are defined pointwize. For products this means

(G1×G2)(ξ)
def
= G1ξ×G2ξ

where ξ is either an object or morphism of C. The projections
πi : G1×G2→ Gi are defined with pointwize components
πi

A : G1A×G2A→ Gi A. These projections πi are indeed natural
transformations.

MGS 2018, 9-13 April, University of Nottingham, UK 38/48

Defining F from D

OHP

▶ The functor F is defined (as a coproduct in SetSet) by

F def
= FT1 + . . . + FTm

where each FTi : Set→ Set.
▶ Functors FT : Set→ Set are defined by recursion on the

structure of T by setting
▶ FD

def
= idSet

▶ FUnit(g : U → V)
def
= id1 : 1→ 1 where 1 is terminal in Set

▶ FInt(g : U → V)
def
= idZ : Z→ Z

▶ FT1×T2

def
= FT1 × FT2

MGS 2018, 9-13 April, University of Nottingham, UK 39/48

Defining An Initial Algebra σ : FI→ I

▶ OHP We set I def
= ExpD and we define

σ
def
= [K̂1 ◦ σT1 . . . K̂m ◦ σTm] : FI def

= FT1I + . . . + FTmI −→ I

where the function K̂i : ExpTi
→ I applies the constructor and

we define functions σT : FTI→ ExpT by recursion over T as
follows

▶ σD(E ∈ I) def
= E ∈ ExpD

▶ σUnit(∗ ∈ 1) def
= () ∈ ExpUnit.

▶ σInt(z ∈ Z)
def
= z ∈ ExpInt.

▶ σT1×T2((e1, e2) ∈ FT1I× FT2I)
def
= (σT1(e1), σT2(e2))∈

ExpT1×T2

▶ It may be useful to note that σ(ιi(ei ∈ FTiI)) = Ki σTi(ei).

MGS 2018, 9-13 April, University of Nottingham, UK 40/48

Verifying Initiality

▶ OHP Suppose that f : FX → X in Set. We have to prove that
there is a unique f such that

FT1I + . . . + FTmI = FI
σ - I

FT1 X + . . . + FTm X =FX

F f
? f - X

f
?

MGS 2018, 9-13 April, University of Nottingham, UK 41/48

Verifying Initiality

▶ Note f : ExpD→ FDX; we will define f def
= θD and functions

θT : ExpT → FT X

by recursion on T:
▶ θD(Ki Ei ∈ ExpD)

def
= f (ιi(θTi(Ei))) ∈ X.

▶ θUnit(() ∈ ExpUnit)
def
= ∗ ∈ 1.

▶ θInt(z ∈ ExpInt)
def
= z ∈ Z.

▶ θT1×T2((E1, E2) ∈ ExpT1×T2
)

def
= (θT1(E1), θT2(E2)) ∈

FT1I× FT2I.

MGS 2018, 9-13 April, University of Nottingham, UK 41/48

Verifying Initiality

▶ Observe that for any T we have θT ◦ σT = FT θD, which follows
from an easy induction.
Note that by universality of coproducts f ◦ σ = f ◦ F f iff

f ◦ σ ◦ ιi = f ◦ F f ◦ ιi

Then for any ei ∈ FTi I

(θD ◦ σ ◦ ιi)(ei) = θD(Ki σTi(ei))
def
=θD f (ιi(θTi(σTi(ei)))
= f (ιi((FTi θD)(ei)))
= f ((FT1 θD + . . . + FTm θD)(ιi(ei)))

def
=F (f ◦ FθD ◦ ιi)(ei)

The steps follow by: definition of σ; definition of θD; the
observation; properties of +; the definition of F.

MGS 2018, 9-13 April, University of Nottingham, UK 41/48

Verifying Initiality

▶ Observe that for any T we have θT ◦ σT = FT θD, which follows
from an easy induction.
Note that by universality of coproducts f ◦ σ = f ◦ F f iff

f ◦ σ ◦ ιi = f ◦ F f ◦ ιi

Then for any ei ∈ FTi I

(θD ◦ σ ◦ ιi)(ei) = θD(Ki σTi(ei))
def
=θD f (ιi(θTi(σTi(ei)))
= f (ιi((FTi θD)(ei)))
= f ((FT1 θD + . . . + FTm θD)(ιi(ei)))

def
=F (f ◦ FθD ◦ ιi)(ei)

The steps follow by: definition of σ; definition of θD; the
observation; properties of +; the definition of F.

MGS 2018, 9-13 April, University of Nottingham, UK 41/48

Verifying Initiality

▶ Observe that for any T we have θT ◦ σT = FT θD, which follows
from an easy induction.
Note that by universality of coproducts f ◦ σ = f ◦ F f iff

f ◦ σ ◦ ιi = f ◦ F f ◦ ιi

Then for any ei ∈ FTi I

(θD ◦ σ ◦ ιi)(ei) = θD(Ki σTi(ei))
def
=θD f (ιi(θTi(σTi(ei)))
= f (ιi((FTi θD)(ei)))
= f ((FT1 θD + . . . + FTm θD)(ιi(ei)))

def
=F (f ◦ FθD ◦ ιi)(ei)

The steps follow by: definition of σ; definition of θD; the
observation; properties of +; the definition of F.

MGS 2018, 9-13 April, University of Nottingham, UK 41/48

Verifying Initiality

▶ Observe that for any T we have θT ◦ σT = FT θD, which follows
from an easy induction.
Note that by universality of coproducts f ◦ σ = f ◦ F f iff

f ◦ σ ◦ ιi = f ◦ F f ◦ ιi

Then for any ei ∈ FTi I

(θD ◦ σ ◦ ιi)(ei) = θD(Ki σTi(ei))
def
=θD f (ιi(θTi(σTi(ei)))
= f (ιi((FTi θD)(ei)))
= f ((FT1 θD + . . . + FTm θD)(ιi(ei)))

def
=F (f ◦ FθD ◦ ιi)(ei)

The steps follow by: definition of σ; definition of θD; the
observation; properties of +; the definition of F.

MGS 2018, 9-13 April, University of Nottingham, UK 41/48

Verifying Initiality

▶ Observe that for any T we have θT ◦ σT = FT θD, which follows
from an easy induction.
Note that by universality of coproducts f ◦ σ = f ◦ F f iff

f ◦ σ ◦ ιi = f ◦ F f ◦ ιi

Then for any ei ∈ FTi I

(θD ◦ σ ◦ ιi)(ei) = θD(Ki σTi(ei))
def
=θD f (ιi(θTi(σTi(ei)))
= f (ιi((FTi θD)(ei)))
= f ((FT1 θD + . . . + FTm θD)(ιi(ei)))

def
=F (f ◦ FθD ◦ ιi)(ei)

The steps follow by: definition of σ; definition of θD; the
observation; properties of +; the definition of F.

MGS 2018, 9-13 April, University of Nottingham, UK 41/48

Case Study:
Colimits–Building Initial Algebras

We shall show that the functor F : Set→ Set must have an initial
algebra for purely categorical reasons. To do this we shall

▶ Define the notion of a colimit; examine the special case of
chain-colimits including their special properties (such as
diagonalization and commutation of dual chains).

▶ Show that any left adjoint preserves colimits ∗.
▶ Prove that any functor F that preserves chain-colimits must

have an initial algebra.
▶ Prove that the datatype functor F preserves chain-colimits

(part of the proof uses ∗).

MGS 2018, 9-13 April, University of Nottingham, UK 42/48

Colimits
▶ Given a diagram D : I→ C, a colimit for D is given by an object

colI DI of C together with a family of morphisms
(ιI : DI→ colI DI | I ∈ I) such that for any α : I→ J in I we
have ιJ ◦ Dα = ιI . This data satisfies: given any family
(hI : DI→ C | I ∈ I) such that hJ ◦ Dα = hI , there is a unique
morphism ϕ : colI DI→ C satisfying ϕ ◦ ιI = hI for each object I
of I (and hence ϕ = [hI | I ∈ I])

DI
Dα - DJ

colI DI
� ι JιI

-

C

hI

?
==== C

ϕ ?
==== C

hJ

?

▶ Binary coproducts arise from the discrete category I
def
= { 1, 2 }.

MGS 2018, 9-13 April, University of Nottingham, UK 43/48

Colimits

▶ Let D : ω→ C; suppose that i ≤ i + 1 is a typical morphism
in ω. Then a colimit diagram, if it exists, can be taken as

. . . D(i)
D(≤i

i+1) - D(i + 1) . . .

coliD(i)
� ι i+1ιi

-

C

hi

?
======= C

ϕ ?
======== C

h(i+1)

?

where for any given functions hi : D(i)→ C commuting with
the functions D(≤i

i+1), a unique such ϕ exists.
This fact follows, since hj ◦ D(≤i

j) = hi for a general
morphism ≤i

j (where i ≤ j in ω) is immediate.

MGS 2018, 9-13 April, University of Nottingham, UK 43/48

Colimits

▶ It is a fact that Set has all (small) colimits.
▶ It is a fact that a colimit for ∆ : ω×ω→ C exists if and only

if a colimit for ∆′ : ω→ C where ∆′(i ∈ ω)
def
= ∆(i, i) exists,

and when they (both) exist they are isomorphic, that is

colk∆′(k) ∼= col(i,j)∆(i, j)

Further (exercise: define the diagrams that give rise to the
colimits below . . .)

coli(colj∆(i, j)) ∼= colj(coli∆(j, i))

and all of the above colimits are isomorphic.

MGS 2018, 9-13 April, University of Nottingham, UK 43/48

Left Adjoints Preserve Colimits
Let D : I→ C, and L : C → D and L ⊣ R for some R. Then

L(colI DI) ∼= colI LDI

and is witnessed by [L(ιDI) | I ∈ I] : colI LDI→ L(colI DI). It
suffices to show that L(colI DI) is a colimit for LD : I→D.

LDI
LDα - LDJ

L(colI DI)
� L(

ι DJ)
L(ιDI) -

X

hI

?
====== X

ϕ

?
====== X

hJ

?

MGS 2018, 9-13 April, University of Nottingham, UK 44/48

Left Adjoints Preserve Colimits

LDI
LDα - LDJ

L(colI DI)
� L(

ι DJ)
L(ιDI) -

X

hI

?
====== X

ϕ

?
====== X

hJ

?

Suppose that hI = hJ ◦ LDα. We need to show there is a unique
ϕ as above.

MGS 2018, 9-13 April, University of Nottingham, UK 44/48

Left Adjoints Preserve Colimits

DI
Dα - DJ

colI DI
� ι DJιDI -

RX

hI

?
=== RX

ρ
?

=== RX

hJ

?

But
hI = hJ ◦ LDα =⇒ hI = hJ ◦ LDα = hJ ◦ Dα

where the final equality follows by naturality.

MGS 2018, 9-13 April, University of Nottingham, UK 44/48

Left Adjoints Preserve Colimits

DI
Dα - DJ

colI DI
� ι DJιDI -

RX

hI

?
=== RX

ρ
?

=== RX

hJ

?

Therefore there is ρ with ρ ◦ ιDI = hI . Define

ϕ
def
= ρ̂ : L(colI DI)→ X

MGS 2018, 9-13 April, University of Nottingham, UK 44/48

Left Adjoints Preserve Colimits

LDI
LDα - LDJ

L(colI DI)
� L(

ι DJ)
L(ιDI) -

X

hI

?
====== X

ϕ

?
====== X

hJ

?

Hence, again using naturality,

ϕ ◦ L(ιDI)
def
= ρ̂ ◦ L(ιDI) = ρ̂ ◦ ιDI = ĥI = hI

MGS 2018, 9-13 April, University of Nottingham, UK 44/48

Existence of Initial Algebras

Suppose that F preserves colimits of the form D : ω→ C and that
C has an initial object 0. Define
D(i ≤ i + 1) def

= Fi!X : Fi0→ Fi+10 for i ∈ ω. Then
I def
= coliDi (if it exists) is an initial algebra for F.

Since F preserves colimits and I def
= coliDi we can define σ : FI→ I

FFi0
FFi!X - FFi+10

FI � Fι i+1Fιi
-

I

ιi+1

?
===== I

σ ?
====== I

ιi+2

?

where σ ◦ Fιi = ιi+1.
MGS 2018, 9-13 April, University of Nottingham, UK 45/48

Existence of Initial Algebras

Let f : FX → X. Define f0
def
= !X : 0→ X and fi+1

def
= f ◦ F fi.

Certainly f1 ◦ F0!X ≡ f1◦!X = f0 and for i ≥ 1 we have inductively

fi+1 ◦ Fi!X
def
= f ◦ F fi ◦ Fi!X = f ◦ F(fi ◦ Fi−1!X) = f ◦ F fi−1

def
= fi

and hence f exists where f ◦ ιi = fi.

Fi0
Fi!X - Fi+10

I � ι i+
1ιi -

X

fi

?
==== X

f ?
==== X

fi+1

?

MGS 2018, 9-13 April, University of Nottingham, UK 45/48

Existence of Initial Algebras
We now have σ ◦ Fιi = ιi+1; and fi+1

def
= f ◦ F fi (which implied

fi+1 = fi+2 ◦ Fi+1!X) yielding f ◦ ιi = fi

FFi0
Fi+1!X = FFi!X - FFi+10

FI
�

Fι i+
1Fιi -

X

fi+1

?
========= X

f ◦ σ = f ◦ F f

?
========= X

fi+2

?

The equality follows since
f ◦ σ ◦ Fιi = fi+1 f ◦ F f ◦ Fιi = f ◦ F(f ◦ ιi) = f ◦ F fi = fi+1

MGS 2018, 9-13 April, University of Nottingham, UK 45/48

Datatype Initial Algebra, Categorically

Suppose that a functor F : Set→ Set is defined by a grammar
F ::= P | F× F | F + F where P preserves colimits of diagrams
D : ω→ Set. Then so too does F. This follows by induction.
Suppose that F, G preserve such colimits.

(F×G)(coliDi) def
= (FcoliDi)× (GcoliDi)
∼= (coljFDj)× (coliGDi)
∼= coli((coljDFj)× DGi)
∼= coli(colj(DFj× DGi))
∼= colk(DFk× DGk)

The steps follow by: induction on F and G; (coljFDj)× (−) has
a right adjoint so preserves colimits; (−)× DGi also has a right
adjoint; the earlier fact that a colimit for ∆ : ω×ω→ C and
∆′ : ω→ C where ∆′(k) def

= ∆(k, k) are isomorphic.
MGS 2018, 9-13 April, University of Nottingham, UK 46/48

Datatype Initial Algebra, Categorically

Suppose that a functor F : Set→ Set is defined by a grammar
F ::= P | F× F | F + F where P preserves colimits of diagrams
D : ω→ Set. Then so too does F. This follows by induction.
Suppose that F, G preserve such colimits.

(F×G)(coliDi) def
= (FcoliDi)× (GcoliDi)
∼= (coljFDj)× (coliGDi)
∼= coli((coljDFj)× DGi)
∼= coli(colj(DFj× DGi))
∼= colk(DFk× DGk)

The steps follow by: induction on F and G; (coljFDj)× (−) has
a right adjoint so preserves colimits; (−)× DGi also has a right
adjoint; the earlier fact that a colimit for ∆ : ω×ω→ C and
∆′ : ω→ C where ∆′(k) def

= ∆(k, k) are isomorphic.
MGS 2018, 9-13 April, University of Nottingham, UK 46/48

Datatype Initial Algebra, Categorically

Suppose that a functor F : Set→ Set is defined by a grammar
F ::= P | F× F | F + F where P preserves colimits of diagrams
D : ω→ Set. Then so too does F. This follows by induction.
Suppose that F, G preserve such colimits.

(F×G)(coliDi) def
= (FcoliDi)× (GcoliDi)
∼= (coljFDj)× (coliGDi)
∼= coli((coljDFj)× DGi)
∼= coli(colj(DFj× DGi))
∼= colk(DFk× DGk)

The steps follow by: induction on F and G; (coljFDj)× (−) has
a right adjoint so preserves colimits; (−)× DGi also has a right
adjoint; the earlier fact that a colimit for ∆ : ω×ω→ C and
∆′ : ω→ C where ∆′(k) def

= ∆(k, k) are isomorphic.
MGS 2018, 9-13 April, University of Nottingham, UK 46/48

Datatype Initial Algebra, Categorically

Suppose that a functor F : Set→ Set is defined by a grammar
F ::= P | F× F | F + F where P preserves colimits of diagrams
D : ω→ Set. Then so too does F. This follows by induction.
Suppose that F, G preserve such colimits.

(F×G)(coliDi) def
= (FcoliDi)× (GcoliDi)
∼= (coljFDj)× (coliGDi)
∼= coli((coljDFj)× DGi)
∼= coli(colj(DFj× DGi))
∼= colk(DFk× DGk)

The steps follow by: induction on F and G; (coljFDj)× (−) has
a right adjoint so preserves colimits; (−)× DGi also has a right
adjoint; the earlier fact that a colimit for ∆ : ω×ω→ C and
∆′ : ω→ C where ∆′(k) def

= ∆(k, k) are isomorphic.
MGS 2018, 9-13 April, University of Nottingham, UK 46/48

Datatype Initial Algebra, Categorically

Suppose that a functor F : Set→ Set is defined by a grammar
F ::= P | F× F | F + F where P preserves colimits of diagrams
D : ω→ Set. Then so too does F. This follows by induction.
Suppose that F, G preserve such colimits.

(F + G)(coliDi) def
= (FcoliDi) + (GcoliDi)
∼= (coliFDi) + (coliGDi)
∼= coli(DFi + DGi)

The first step follows by induction on F and G; the second step can
be proven directly from the definition of a colimit (coproduct).
Hence any such F preserves D : ω→ Set colimits.

MGS 2018, 9-13 April, University of Nottingham, UK 46/48

Datatype Initial Algebra, Categorically

It follows from this, plus the fact that identity functors and constant
functors preserve colimits of diagrams D : ω→ C for any C, that
the datatype functor

F def
= FT1 + . . . + FTm : Set −→ Set

preserves colimits of shape D : ω −→ Set. Since in fact Set has all
colimits, by purely categorical reasoning it has an initial algebra
σ : FI −→ I.

MGS 2018, 9-13 April, University of Nottingham, UK 46/48

Mini Project

Find out what nominal sets are, and learn the basic properties of the
category Nom (of nominal sets and finitely supported functions)
such as finite products and coproducts. Follow this up by learning
what a nominal algebraic datatype is. Then see if you can construct
an initial algebra model of expressions for such a datatype, proving
the relevant properties, and further show that initial algebras exist
for purely categorical reasons, much as we did in these slides for
(ordinary) algebraic datatypes.

MGS 2018, 9-13 April, University of Nottingham, UK 47/48

References
▶ Steve Awodey. Category Theory, Oxford Logic Guides, Oxford

University Press, 2006. Second edition 2010.
▶ Roy L Crole. Categories for Types, Cambridge University Press,

1994.
▶ P.J. Freyd and A. Scedrov. Categories, Allegories, Elsevier

Science Publishers, 1990.
▶ T. Leinster. Basic Category Theory, CUP, 2014. Available

online.
▶ S. Mac Lane. Categories for the Working Mathematician,

Springer Verlag, 1971, vol. 5 of Graduate Texts in
Mathematics.

▶ Benjamin C. Pierce. Basic Category Theory for Computer
Scientists. MIT Press, 1991.

▶ Andrew M. Pitts. Nominal Sets, Cambridge University Press,
2013.

▶ Harold Simmons. An Introduction to Category Theory,
Cambridge University Press, 2011.MGS 2018, 9-13 April, University of Nottingham, UK 48/48

	Categories
	Functors
	Natural Transformations
	Products, Coproducts
	Adjunctions
	Algebras
	Case Study: The Mini Yoneda Lemma for Type Theorists
	Case Study: CCCs via Adjunctions
	Case Study: Modelling (Haskell) Algebraic Datatypes via Algebras
	Case Study: Colimits–Building Initial Algebras

