
A Simple Optimal Representation for

Balanced Parentheses

Richard F. Geary a Naila Rahman a Rajeev Raman a,∗
Venkatesh Raman b

aDepartment of Computer Science, University of Leicester, Leicester LE1 7RH,
UK.

bInstitute of Mathematical Sciences, Chennai 600 113, India.

Abstract

We consider succinct, or highly space-efficient, representations of a (static) string
consisting of n pairs of balanced parentheses, that support natural operations such
as finding the matching parenthesis for a given parenthesis, or finding the pair of
parentheses that most tightly enclose a given pair. This problem was considered
by Jacobson, [Proc. 30th FOCS, 549–554, 1989] and Munro and Raman, [SIAM J.
Comput. 31 (2001), 762–776], who gave O(n)-bit and 2n+ o(n)-bit representations,
respectively, that supported the above operations in O(1) time on the RAM model of
computation. This data structure is a fundamental tool in succinct representations,
and has applications in representing suffix trees, ordinal trees, planar graphs and
permutations.

We consider the practical performance of parenthesis representations. First, we
give a new 2n + o(n)-bit representation that supports all the above operations in
O(1) time. This representation is conceptually simpler, its space bound has a smaller
o(n) term and it also has a simple and uniform o(n) time and space construction
algorithm.

We implement our data structure and a variant of Jacobson’s, and evaluate their
practical performance (speed and memory usage), when used in a succinct repre-
sentation of trees derived from XML documents. As a baseline, we compare our
representations against a widely-used implementation of the standard DOM (Doc-
ument Object Model) representation of XML documents. Both succinct represen-
tations use orders of magnitude less space than DOM and tree traversal operations
are usually only slightly slower than in DOM.

Key words: Succinct data structures, parentheses representation of trees,
compressed dictionaries, XML DOM.

Preprint submitted to Theoretical Computer Science 29 November 2006

1 Introduction

Given a static balanced string of 2n parentheses, we want to represent it
succinctly or space-effficiently, so that the following operations are supported
in O(1) time on the RAM model:

• findopen(x), findclose(x): To find the index of the opening (closing)
parenthesis that matches a given closing (opening) parenthesis x.

• enclose(x): To find the opening parenthesis of the pair that most tightly
encloses x.

By counting the number of balanced parenthesis strings, one can see that the
string requires 2n − O(lg n) bits in the worst case, so a naive representation
of the string is very close to optimal in terms of space usage. However, the
above operations would essentially take linear time to support. One way to
support O(1)-time operations is to note that the string is static and precom-
pute and store answers for all possible arguments, but this uses O(n lg n) bits,
Θ(lg n) times more space than necessary. Jacobson [15] and Munro and Ra-
man [18] gave O(n)-bit and 2n + o(n)-bit representations, respectively, that
supported the above operations in O(1) time on the RAM model of compu-
tation 1 . Parenthesis representations are fundamental to succinct data struc-
tures, and have applications to suffix trees [22,20], ordinal trees [3,2,18,12],
k-page graphs [15,18] and stack-sortable permutations [19]. A topical moti-
vation, and the starting point of our work, is the use of this data structure
in the representation of (large, static) XML documents. The correspondence
between XML documents and ordinal trees is well-known (see e.g. Fig. 1). In
this paper we consider simplified XML documents, where we ignore a number
of secondary features 2 , and also assume that the document consists purely of
markup (i.e. there is no free text).

The XML Document Object Model (DOM) [9] is a standard interface through
which applications can access XML documents. DOM implementations store
an entire XML document in memory, with its tree structure preserved. At
the heart of DOM is the Node interface, which represents a single node in
the tree. The node interface contains attributes such as nodeName, nodeValue
and nodeType to store information about the node, as well as parentNode,
firstChild, lastChild, previousSibling and nextSibling, which act as a

∗ Corresponding author.
Email addresses: geary@mcs.le.ac.uk (Richard F. Geary),

naila@mcs.le.ac.uk (Naila Rahman), rr29@mcs.le.ac.uk (Rajeev Raman),
vraman@imsc.res.in (Venkatesh Raman).
1 Jacobson’s result was stated for the bit-probe model, but it can be modified to
run in O(1) time on the RAM model [17].
2 Such as: attributes and their values, namespace nodes, comments, etc.

2

<COMPLAINT>

<NOTE></NOTE>

<DETAILS>

<NAME></NAME>

<DESCRIPTION></DESCRIPTION>

<WHEN>

<NOTE></NOTE>

<TIME>

<HOUR></HOUR>

<MINUTE></MINUTE>

</TIME>

</WHEN>

<NOTE></NOTE>

</DETAILS>

<NOTE></NOTE>

</COMPLAINT>

DETAILS

COMPLAINT

NOTE

NAME DESCRIPTION

WHEN

NOTE

TIME

NOTE

NOTE

HOUR MINUTE

1

32 12

6 11

109

87

54

nodeName array:

1 = NOTE
2 = DETAILS
3 = NAME
4 = DESCRIPTION

5 = WHEN
6 = TIME
7 = HOUR
8 = MINUTE

1 2 3 4 5 6 7 8 9 10 11 12

nodeName dictionary:

(() (() () (() (() ())) ()) ())

[0, 1, 2, 3, 4, 5, 1, 6, 7, 8, 1, 1]

parenthesis representation:

0 = COMPLAINT

Fig. 1. Top left: Small XML fragment (only tags shown). Top right: Corresponding
tree representation. Bottom: Succinct representation of document.

means to access other related nodes. The usual, but naive, way of implementing
the DOM is to store with each node a pointer to the parent, the first/last
child, and the previous/next sibling. Unfortunately, this can take up many
times more memory than the raw XML file. This ‘XML bloat’ significantly
impedes the scalability and performance of current XML query processors [1],
especially if the DOM representation does not fit in main memory (which can
happen for fairly modest-sized documents).

To represent XML documents succinctly, while providing the essential fea-
tures of the Node interface, we store the tree as a sequence of parentheses,
identifying nodes with the position of their open parentheses. We also store
a sequence of values σ1, . . . , σn, where σi is the tag of the i-th node in pre-
order (see Fig. 1); other information associated with the node can be stored
analogously. Given an open parenthesis that represents a node v, in order to
access the tag name and other information associated with v, we augment
the parenthesis data structure with a standard data structure that, for any
position i in the sequence, gives the number of open parentheses in positions
1, . . . , i, and occupies o(n) bits [17]; this gives the pre-order number of the
node whose open parenthesis is at position i in the parenthesis string.

The viability of such a representation depends crucially on the speed and
space-efficiency of the parenthesis data structure. A good implementation
must find the right trade-off between storing pre-computed data—the “in-
significant” o(n) terms can easily dominate space usage—and computation
time. There has been work on implementations of space-efficient trees, includ-
ing k-ary trees, where each edge from a node to its children is labelled with a
distinct letter from an alphabet [8] and Patricia trees [7] among others. Chupa,
in unpublished work, described an implementation of a restricted static binary
tree representation [6]. Compressed self-indexing dictionaries have been imple-

3

mented in [10,13]. We are not aware of any implementations of a parenthesis
data structure.

We begin by giving a new, conceptually simple, 2n + o(n)-bit parenthesis
data structure. Our new data structure uses no complex subroutines (e.g. [18]
use perfect hash tables) and it has a lower order term in the space usage
of O(n lg lg n/ lg n) bits versus Θ(n lg lg lg n/ lg lg n) bits in [18]. It also has
a simple and uniform o(n)-time and space construction algorithm, which is
not known of the data structure of [18]. Indeed, to achieve O(n) construction
time, [18] needs to use either randomisation, or a recent complex algorithm
[14, Theorem 1.1] for constructing perfect hash tables.

We implement a version of Jacobson’s data structure as well as the new one,
evaluating their space usage and speed. As a baseline, we also compare with
CenterPoint XML [4] which is an open-source C++ XML DOM library. The
standard test we perform with an XML document is to perform a traversal
(depth-first and breadth-first) of the tree, both in a standard DOM imple-
mentation and in our representation, counting the number of nodes of a given
type (this is a fairly canonical operation in manipulating XML documents).
As expected, both succinct schemes use orders of magnitude less space than
Centerpoint XML—it is surprising how modest the computational overhead
of the succinct schemes is.

2 A Simple Parenthesis Representation

Both Jacobson’s and Munro and Raman’s representations divide the given
string of parentheses into equal-sized blocks of B parentheses, and identify a
set of O(n/B) parentheses as pioneers. They explicitly keep the position of
the matching parentheses of the pioneer parentheses. They also store enough
other information with blocks and/or with individual parentheses to detect
pioneer parentheses, as well as to find the match of any parenthesis, from the
position of the match of its closest pioneer parenthesis. They also store a small
number of tables, typically, to find answers within a block.

Jacobson takes B = Θ(lg n) and so the number of pioneer parentheses is
O(n/ lg n). He stores essentially the location of the matching parenthesis for
each pioneer explicitly. He uses a bit vector (along with O(n) bits of auxiliary
storage) to detect pioneer parentheses, and keeps the excess—the number of
open minus the number of closing parenthesis—at each block boundary. Each
of the above takes Θ(n) bits, and so the overall space bound is also Θ(n) bits.
In order to reduce the space bound to 2n+o(n) bits, Munro and Raman employ
a three level blocking scheme (big, small and tiny), using blocks of Θ(lg2 n),
Θ((lg lg n)2) and Θ(lg lg n) respectively, storing auxiliary data at each level. In

4

particular, they store the positions of Θ(n/(lg n)2) pioneer parentheses (with
respect to big blocks) in a perfect hash table. Constructing this perfect hash
table takes O(n) expected time and space [11] or O(n) time using the rather
complex algorithm of [14] 3 . The need to store (slightly different) auxiliary
information at different block sizes contributes both to the implementation
complexity and to the lower-order term in the space bound (the latter is
important in determining space usage in practice).

Our representation also divides the given parenthesis string into blocks of size
Θ(lg n). We modify the definition of a pioneer so that the sequence of pi-
oneer parentheses is itself a balanced string of O(n/ lgn) parentheses. Our
representation is based on three main observations. First, the positions of the
sequence of pioneer parentheses can be stored using o(n) bits using a fully
indexable dictionary (FID) [21] . Second, representing the string of pioneer
parentheses recursively gives enough information to support the basic opera-
tions in constant time. (Recursing at most twice, we have a set of O(n/ lg2 n)
pioneer parentheses, which is small enough that it can be stored using the
trivial representation.) Third, looking closely at the requirements of the FID,
we are able to replace the FID of [21] by a very simple data structure. We now
discuss the new parenthesis structure, following the above outline.

2.0.1 Fully Indexable Dictionaries.

For a positive integer M , let [M] = {1, . . . , M}. Given a bit-vector of length
M which has 1s at a set of positions S ⊆ [M], |S| = N , and zeros elsewhere,
we define the operations:

rank(x, S): Given x ∈ [M], return |{y ∈ S|y ≤ x}|.
select(i, S): Given i ∈ [N], return the i-th smallest element in S.

We call a representation of S that supports the above two operations in O(1)
time a nearest neighbour dictionary (NND), as the operations below are also
supported in O(1) time:

pred(x, S): Given x ∈ [M], return x if x ∈ S and max{y ∈ S|y < x}
otherwise.

succ(x, S): Given x ∈ [M], return x if x ∈ S and min{y ∈ S|y > x} other-
wise.

An NND that supports rank and select, on S and S̄ simultaneously, where
S̄ is the complement of S, in O(1) time, has been called a fully indexable
dictionary (FID) [21]. The following is known about FID (and hence about

3 One needs to use the result of [14, Section 4] rather than the main result (Theorem
1.1), in order to get a uniform algorithm.

5

NND) representations:

Theorem 1 ([21, Lemma 4.1]) There is an FID for a set S ⊆ [M] of size

N using at most
⌈

lg
(

M
N

)⌉

+ O(M lg lg M/ lg M) bits.

In particular, we have, from Theorem 1:

Corollary 2 There is an NND for a set S ⊆ [M] of size N = O(M/lg M)
that uses O(M lg lg M/ lg M) = o(M) bits.

2.1 The New Representation

We now assume that we are given a balanced string of 2n parentheses and our
goal is to support findopen, findclose and enclose operations in constant
time. We now describe the new data structure to store any balanced string of
parentheses of length 2N ≤ 2n.

If N is O(n/ lg2 n), then we represent the sequence using the trivial structure
which stores the pre-computed answer for each of the operations above, for
every parenthesis. This takes O(N lg N) = o(n) bits. Otherwise, we divide the
parenthesis string into equal-sized blocks of size B = d(lg N)/2e. We number
these blocks 1, . . . , β ≤ 4N/ lg N , and by b(p) we denote the block in which
the parenthesis p lies. The matching parenthesis of p is denoted by µ(p). We
call a parenthesis p far if µ(p) is not in the same block as p (and note that
µ(p) is itself a far parenthesis). At any position i, we call the number of open
parentheses minus the number of closing parentheses in positions 1, . . . , i as
the left excess at i. Similarly, we call the number of closing parentheses minus
the number of open parentheses in positions i, . . . , 2N as the right excess at i.
Consider an opening far parenthesis p, and let q be the far opening parenthesis
that most closely precedes p in the string. We say that p is an opening pioneer
if b(µ(p)) 6= b(µ(q)) (cf. [15]). The definition of a closing pioneer p is as above,
except that q would be the far parenthesis immediately after p. A pioneer is
either an opening or closing pioneer. Note that the match of a pioneer may
not be a pioneer itself.

Lemma 3 ([15, Theorem 1]) The number of opening pioneers in a bal-
anced string divided into β blocks is at most 2β − 3. The same holds for the
number of closing pioneers.

Proof: The pioneer graph which has nodes 1, . . . , β and edges (b(p), b(µ(p)),
for all opening pioneers p, is outerplanar and has no parallel edges. Therefore,
it has at most 2β − 3 edges. 2

For a given block size B, we define the pioneer family as the set of all pioneers,

6

together with all their matching parentheses (recall that if p is a pioneer, µ(p)
need not be one). Clearly, the substring comprising only the parentheses in
the pioneer family is balanced. We now bound the size of the pioneer family.

Proposition 4 The size of the pioneer family is at most 4β − 6.

Proof: The pioneer family graph, defined analogously to the pioneer graph,
is itself outerplanar, allowing us to conclude that the pioneer family is of size
at most 2 · (2β − 3) or 4β − 6. 2

Remark 5 An alternate characterisation of the pioneer family is as follows.
Suppose that we add to the set of pioneers (according to Jacobson’s original
definition) the leftmost far opening parentheses (if any) in a block, as well as
the rightmost far closing parenthesis (if any) in a block. Then the resulting
set of parentheses is precisely the pioneer family.

Our structure has the following four parts.

(1) The original parenthesis string π of length 2N ,
(2) an NND (Corollary 2) that stores the set P ⊆ [2N] of the positions in π

that belong to the pioneer family,
(3) a recursive parenthesis data structure for the pioneer family, and
(4) a constant number of tables that allow us to operate on blocks in O(1)

time. For example, a table that stores for every block b, and for every i =
1, . . . , B, the position of the matching parenthesis of the parenthesis at
position i, if the match is inside the block (the table stores 0 if the match
is not inside the block). Such tables take at most O(

√
N(lg N)2) = o(N)

bits.

We now calculate the space usage. The tables take O(
√

N(lg N)2) bits. Since
|P | ≤ 16(N/ lg N), the NND for pioneers takes O(N lg lg N/ lg N) bits by
Corollary 2. Thus, if S(N) is the space used by the structure, then S(N)
satisfies:

S(N) =O(N lg N) if N is O(n/ lg2 n) and

S(N) = 2N + S(8N/ lg N) + O(N lg lg N/ lg N) otherwise.

It is easy to see that S(n) = 2n + O(n lg lg n/ lg n) = 2n + o(n) bits.

2.2 Operations

Now we describe how the operations are implemented.

7

findclose(p): Let p be the position of an open parenthesis. First determine
by a table lookup whether it is far. If not, the table gives the answer. If it is,
use pred(p, P) to find the previous pioneer p∗. We can show that this will be
an open parenthesis. Find its position in the pioneer family using rank(p∗, P)
and find its match in the pioneer family using the recursive structure for P ;
assume that this match is the j-th parenthesis in the pioneer family. We then
use select(j, P) to find the position of µ(p∗) in π. Now observe that since
the first far parenthesis in each block is a pioneer, p∗ and p are in the same
block. Compute i, the change in left excess between p and p∗, using a table
lookup. Noting that µ(p) is the leftmost closing parenthesis in b(µ(p∗)) starting
from µ(p∗), with right excess i relative to µ(p∗), we locate µ(p) using a table.
findopen is similar.

enclose(c): Let p = enclose(c) such that p and c are both open parentheses.
From one (or two) table lookup(s) determine whether either of µ(p) or p is
in the same block as c. If so, we can return p using, if necessary, one call to
findopen. If not, we proceed as follows. Let c′ = succ(c, P). If c′ is a closing
parenthesis then let p′ = findopen(c′). Otherwise find the position of c′ in
the pioneer family using rank, find the parentheses enclosing c′ in the pioneer
family and using select translate the result into a parenthesis p′ in π. We
claim that in both cases (p′, µ(p′)) is the pair of pioneer family parentheses
that most tightly encloses c. Let q = succ(p′ +1, P). If q is in the same block
as p′ then p is the first far parenthesis to the left of q. Otherwise, p is the
rightmost far parenthesis in the block containing p′. In either case, the answer
is obtained from a table.

To prove the correctness of the algorithm, we observe that if p or µ(p) are
in the same block as c, then we can find p using table lookup (and possibly
findopen(µ(p))). Otherwise since both p and µ(p) are in different blocks to
c, b(p) < b(c) < b(µ(p)) and hence both p and µ(p) must be far parentheses.

From the definition of a pioneer, there must exist exactly one pair of pioneers
(p′, µ(p′)) such that b(p′) = b(p) and b(µ(p′)) = b(µ(p)); and the pair (p′, µ(p′))
is the tightest enclosing pioneer pair of c. If there was a tighter enclosing
pioneer pair, this pair would be enclosed by p and hence p would not be the
tightest enclosing parenthesis. That the algorithm correctly computes p′ is
seen from the following:

(1) if c′ is a closing parenthesis, then it must enclose c. It must be the tightest
enclosing pioneer because it is the first pioneer to the right of c. Therefore
p′ = findopen(c′).

(2) if c′ is an opening parenthesis, then c and c′ must share the same tightest
enclosing pioneer parenthesis. Hence p′ = enclose(c′).

Now, note that there are a number of (1 or more) far parentheses in b(p)

8

that have their matching parentheses in b(µ(p)); the left-most of these far
parentheses is p′ and the rightmost is p. As has been observed before, there
is only 1 pioneer in b(p) that points to b(µ(p)), and from the definition of a
pioneer this means that there is no pioneer that occurs between p′ and p.

Therefore, if q is the next pioneer in b(p) to the right of p′, then p must be the
last far parenthesis in b(p) before q, and if there are no pioneers to the right
of p′ in b(p) then p must be the rightmost far parenthesis in the block. This is
indeed what the above algorithm computes. We thus have:

Theorem 6 A balanced string of 2n parentheses can be represented using
2n + O(n lg lg n/ lg n) bits so that the operations findopen, findclose and
enclose can be supported in O(1) time.

2.3 Simplifying the NND

Our structure, although conceptually simple, uses the (fairly complex) data
structure of Theorem 1 as a subroutine. We now greatly simplify this subrou-
tine as well, by modifying the definition of the pioneer family. Call a block
near if it has no pioneer (and hence no far) parenthesis. We add to the pioneer
family (as defined above) pseudo-pioneers consisting of the first and the last
parenthesis of every near block (it is is easy to see that the string corresponding
to the modified pioneer family is balanced and has size O(N/ lg N).

We now argue that pseudo-pioneers do not affect the operations findopen,
findclose and enclose. For findopen(x) (findclose(x)), where x is the
position of a near parenthesis, the answer will be obtained by a table lookup. If
x is the position of a far parenthesis, the answer is obtained by first searching
for the previous (next) pioneer p. Since p will always be in b(x), and b(x) is
not a near block, p cannot be a pseudo-pioneer and the earlier procedure goes
through.

When we perform enclose(c) on an open parenthesis, where c is in a block
that does not contain pseudo-pioneers, we first check to see if either the open-
ing or the closing enclosing parenthesis is in the block using table lookup; if
it is then we have computed enclose(c) correctly (with possibly one call to
findopen). Otherwise, we locate the next pioneer c′ after c and check to see if
c′ is an opening or closing parenthesis. It is possible that c′ is a pseudo-pioneer
that is an opening parenthesis, but if this is the case, the closest enclosing pi-
oneer parenthesis pair of c is the same as that of c′, and hence we get a
valid result by performing enclose(p) on the pioneer bit-vector. If we wish
to perform enclose(c) where c is in a near block and we cannot compute
enclose(c) using table lookup (for example, if our block consists of pairs of
opening and closing parentheses), then instead of computing enclose(c) we

9

compute enclose(x) where x is the first parenthesis in the near block. We
can still compute enclose(c) correctly using this method because the closest
enclosing pioneer pair of c is the same, even with the pseudo-pioneers.

Since every block has at least a (pseudo-)pioneer, the gap between the positions
of two successive pioneers in the modified pioneer family is at most 2B =
O(lg N). This allows us to simplify the NND(s) in item (2) as follows.

2.3.1 A simple NND for uniformly sparse sets.

We now consider the problem of creating an NND for a bit-vector of length
M with 1s in a uniformly sparse set S ⊆ [M] of positions. Specifically, we
assume that N = |S| = O(M/ lg M) and further that if S = {x1, . . . , xN} and
x1 < . . . < xN , then for i = 1, . . . , N , xi − xi−1 ≤ (lg M)c for some constant
c ≥ 1 (take x0 = 0). Our scheme uses four arrays of O(M lg lg M/ lg M) bits
each and three tables of O(M 2/3) bits each.

Let t = blg M/(2c lg lg M)c and St = {xt, x2t, . . .}. In the array A1, we list
the elements of St explicitly; i.e. for i ≥ 1 we let A[i] = xit. A1 thus takes
dN/te ·dlg Me = O(M lg lg M/ lg M) bits. In array A2, we store the differences
between consecutive elements of S, i.e., we let A2[i] = xi −xi−1 for i ≥ 1 (take
x0 = 0). Since all values in A2 are O((lg M)c) by assumption, each entry can be
stored using fixed-width entries of at most z = dc lg lg Me bits each, and array
A2 takes O(N lg lg M) or O(M lg lg M/ lg M) bits in all. A table T1 contains,
for every bit string of length tz ≤ (lg M)/2 + O(lg M/ lg lg M) bits, the sum
of the t values obtained by treating each group of consecutive z bits as the
binary encoding of an integer. The table takes O(M 2/3) bits.

Now select(i, S) can be obtained in O(1) time as follows: let i′ = bi/tc and
i′′ = (i + 1) mod t. Let x = A1[i

′] if i′ > 0 and x = 0 otherwise. Obtain y as
the concatenation of the values in A2[i

′ + 1], A2[i
′ + 2], . . . , A2[i

′ + i′′]; these
ti′′ < tz bits are padded with trailing zeroes to make y be tz bits long (this
is done in O(1) time by reading at most two lg M -bit words from A2 followed
by masks and shifts), and we return select(i, S) = x + T1[y].

To support the rank operation, we store two more arrays. We (conceptu-
ally) divide [M] into blocks of t consecutive values, where the i-th block bi is
{(i − 1)t + 1, . . . , it}, and let A3[i] = |bi ∩ St|, for i = 1, . . . , M/t. Noting that
A3[i] ∈ {0, 1}, we conclude that A3 takes O(M/t) = O(M(lg lg M)/ lg M) bits.
Viewing A3 as the bit-vector of a set, the following standard auxiliary infor-
mation permits O(1)-time rank queries (details omitted) on A3: an array A4

containing, for i = 1, . . . , M/ d(lg M)/2e, A3[1]+ . . .+A3[i · d(lg M)/2e], and a
table T2 containing, for every bit-string of d(lg M)/2e bits, the number of 1s in
that bit-string. Clearly A4 occupies O(M/t) bits and T2 takes O(

√
M lg lg M)

bits.

10

Finally, we have another table T3, which contains, for every bit string of length
tz bits, interpreted as a sequence of t non-negative integers of z bits each, and
a value i ≤ t(lg M)c, the largest l ≤ t such that the sum of the first l of the t
integers is less than i. As above, T3 takes O(M 2/3) bits.

Now rank(i, S) is implemented as follows. Let i′ = bi/tc and r = rank(i′, A3).
Observe that A2[r] = xrt is the largest element in St that is ≤ i. Let y be the
concatenation of the values in A2[rt+1], A2[rt+2], . . . , A2[(r+1)t], and return
rank(i, S) = rt + T3[y, i − xrt]. Thus we have:

Theorem 7 Let S ⊆ M be a subset of size O(M/ lg M) and let the difference
between two consective values of S be O((lg M)c) for some constant c. Then
there is a simple representation for S (using four arrays and three tables)
taking O(M lg lg M/ lg M) = o(M) bits in which the operations rank(x, S)
and select(i, S) can be supported in constant time.

Remark 8 Using Theorem 7 in place of Corollary 2, we get a parenthesis
data structure that uses 2n + O(n lg lg n/ lg n) = 2n + o(n) bits, and is man-
ifestly simple. Note that most applications involving succinct data structures
(including the parenthesis one) would anyway require the table T2.

Remark 9 The construction of this data structure is both simple and effi-
cient: given a parenthesis string π of length 2n, all auxiliary data structures
can be constructed in O(n/ lg n) time using additional O(n lg lg n/ lg n) bits of
workspace, as follows. We first determine the pioneer family of π. This is done
in two passes over π, to determine the lists of closing and opening pioneers,
respectively. By merging the two lists we produce the array A2 of the NND.

We determine the closing pioneers by processing each block in turn. We assume
that when processing the i-th block, there is a temporary stack that contains,
for every block among the blocks 1, . . . , i − 1 that has one or more currently
unmatched (far) open parenthesis, the number of such parentheses. Clearly
the space used by the stack is O(n lg lg n/ lg n) bits. We use table lookup on
the i-th block to determine the number j of far closing parentheses in this
block. If j > 0 then, using the stack and table lookup, it is easy to determine
which of the far parentheses are pioneers. If there are no far parenthesis at all,
we designate the last parenthesis as a (pseudo)-pioneer. Using table lookup,
we determine the number of far open parentheses and push this on to the
stack. If any closing pioneers are found we write their positions down in a
temporary array Ac, again storing differences in positions of successive closing
pioneers, rather than the positions themselves (since closing pioneers may be
more than poly-log positions apart, Ac needs to be represented with a little
care to fit in O(n lg lg n/ lg n) bits). We calculate Ao, the positions of open
pioneer parentheses, similarly, and merge Ao with Ac to give A2. It is fairly
easy to see that the entire process takes O(n/ lg n) time.

11

3 Experimental Evaluation

We now describe an experimental evaluation of this data structure. The aims
are threefold—firstly, to evaluate the running time—more precisely, to deter-
mine the data structure’s space-time trade-off in practice. It may be worth
pointing out why there should be such a trade-off in the first place. Although
our data structure has space 2n + o(n) bits, in a direct implementation of the
theoretical version, the o(n) term is greatly dominant for n even in the tens
of millions. The space-time tradeoff comes from making the lower-order term
decay faster or slower with increasing n, and there are normally some very
natural parameters that one can adjust to achieve this. For example, there
is no need to limit the block size B to d(lg n)/2e; one may choose B to be
c d(lg n)/2e, for some integer c > 1, and to operate on a block by means of c
table lookups using chunks of d(lg n)/2e bits. This would tend to reduce space
usage, while increasing the running time.

The second aim, which is standard methodolgy in experimental work, is to
try and compare this data structure with another. A natural candidate is
Jacobson’s O(n)-bit data structure (modified for the RAM model) as it is quite
simple. Jacobson did not compute the constant factors in the space usage, but
it has been estimated that it uses 10n+ o(n) bits [18]. Unfortunately, even for
very small block sizes, the new data structure typically takes much less than
10n bits, making a comparison difficult. Thus, our second aim is to implement
a variant of Jacobson’s data structure that takes (2 + ε)n + o(n) bits, for any
constant ε > 0, in theory, with operations taking O(1/ε) time, and use it for
comparison.

Finally, for practical values of n, the lower-order terms in the space bound,
and indeed the running time, are affected by a number of data-dependent
parameters, such as the number of pioneer and far parentheses. Thus, the
third aim is to study the data-dependent parameters, both on random trees
and trees derived from real-life XML files.

3.1 Jacobson’s data structure

We now describe our variant of Jacobson’s data structure, which comprises
the parenthesis string, divided into blocks of B bits each, together with four
auxiliary data structures:

• An array Mo, such that Mo[i] = µ(p), if p is the i-th opening pioneer. An ar-
ray Mc stores the analogous information for closing pioneers. By Lemma 3,
there are at most 4 · (2n/B) entries of lg n bits each in both arrays com-
bined. This takes at most εn bits, for any constant ε > 0, by choosing

12

B = cd(lg n)/2e for a sufficiently large constant c, and operating on a block
using c table lookup operations.

• A set So ⊆ {1, . . . , 2n} that contains the indices of parentheses correspond-
ing to opening pioneers, and an analogous set Sc for closing pioneers. By
implementing an NND on So and Sc, we can index into Mo and Mc. Since
So and Sc have size O(n/ lgn), the NNDs take o(n) bits, by Corollary 2.
(Jacobson used 2n + o(n) bits for each of So and Sc.)

• An array El such that El[i] stores the left excess at the first parenthesis
position of block i; and an array array Er such that Er[i] stores the right
excess at the last parenthesis position of block i. El and Er can be stored
using o(n) bits by storing the numbers of opening parenthesis to the left
of each block; this sequence of numbers can be stored in o(n) bits using
Corollary 2 and ideas from (e.g.) [21].

• An array D, which for every block b, such that the left excess at the first
parenthesis of b is e > 0, stores the the position of the first parenthesis to
the left of b (counting from the start of b) with excess e− 1 (a null value is
stored if e = 0). Clearly, by selecting B appropriately, D also takes at most
εn bits, for any constant ε > 0.

As in the new parenthesis data structure, we use a constant number of tables,
occupying at most o(n) bits, that allow us to operate on chunks, and hence
blocks, in constant time. We see that the space used, in total, is (2+ε)n+o(n)
bits, for any constant ε > 0.

We now show how to implement findclose. Let p be an open parenthesis
at position i. Then table lookup gives the position of µ(p) inside its block or
determines that it is far. If p is far, then b(µ(p)) = b(µ(p∗)), where p∗ is the
previous pioneer (rank1 and select1 on So gives p∗ and the array Mo gives
µ(p∗)). We can find the left excess e between p∗ and p by computing the left
excess at p and p∗ by two table lookups and using the array El. Now µ(p)
is the first closing bracket in that b(µ(p∗)), counting from the left, with right
excess i, which can be found by table lookup.

Jacobson did not support enclose(c) operation. Let c be the position of an
open parenthesis. As noted in [18], if the left excess e at c is 0 (found from
array El and table lookup), then there is no enclosing parenthesis. Otherwise,
the left parenthesis of the answer is the previous parenthesis with left excess
e − 1. This can be found by table lookup and array D. All operations take
O(1/ε) = O(1) time.

13

3.2 Implementations

An important difference between the implementations and theoretical descrip-
tions is that we do not use chunks of size d(lg n)/2e. In practice, the chunk size
is constrained by the need to have all tables fit into cache memory in the com-
puter, and to very efficiently extract a chunk from a parenthesis string. For this
reason, we choose chunk sizes of 8 or 16 bits, and block sizes B = 32, 64, 128
or 256. There are a number of other important variations from the theoretical
data structures, which we now describe. We also calculate the space require-
ments of the data structures, excluding the space for the tables.

3.2.1 Implementation of the new NND.

Let S ⊆ [M] be the set to be stored. We assume that the gaps between
successive values are no more than 256, allowing A2 to consist of 8-bit values.
Each element of array A1 is a 32-bit value. Array A4 is implemented by storing
with each block of B bits in A3 a 32-bit value for the number of 1s to the start
of the block.

In order to reduce the space requirements for arrays A1, A3 and A4 we would
like t to be large; however, for practical values of M , this would lead to im-
practicably large tables. In our implementation we use values of t = 2, 4, 8 and
16, but abandon the tables T1 and T3, replacing each operation on T1 and T3

by upto t operations. The space used by the NND implementation (in bits) is:

f(|S|, M) =
32|S|

t
+ 8|S| + M

t
+

32M

tB
. (1)

3.2.2 Implementation of the new 2n + o(n) parenthesis DS.

For simplicity (and to make it easier to share tables), we use the same block
and chunk sizes at each level of recursion, and also in the NND. In the recursive
data structure we have 2n parentheses and p1 pioneers at the top level, p1

parentheses and p2 pioneers at the next level. Each of these levels stores the
parentheses and an NND for the pioneer positions. From Equation 1, the
number of bits required for these two levels is:

2n + 2p1 + f(p1, 2n) + f(p2, p1)

= 2n + 2p1 +
32p1

t
+ 8p1 +

2n

t
+

64n

tB
+

32p2

t
+ 8p2 +

p1

t
+

32p1

tB
.

At the bottom of the recursion, we store, with each parenthesis p, 32-bit
addresses for each of: the match of p and the enclosing open parenthesis for

14

p. This adds up to 64p2 bits.

For our experiments we need to support rank on the top level parenthesis
string. We first divide the 2n parentheses into superblocks of size 216. We store
with each superblock the number of 1s to its left (using 32-bit values) and with
each block we store the number of 1s from the start of its superblock (using
16-bit values). The number of bits required for supporting rank is therefore
64n/216 + 32/B bits.

Summing up and simplifying, the total number of bits required for the new
parenthesis data structure, augmented to also support rank on the top level
parenthesis string is:

(

2.001 +
64

tB
+

32

B
+

2

t

)

n +
(

9 +
33

t
+

32

tB

)

p1 +
(

72 +
32

t

)

p2 (2)

Note that the NND’s limit of 256 on the gap size means that B ≤ 128 (as
even after pseudo-pioneers are inserted, two pioneers could be 2B−2 positions
apart), whereas t could, in principle, be arbitrarily large. Thus, the best space
usage of this implementation is (2.96 + O(1/t))n bits, if p1 and p2 are as large
as their theoretical maxima.

3.2.3 Implementation of the modified Jacobson data structure.

We have two 32-bit arrays similar to Mo and Mc, with the difference that if
p is the i-th pioneer, then Mo[i] contains a 32-bit value, whose lowest 8 bits
store p’s position within its block (this means B ≤ 256), and the top 24 bits
store b(µ(p)) (our experience was that it did not help to precisely locate µ(p)).

We do not compress the El and Er, instead we effectively store just the number
of open parentheses before each block (rank information), from which El and
Er can be readily calculated. This rank information takes 32 bits per block.
The array D has 32-bit values.

The sets So and Sc are represented as follows. With each block we store two
8-bit numbers that give the numbers of open and close pioneers in each block.
Every four blocks, we store two 32-bit numbers that record the prefix sums
of these 8-bit values. This information allows us to localise the segments of
Mo and Mc that correspond to a given block, and searching the appropriate
segment allowed us to find the nearest pioneer (from a theoretical perspective
one could view this as potentially a o(n)-bit but O(lg B) time solution).

To summarise, in addition to the 2n bit string, the space used per block is
(80+(32+32)/4) = 96 bits. Since there are 2n/B blocks, the space is 192n/B

15

bits. In addition, the space for Mo and Mc is 32 bits times their size. Thus,
the space used is:

2n + 192n/B + 32 · (|Mo| + |Mc|). (3)

As in the new parenthesis data structure, the space requirements for our ver-
sion of Jacobson’s data structure depend on the number of pioneer parentheses.
Assuming a maximum value of B = 256, and maximum values for the numbers
of pioneers, we get a minimum worst-case space bound of about 3.75n bits.

3.3 Experimental Results

3.3.1 XML statistics.

In order for us to be able to understand the space requirements of our rep-
resentations in real-life situations, we gathered statistics from 33 real-world
XML files [23,24]. The files come from different applications and have different
characteristics. Fig. 3 and 4 give the basic statistics of these files such as sizes
and number of nodes.

Two key parameters that would affect the space and running time of the data
structure are the proportion of far parentheses, and the number of pioneers, for
a given block size. The former is important, as the computation time for many
operations is higher for a far parenthesis. The proportion of far parentheses,
in parenthesis strings derived from XML data, is shown in Fig. 2(b). We
note that even though it is possible to have essentially 2n far parentheses,
the observed proportion of far parentheses is very small, and decreases with
increasing blocksize. The average value hides some (fairly large) variations: for
example, a family of files called pcc1.xml, pcc2.xml and pcc3.xml have up
to 27% far parentheses (for a block size of 32). Each of these files contains a
proof of correctness and is highly nested.

Secondly, the space usage of the data structure depends on the number of
pioneers. Note that it is somewhat uninformative to plot the fraction of pioneer
parentheses against block size B. As the worst-case number of pioneers is
at most 4n/B, as the block size increases, the proportion of pioneers drops.
Instead, we plot the number of pioneers per block versus the block size. In
Fig. 2(a) we show the number of pioneers per block using Jacobson’s definition,
the pioneer family definition and also for the set including pseudo-pioneers.
Note that the theoretical worst-case bound for the number of pioneers per
block is essentially 4, but on average there were less than 2.4 pioners per block,
or 60% of the theoretical maximum number of pioneers; this held regardless of
which definition was used. The same holds for the pioneers in the parenthesis

16

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 2.45

 2.5

 32 64 128 256

pi
on

ee
rs

 p
er

 b
lo

ck

block size B

Family + dummy pioneers
pioneer family

Jacobson
Recursive bitstring

(a)

 0

 5

 10

 15

 20

 25

 30

32 64 128 256

pr
op

or
tio

n
of

 fa
r

pa
re

nt
he

se
s

block size B

Worst observed
Average

(b)

Fig. 2. Statistics on XML files. The x-axis has the block size B and the y-axis has: (a)
Number of pioneers per block, for all three definitions of pioneers plus the number
of pioneers per block in the recursive parenthesis string and (b) The proportion of
parentheses that are far.

Basic data on XML files (1 of 2)

Slowdown

File size nodes % Far UltraSparc-III Pentium 4

dblp.xml 1.34E+08 9995781 5.632 1.268

desc2004.xml 2.39E+08 16200984 7.353 1.321

elts.xml 116505 5991 4.791 2.469 2.313

lineitem.xml 32295475 2045953 5.882 1.280 2.303

mondial-3.0.xml 1784825 57372 5.398 2.450 1.907

nasa.xml 25050288 1425535 6.683 1.269 2.419

orders.xml 5378845 300003 6.250 1.461 2.249

partsupp.xml 2241868 96003 6.251 2.578 1.847

pcc1.xml 48750 3562 19.652 2.815 4.558

pcc2.xml 252689 17857 18.699 2.804 4.175

pcc3.xml 179638 13051 18.412 2.868 3.943

play1.xml 260951 18967 5.357 2.556 2.439

play2.xml 141336 9423 5.264 2.564 2.556

play3.xml 288814 19840 5.071 2.505 2.328

sprot.xml 10579 805 4.845 3.131 2.220

Fig. 3. Test file names, file sizes, XML nodes, % far parenthesis, slowdown relative
to DOM for a DFS traversal on Sun UltraSparc-III and Pentium 4, when B = 64
and using 16-bit chunks.

17

Basic data on XML files (2 of 2)

Slowdown

File size nodes % Far UltraSparc-III Pentium 4

stats1.xml 671949 56448 5.104 2.627 2.237

stats2.xml 617523 49500 5.584 2.697 2.322

supp2004.xml 4.13E+08 30322317 7.435 1.286

tal1.xml 734541 49876 10.715 2.654 3.736

tal2.xml 510060 34660 10.462 2.676 3.735

tal3.xml 251669 16821 11.432 2.659 3.767

tpc.xml 300548 35290 4.384 2.454 2.095

treebank.xml 6680 798 10.025 3.217 2.791

treebank e.xml 86082517 7312612 10.910 1.420

votable.xml 15908196 1991192 5.483 1.260 2.326

w3c1.xml 220869 10094 8.064 2.709 2.431

w3c2.xml 196308 9090 7.492 2.657 2.432

w3c3.xml 201918 7778 7.393 2.646 2.427

w3c4.xml 105011 4519 7.480 2.714 2.713

w3c5.xml 247538 8422 6.412 2.551 2.246

weblog.xml 2295 135 6.667 3.530 2.519

XCDNA.xml 6.08E+08 25221153 5.553 1.245

XPATH.xml 52246714 2522571 5.780 1.245 2.281

Fig. 4. Test file names, file sizes, XML nodes, % far parenthesis, slowdown relative
to DOM for a DFS traversal on Sun UltraSparc-III and Pentium 4, when B = 64
and using 16-bit chunks.

sequence in the first level of recursion; in fact the proportion of pioneers is
possibly a little less there. Again, the files pcci.xml are well above average,
and have over 3.7 pioneers per block for some values of B.

We have also obtained statistics for random ordinal trees (or random sequences
of balanced parentheses), generated using software from [16]. We took bal-
anced parentheses strings of a number of lengths, starting from 200,000 to
100,000,000. For each length, we generated between 20 and 50 random bal-
anced strings and computed the following statistics: number of far parenthesis
and the size of the modified pioneer family. We did this both for the original
random parenthesis string and the parenthesis string comprising the modified

18

pioneer family. As can be seen from Fig. 5(a), for moderately-sized sequences
of up to 10 million nodes, the pioneer density in the original bitstring is high
(varying between 3.07 and 3.64 per block, depending on blocksize), but ap-
pears to drop off for larger sequences. In Fig. 5(b), the x-axis value is the
size of the original parenthesis sequence; thus, the corresponding y-values are
really for significantly shorter parenthesis sequences, and the drop-off is even
faster than it appears, relative to that of Fig. 5(a). Although not shown here,
the proportion of far parentheses shows different behaviour, starting fairly
high and gradually rising (e.g., for B = 128, it is about 13.7% for sequences
of length 200,000, and rises gradually to about 17% for sequences of length
100,000,000). An analytical treatment of this phenomenon would be interest-
ing.

We calculate the space bounds (excluding tables) used by our data structure,
taking both a worst-case pioneer density of 4 per block and an average-case
density of 2.4 per block (an upper bound on the average values obtained from
XML data). We use Equations 2 and 3 to calculate these values and the results
are shown in Fig. 6.

3.3.2 Performance Evaluation.

We implemented the data structures in C++, and ran some tests on a Pen-
tium 4 machine and a Sun UltraSparc-III machine. The Pentium 4 has 512MB
RAM, a 2.4GHz CPU and a 512KB cache, running Debian Linux. The com-
piler was g++ 2.95 with optimisation level 2. The Sun UltraSparc-III has 8GB
RAM, a 1.2GHz CPU and a 8MB cache, running SunOS 5.9. The compiler was
g++ 3.3 with optimisation level 2. The code of both the modified Jacobson’s
and the new data structure was highly optimised, using standard tricks such
as unrolling large loops, using inline functions etc.

In addition, we optimised the cache performance of the data structures. For
example, we have clustered data in the NND to improve locality by placing an
element of array A1 contigously in memory with t elements of A2, since these
are accessed together during a select1 operation. We also place a block of B
elements from A3 near the prefix sum of the 1s in all preceeding blocks. We
have also optimised our accesses to two-dimensional (2-D) tables. An example
of such tables is one that is indexed by a 16-bit chunk of parentheses, together
with an excess value (up to 16) and contains the location of the leftmost open
parenthesis with the given excess value. Assuming that each entry of a table is
a byte, the table in the above example takes 216·16 bytes or 1MB, exceeding the
cache size on Pentium 4. We minimise accesses to such tables by using them
strictly when needed. Such 2-D tables are used to find a matching opening
or closing parenthesis in a block. This involves skipping over several chunks
which do not contain the matching parenthesis—we use 1-D tables to skip over

19

these chunks and use a two-dimensional table only once we have identified the
chunk that contains the matching parenthesis. A further optimisation when
using 16-bit chunks is to replace the single access to a two-dimensional 16-
bit table with 2 accesses to a two-dimensional 8-bit table. A result of these
optimisations is that both on the Pentium 4 and the UltraSparc, 16-bit chunks
were typically slightly faster than 8-bit chunks.

Running times were evaluated against a baseline of CenterPoint XML’s DOM
implementation, release 2.1.7. In this implementation, each node stores point-
ers only to its parent, first child and next sibling. This means that each
node requires 3 · 32 = 96 bits; however, operations such as getLastChild or
getPreviousSibling require traversal over all child nodes or many siblings.
The test in each case was to traverse the tree in DFS and in BFS order and
count the number of nodes of a particular type. The DFS traversal in DOM
uses only the methods firstChild and nextSibling, using the recursion
stack to go back to the parent. Each method call essentially involves only fol-
lowing a pointer. To emulate this in the parenthesis data structure, we identify
a node by the position of its open parenthesis. Then, emulating firstChild

is trivial, but emulating nextSibling requires a call to findclose. Both
BFS algorithms used the C++ Standard Template Library queue implemen-
tation. We performed multiple tree walks in order to get more stable running
times; repetitions varied from 10 (for the large files) to 500000 (for the smaller
files). To keep the tests fair, we ensured that files fit in memory, even using
DOM. This meant that we did not run tests using XCDNA.xml, dblp.xml,

desc2004.xml, supp2004.xml and treebank e.xml on the Pentium 4.

Figures 7 and 8 summarise the running times. Since we used real-world data,
each data point in these charts is derived from a relatively small number
of files, which have widely differing characteristics. Not unexpectedly, there
is a lot of variation around the average. Nevertheless, certain broad trends
are clear. The average slowdown increases with blocksize, this is because we
need to process more chunks per block. In general, for a DFS traversal, on
the Pentium 4 machine the data structures were 1.7 to 4 times slower than
the DOM implementation. On the UltraSparc-III the data structures were in
general 1 to 2.5 times slower. The DOM implementation does mainly memory
accesses whereas the parenthesis data structures do a lot of computation. The
difference in the slowdown between the UltraSparc-III and the Pentium 4
machines is mainly due to the different machine architectures and the cost
of memory accesses. It is also due to the fact that on the UltraSparc-III the
parenthesis data structures and tables reside in cache memory.

The average slowdown on both systems was less for a BFS traversal. See
Figures 7 and 8. This is very good considering that DOM simply follows
pointers, and given the limited connectivity of this DOM implementation,
the gap could have been much smaller for a general traversal (e.g. visiting

20

nodes in reverse DFS order).

The key benefit is that the space to store the tree structure is drastically re-
duced. For example, with B = 128 we can choose between 4.7n bits and 2.86n
bits, on average, to represent the tree structure, while the DOM implemen-
tation takes 96 bits and suffers an average slowdown between 2.58 and 2.87
on a Pentium 4 for a DFS traversal. Of course, we do not expect a 30 − 35×
reduction in the overall size of an in-memory XML representation but pointers
are a considerable part of such representations. The gap between the new DS
and the modified Jacobson is fairly narrow.For the same value of B, the new
DS uses a lot less space, but is slower. Fig. 9 shows the trade-off between space
usage and speed. The data points are derived from the average slowdown over
all files and the bits per node assuming a pioneer density of 2.4 for Jacobson
at B = 32, 64, 128 and B = 256 and for the new data structure at B = 32, 64
and B = 128. This shows that on the Ultra Sparc-III the new data structure
offers a better trade-off between speed and time, while on the Pentium-III the
modified Jacobson appears slightly better.

Analysing the performance further, Fig 10 shows the cache misses per node
for a DFS traversal of some of our data files on the Pentium 4 when using our
new recursive parenthesis data structure. We have removed files which have
very similar structures. These values were obtained using Cachegrind [25]. As
can be seen, the number of cache misses is very low; this is partly due to the
inherent locality in a DFS traversal of a parenthesis structure, but also reflects
our optimisations. (Note that for many of these files the entire data structure
fits in cache.)

One may further theorise that the running time is dependent on the proportion
of far parentheses, on the grounds that the findclose computation for near
parentheses is simple, involving essentially only table lookup and local access
to the parenthesis string. Fig. 11 shows for our new data structure slowdown
for a DFS traversal versus percentage of far parentheses on the Pentium 4
and a blocksize of 64 bits. On the Pentium 4 slowdown tends to increase with
the proportion of far parentheses, while on the UltraSparc-III the effect is
significantly more muted.

4 Conclusions and Further Work

We have given a conceptually simple succinct representation for balanced
parentheses that supports natural parenthesis operations in constant time.
This immediately gives a simpler optimal representation for all applications of
these data structures. The new representation has theoretical advantages as
well, such as a simple sublinear-time and space construction algorithm, and

21

an improved lower-order term in the space bound.

A number of questions arise from the experimental data. It would be interest-
ing to obtain analytical results regarding the number of pioneers or far paren-
theses in random trees, as well as an accurate cache analysis of the parenthesis
data structure. Possibly the data structure can be further simplified.

We would like to thank R. Ramani for coding versions of the rank/select data
structures and D. Okanohara for helpful comments.

References

[1] Apache Xindice Project: Frequently asked Questions 10.
http://xml.apache.org/xindice/faq.html#faq-N10084.

[2] D. A. Benoit, E. D. Demaine, J. I. Munro and V. Raman. Representing trees
of higher degree. In Proc. 6th WADS, LNCS 1663, 169-180, 1999.

[3] D. A. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman and S. S.
Rao. Representing trees of higher degree. TR 2001/46, Dept. of Maths & CS,
University of Leicester, 2001.

[4] Centerpoint XML, http://www.cpointc.com/XML.

[5] J. Cheney. Compressing XML with multiplexed hierarchical PPM models. In
Proc. Data Compression Conference (DCC 2001), IEEE Computer Society, pp.
163–172, 2001.

[6] K. Chupa. MMath Thesis, University of Waterloo (1997).

[7] D. Clark and J. I. Munro. Efficient suffix trees on secondary storage. In Proc.
7th ACM-SIAM SODA, pp. 383–391, 1996.

[8] J. J. Darragh, J. G. Cleary and I. H. Witten. Bonsai: a compact representation
of trees. In Software-Practice and Experience, 23 (1993), pp. 277–291.

[9] A. Le Hors, P. Le Hégaret, L. Wood, G. Nicol, J. Robie, M.
Champion, S. Byrne. Document Object Model (DOM) Level 2 Core
Specification Version 1.0. W3C Recommendation 13 November, 2000.
http://www.w3.org/TR/DOM-Level-2-Core. W3C Consortium, 2000.

[10] P. Ferragina, G. Manzini. An experimental study of a compressed index.
Information Sciences, 135 (2001) pp. 13–28.

[11] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. J. ACM, 31 (1984), pp. 538–544.

[12] R. F. Geary, R. Raman and V. Raman. Succinct ordinal trees with level-ancestor
queries. In Proc. 15th ACM-SIAM SODA, pp. 1–10, 2004.

22

[13] Roberto Grossi, Ankur Gupta and Jeffrey Scott Vitter. When indexing equals
compression: Experiments on suffix arrays and trees. In Proc. 15th ACM-SIAM
SODA, pp. 629–638, 2004.

[14] T. Hagerup, P. B. Miltersen and R. Pagh. deterministic dictionaries. Journal
of Algorithms 41 (1): 69–85 (2001).

[15] G. Jacobson. Space-efficient static trees and graphs. In Proc. 30th FOCS,
549–554, 1989.

[16] H. W. Martin and B. J. Orr. A Random Binary Tree Generator. In Computer
Trends in the 1990s, Proceedings of the 1989 ACM 17th Annual Computer
Science Conference, ACM Press, pp. 33–38, 1989.

[17] J. I. Munro. Tables. In Proc. 16th FST&TCS conference, LNCS 1180, 37-42,
1996.

[18] J. I. Munro and V. Raman. Succinct representation of balanced parentheses
and static trees. SIAM J. Computing, 31 (2001), pp. 762–776.

[19] I.Munro, R. Raman, V. Raman and S. S. Rao. Succinct representation of
Permutations. In Proc. 30th ICALP, LNCS 2719, 345-356, 2003.

[20] I.Munro, V. Raman and S. S. Rao. Space Efficient Suffix Trees In J. of
Algorithms, 39 (2001), pp. 205–222.

[21] R. Raman, V. Raman and S. S. Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In Proc. 13th ACM-SIAM
SODA, pp. 233–242, 2002.

[22] K. Sadakane. Succinct representations of lcp information and improvements in
the compressed suffix arrays. In Proc. 13th ACM-SIAM SODA, pp. 225–232,
2002.

[23] University of Washington XML Repository. http://www.cs.washington.edu/
research/xmldatasets/.

[24] VOTable Documentation. http://www.us-vo.org/VOTable/.

[25] Valgrind – A GPL’d system for debugging and profiling x86-Linux programs.
http://valgrind.kde.org/.

23

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 3.5

 3.6

 3.7

 100000 1e+06 1e+07 1e+08

pi
on

ee
rs

 p
er

 b
lo

ck

nodes in top-level tree

32
64

128
256

(a)

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 100000 1e+06 1e+07 1e+08

pi
on

ee
rs

 p
er

 b
lo

ck

nodes in top-level tree

32
64

128
256

(b)

Fig. 5. Statistics on random trees. The x-axis has the number of nodes in the original
tree and the y-axis has the average number of pioneers per block over 50 sequences
for the first 6 data points and over 20 sequences for the next 6 data points (using
the pioneer family plus pseudo-pioneers) in (a) the original string and (b) in the
recursive parenthesis string.

PD = 4 PD = 2.4

Blocksize Jacob New Jacob New

32 16.00 8.34 12.80 5.75

64 9.00 4.65 7.40 3.73

128 5.50 3.24 4.70 2.86

256 3.75 3.35

Fig. 6. Space used by the modified Jacobson implementation and new data struc-
ture, excluding tables, assuming a pioneer density of 2.4 per block and 4 per block
respectively and taking t = 16 in the new data structure. The units are bits per
parenthesis pair, i.e. the space, in bits, used to represent 2n parenthesis by a data
structure using a particular value of B is obtained by multiplying the corresponding
entry by n.

24

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

2561286432

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

block size B

Jacobson(avg)
Jacobson(w/c)

New(avg)
New(w/c)

(a)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

2561286432

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

block size B

Jacobson(avg)
Jacobson(w/c)

New(avg)
New(w/c)

(b)

Fig. 7. DFS tree traversal: Average slowdown relative to DOM over all files and
worst instance over all files. The x-axis has the block size B and the y-axis has
slowdown relative to DOM: (a) on a Sun UltraSparc-III, (b) on a Pentium 4.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

2561286432

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

block size B

Jacobson(avg)
Jacobson(w/c)

New(avg)
New(w/c)

(a)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

2561286432

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

block size B

Jacobson(avg)
Jacobson(w/c)

New(avg)
New(w/c)

(b)

Fig. 8. BFS tree traversal: Average slowdown relative to DOM over all files and
worst instance over all files. The x-axis has the block size B and the y-axis has
slowdown relative to DOM: (a) on a Sun UltraSparc-III, (b) on a Pentium 4.

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2 3 4 5 6 7 8 9 10 11 12 13

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

space usage (bits per node)

Jacobson
New

(a)

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 2 3 4 5 6 7 8 9 10 11 12 13

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

space usage (bits per node)

Jacobson
New

(b)

Fig. 9. Comparison of space usage and speed. The x-axis has the space usage, in
terms of bits per tree node (or parenthesis pair) and the y-axis has average slowdown
relative to DOM: (a) on a Sun UltraSparc-III, (b) on a Pentium 4.

25

B = 32 B = 64 B = 128

8 16 8 16 8 16

Average 0.014 0.051 0.010 0.041 0.009 0.040

Maximum 0.062 0.140 0.045 0.111 0.036 0.124

Fig. 10. Average and maximum cache misses per node on Pentium 4 for the new
recursive data structure during a DFS traversal, when B = 32, 64, 128 using 8-bit
and 16-bit chunks. In all cases the minimum value was 0.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 4 6 8 10 12 14 16 18 20

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

% far parentheses

(a)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4 6 8 10 12 14 16 18 20

sl
ow

do
w

n
re

la
tiv

e
to

 D
O

M

% far parentheses

(b)

Fig. 11. Slowdown versus percentage of far parentheses using 64-bit blocks: (a) on
a Pentium 4 and, (b) on a Sun UltraSparc-III. Each point represents data for one
of our sample XML files.

26

