# Groups, Formal Language Theory and Decidability

## Sam Jones

Supervised by: Rick Thomas

Department of Computer Science, University of Leicester August 2013

# What is an algorithm?

Informally: A *finite* sequence of steps to follow in order to solve a problem.

A problem is said to be *decidable* if an algorithm solving it exists and is said to be *undecidable* if there does not exist an algorithm solving it.

#### Formal language theory basics

Given a finite alphabet (set of symbols)  $\Sigma$ ,  $\Sigma^*$  is the set of all finite words consisting of symbols from  $\Sigma$ . We call any subset L of  $\Sigma^*$  a *language*.

## Finite automata

Finite automata have no memory (other than the states). Finite automata accept a class of languages known as the *regular* languages.



The language accepted by this automaton is the set of all finite words which contain the subword ab or the subword ba.

## Pushdown automata

Finite automaton with an added memory device: a *stack*. Pushdown automata accept a class of languages known as the *context-free* languages.



The language accepted by this pushdown automaton is the set of words of the form  $a^n b^n$ 

# One-counter automata

Pushdown automaton where the stack alphabet is restricted to one symbol (other than the bottom stack marker).

One-counter automata accept precisely the one-counter languages.

## The word problem

Given a finite presentation  $\langle X|R \rangle$  for a group G, the word problem asks whether two words  $\alpha$  and  $\beta$  over the alphabet  $\Sigma = X \cup X^{-1}$  represent the same element of G.

#### The word problem as a formal language

$$\alpha = \beta \iff \alpha \beta^{-1} = 1$$
 in G.

Consider

the set WP(X,G) of all words in  $\Sigma^*$  which represent the identity element of G.

The problem of determining whether two words are equal (in G) is now equivalent to determining membership of this language.

# The word problem as a formal language

Does the word problem change if we change our choice of X?

It depends what we mean by this.

# Inverse homomorphism to the rescue

If  ${\mathcal F}$  is a class of languages closed under inverse homomorphism and  $WP(X,G)\in {\mathcal F}$  for some

finite generating set X then we have that  $WP(Y,G) \in \mathcal{F}$  for all finite

```
generating sets Y.
```

# Classification of groups by their word problem

| Group            | Language                   |
|------------------|----------------------------|
| Finite           | Regular                    |
| Virtually Cyclic | One-Counter                |
| Virtually Cyclic | Deterministic One-Counter  |
| Virtually Free   | Context-Free               |
| Virtually Free   | Deterministic Context-Free |

## Are there any other groups here?

In some sense, no: Herbst proved that if your class of languages has certain closure properties and lies inside the context-free languages then you either get the finite groups, the one-counter groups or all of the context-free groups.

# The word problem and decidability

Fix a class of languages  $\mathcal{F}$ . Is it decidable, given a language  $L \in \mathcal{F}$ , whether or not L = WP(X, G) for some group G?

Regular - yes

Context-Free - no

# The word problem and decidability

Fix a class of languages  $\mathcal{F}$ . Is it decidable, given a language  $L \in \mathcal{F}$ , whether or not L = WP(X, G) for some group G?

One-counter - no

Deterministic Context-Free - yes



# Decidability results

| 1   | 2   | Language                   |
|-----|-----|----------------------------|
| yes | yes | Regular                    |
| no  | no  | One-Counter                |
| yes | ?   | Deterministic Context-Free |
| no  | no  | Context-Free               |