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ABSTRACT 

 

 

 
 

Business to Business integration is enhanced by Workflow structures, which allow for 

aggregating web services as interconnected business tasks to achieve a business outcome. 

Business processes naturally involve long running activities, and require transactional 

behavior across them addressed through general management, failure handling and 

compensation mechanisms. Loose coupling and the asynchronous nature of Web Services 

make an LRT subject to a wider range of communication failures. Two basic 

requirements of transaction management models are reliability and consistency despite 

failures. This research presents a framework to provide autonomous handling of long 

running transactions, based on dependencies which are derived from the workflow. The 

framework presents a solution for forward recovery from errors and compensations 

automatically applied to executing instances of workflows. The failure handling 

mechanism is based on the propagation of failures through a recursive hierarchical 

structure of transaction components (nodes and execution paths). The management 

system of transactions (COMPMOD) is implemented as a reactive system controller, 

where system components change their states based on rules in response to triggering of 

execution events. One practical feature of the model is the distinction of vital and non-

vital components, allowing the process designer to express the cruciality of activities in 

the workflow with respect to the business logic. A novel feature of this research is that 

the approach permits the workflow designer to specify additional compensation 

dependencies which will be enforced. A notable feature is the extensibility of the model 

that is eased by the simple and declarative based formalism. In our approach, the main 

concern is the provision of flexible and reliable underlying control flow mechanisms 

supported by management policies. The main idea for incorporating policies is to manage 

the static structure of the workflow, as well as handling arbitrary failure and 

compensation events. Thus, we introduce new techniques and architectures to support 

enterprise integration solutions that support the dynamics of business needs.  
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Chapter 1 

Introduction  

 

 

 

 

 

 

 

 

1.1 Motivation   

 

Two widely demanding trends, both in web technologies and in the business world, drive 

and motivate the research in this thesis. In the business world, the trend is towards the 

collaboration of companies and enterprises as networked organizations. This is 

accomplished by adopting collaborative mechanisms of business processes integration 

within a large community of business partners. On the other hand, web technologies are 

transforming the web from an infrastructure for sharing information to an infrastructure 

where networked organizations can collaborate and integrate their business interests.  

 

Essentially, Service Oriented Computing (SOC) has had  a significant impact as the 

computing paradigm to support collaborative Business to Business (B2B) integration 
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over the internet (Papazoglou and Georgakopoulos, 2003).  Service Oriented 

Architectures (SOA) forms a foundation for rapid application integration and automated 

business processes, ideally through web service implementations (Newcomer and 

Lomow, 2004).   

 

In this chapter, we highlight the main challenges associated with the web service based 

business process modeling and management. These challenges enact modeling 

requirements that must be satisfied in order to achieve one general common objective: 

correctness and reliability of the management model. We discuss these requirements and 

state our research questions, research statement, model overview and assumptions. 

 

1.2 Research Challenges 

 

Web services are ñself-describing, open components that support rapid, low-cost 

composition of applicationsò (Papazoglou and Georgakopoulos, 2003). Web services are 

offered by service providers (business organizations) by implementing services, together 

with their description and associated technical and business support. A B2B process can 

then be composed by aggregating web services to form a composite service, in order to 

achieve a required business outcome. Autonomy, loose coupling, the heterogeneous 

nature of web services and human interaction for some tasks makes a business process 

into a long running one.   
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A composite service would typically entail a complex structure of interrelated activities 

that would exhibit a high degree of concurrency and interrelationship. Therefore its 

composition requires flexibility in terms of the construction of the overall business 

process. Workflow  systems integrate, automate and manage B2Bs and enable business 

processes to fulfill their business goals through flexible representations of the control 

flow of their tasks.   A service-based workflow process is a long running workflow, 

composed of web services that relate to each other through workflow constructs such as 

split and join, to allow for sequencing, parallelism or choices in the control flow. A 

workflow management system is required to coordinate the sequence of service 

invocations within a process, to manage control flows and data flows between web 

services, and to ensure execution of the process as a reliable transaction unit (Yan et al., 

2005). 

 

One of the important aspects of management of B2B long running processes is to ensure 

their reliability, consistent outcomes and the correct execution of the composite services. 

In particular, in case of failure of some of the component services, it is required that the 

business task remains ñstableò. Autonomy and loose coupling of web services makes a 

composite service more prone to failure than other business processing environments, in 

that the failure of services can happen at any time, with a higher probability, and 

therefore an efficient failure handling mechanism is required. In addition, a collaborative 

B2B process usually involves different parties, and spans different organizations; thus, 

correct and reliable execution is an important aspect of business integration which 
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guarantees that all parties involved in the business process always maintain their systems 

consistently, especially in the case of failure occurrences.  

Reliability, failure handling and correct execution behavior constitute the main properties 

on which transaction management models are based and where these properties are 

typically inherent within their execution semantics. Transaction management has been 

widely exploited in the literature as a mean of correct execution of database processes 

and has resulted in a plethora of proposed transaction models. The ACID  correctness 

properties (Gray, 1981)(Haerder and Reuter, 1983, Özsu and Valduriez, 1991) establish 

the main properties on which other database transaction models have built their 

correctness.  

 

In essence, an ACID transaction is (a) Atomic (all-or-nothing), by which  all operations 

of a transaction are expected to either successfully commit or if the transaction fails 

(aborts), then all its effects are undone (rolled back), (b) Consistent: the transaction 

moves the state of the system from one consistent state to another consistent state, i.e. 

requires the transaction to be correct, (c) Isolated: this  requires that correct concurrent 

transactions execute as if they are sequenced, and (d) Durable: this requires that once a 

transaction is committed then its outcome is made permanent in spite of future failures. 

To achieve overall correctness of transactions, different concurrency and recovery 

protocols have been proposed to ensure atomicity. These protocols mainly depend on the 

exclusive locking of shared resources for the duration of the transaction, e.g. the two 

phase locking protocol in (Moss, 1982).  
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As a result, in traditional database transactions, it is a requirement for transactions to 

enforce ACID properties, so as to ensure that only consistent state changes take place in 

the presence of concurrent access or failures. Even in complex business applications, 

ACID properties ensured that consistency of state is preserved. It is a very useful fault 

tolerance technique when multiple or remote resources are shared. The atomicity property 

ensures a reliable fault handling mechanism, but ACID transactions are regarded as 

ñshort-livedò entities, running on tightly coupled systems.  

 

Applying ACID properties in long processing environments will oblige locking resources 

for long periods of time, which is inappropriate. Atomicity in long running transactions is 

not a straightforward notion, since it is not always possible to semantically undo the 

effects of all tasks in the transaction, due to the complexity of the transaction model and 

the nature of the business tasks ï tasks can mean anything from a database update 

operation to sending email to a client or shipping goods. Instead, ACID properties are 

relaxed to suit long running transaction requirements where the atomicity requirement is 

replaced with the concept of Compensation. Compensation in long running transactions 

defines the behavior of the transactions in the case of occurrence of failures or 

cancellations. Failures need to be handled correctly, to ensure overall system consistency 

and data integrity. 

 

Compensation was first introduced in the saga model (Garcia-Molina and Salem, 1987) 

where a long running transaction consists of a set of ACID transactions, the saga itself is 

not ACID. Failure atomicity is guaranteed for sub transactions such that when one fails, it 
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is aborted and retried through forward recovery. If the saga fails, it is aborted, and all 

committed sub transactions are compensated in backward order by running compensators 

associated with each sub transaction.  

 

The compensation concept has been adopted in long running transaction models as a 

mean of recovery and reliability in the case of failure occurrences; primarily to relax 

atomicity of ACID transactions. Compensation tends to undo effects of previously 

completed tasks. Therefore, if an LRT failed, all previously completed activities are 

compensated by running their compensators. Generally, LRT management models apply 

compensation of activities using two standard methods:  (1) Forward order: when a 

recoverable failure occurs, a subset of LRT activities are compensated in the reverse 

order of their completion order until a safe point is reached and then the same activities 

are retried and (2) Backward order: in the case of irrecoverable failures, the LRT fails and 

all previously completed activities are compensated in reverse order of their completions: 

that is, reverse order in case of sequenced tasks and parallel or any order in case of 

concurrent tasks. However, whatever the order by which compensations are executed, 

this order is always enforced by the structure of the LRT model being applied, and results 

in a long running compensating transaction.  

In real B2B applications, it is the case that business process logic requires that 

compensation logic diverges from the standard compensation order that is obliged by the 

LRT structure by freely incorporating compensation logic into business logic. The 

restricted backward recovery mechanism makes implementing an arbitrary order for 
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compensations not a straight forward process. Furthermore, tasks that are not 

compensationally independent may execute their compensations in parallel. 

A motivating example is the following e-procurement workflow case study óPlace Orderô 

workflow: 

 

The dashed arrows represent compensation logic 

Figure 1.1 Place Order Business Process Scenario 

The business\compensation logic in this e-procurement case study states as follows:  if 

the transaction is compensated, then it has to be guaranteed that the compensators of 

UpdateCustomerAccount and ReserveGoods can be executed only after the Payment has 

completed its compensation. With the default backward compensation mechanisms, if 

UpdateCustomerAccount was completed after Payment has been completed, then, 

UpdateCustomerAccount will be compensated before Payment has been refunded, or 

they could both compensate concurrently which contradicts the compensation logic of 

this specific LRT. Therefore, and in the context of business process logic, we view an 

LRT as two transactions represented by one schema: the transaction in its normal 

intended form, and a compensating transaction. 
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Collaborative B2B business applications normally include tasks running concurrently as 

part of the overall transaction, which requires consistent and correct modeling of their 

behavior. Two important issues regarding concurrency execution are (a) the reliable 

modeling of the synchronization of concurrent tasks and (b) the prevention of possible 

deadlocks. Concurrency modeling is usually influenced by the underlying paradigm for 

representing transactions and the protocols used for the interactions between transaction 

tasks. The more flexible the transaction representation paradigm is, the more challenging 

it becomes to define a correct behavior for concurrency.  

 

The increasing availability of business processes is an important feature to the practicality 

of a proposed model. This could be accomplished in many ways, but more importantly, 

by providing compensation techniques to allow for tolerable failures to be recovered 

without interrupting the normal processing path of the business process. Availability can 

be further increased by distinguishing between crucial tasks that must complete 

successfully and those tasks that are less crucial and their failure is tolerable and will not 

require any further actions.   

 

Externalizing management aspects from actual execution aspects of process tasks 

increase the practicality of business process modeling. First, operational semantics can be 

captured at a higher abstract level than the actual executing tasks, allowing for 

implementing different methods for recovery without being tied to the underlying 

structure of the process. Second, it is a good way to provide the management model with 

extensibility of its operational semantics by adding new semantics. Event-Condition-



1.2 Research Challenges                                                                                                      

 

 

9 

 

Action rules are a natural candidate to fulfill management externalization and for 

implementing this kind of functionality.  

1.3 LRT Modeling Requirements  

 

As an essential part of conducting this research, we have defined a set of LRT modelling 

requirements.  These requirements are derived from the literature provided on LRT 

modelling approaches as well as from analysis of a number of example business 

processes. 

 

Principally, our Long Running Transaction is: 

1- Web service based: tasks in the LRT are web services that are composited to 

achieve a business outcome. 

2- Transactional: the modeling of LRT exhibits transactional semantics. 

3- A workflow: the LRT is represented as a workflow schema with arbitrary levels 

of nested tasks.   

4- A Reactive Management Model: it is executed in an environment where changes 

are detected as events and automatically responded to by applying appropriate 

execution logic through management policies.  

From a web-based business process perspective, LRT modeling imposes the following 

requirements (Aguilar-Saven, 2004; Papazoglou, 2003; Peltz, 2003):  

REQ. 1 Transactional support to guarantee consistent outcome for participating parties. 

REQ. 2 Flexible representation of complex web service compositions that allows 

nesting and concurrency which naturally occurs in business processes.   
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REQ. 3 Recovery protocols to undo completed tasks and to choose another acceptable 

execution path (Dalal et al., 2003). 

REQ. 4 Composition of web services must be supported with failure handling 

mechanisms that allow some failures to be tolerable and/or compensable while 

others could fail the business process from successfully completing depending 

on the crucially of the task to the overall outcome of the business process.   

 

One of the main differences between a traditional transactional model and a loosely 

coupled LRT is that the former is data-centric while the latter is activity-centric or more 

generally, process-aware (Reichert & Weber, 2012). Therefore, from the transactional 

perspective, LRT modeling imposes the following requirements (Colombo & Pace, 2012; 

Dalal et al., 2003; Dayal, Hsu, & Ladin, 1991): 

REQ. 5 Transactions support nesting and concurrent execution, but they are not 

flexible enough to capture the highly collaborative and concurrent nature of 

real B2B processes and hence more flexibility in representation is required as 

such to allow for selective and alternative choices.  

REQ. 6 Transactionsô recovery is based on failure handling mechanisms that are 

inherent in their semantics which delimits flexibility of expressing 

compensation logic of the business process. Therefore, the failure handling 

mechanisms should be separated from execution mechanisms, and both should 

operate in tandem to achieve correct recovery mechanisms. 

From the workflow  perspective, LRT modeling imposes the following requirements:  
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REQ. 7 Control flow of workflows should be supported by transactional semantics in 

order to achieve a reliable control flow (Bhiri et al., 2006a). 

REQ. 8 Synchronization of concurrent tasks should be formally defined to resolve 

potential operational ambiguities and potential deadlock situations (Russell et 

al., 2006). 

REQ. 9 Extensibility of a modelôs operational semantics is an important requirement of 

modeling which facilitates additions of new control flow constructs to comply 

with web service composition requirements and to confirm the practicability of 

the model. 

REQ. 10 Transaction support for workflows requires well-formed infrastructure and 

well-formed relationships between the correlated tasks and hence transactional 

workflows require well-formed structure applied to the workflow schemas 

(Kiepuszewski, Hofstede, & Bussler, 2000).   

From the compensation perspective, LRT modeling imposes the following requirements 

(Colombo & Pace, 2012; Greenfield et al., 2003): 

REQ. 11 Separation of failure handling and compensation handling semantics.  

REQ. 12 A mechanism for applying partial compensations that is integrated with the 

failure handling semantics as part of the failure recovery process. If failure 

handling requires compensation applied to completed tasks, this can be done 

without interrupting the execution of the transaction, i.e. tasks that are not 

interrupted with failures, will continue their executions. 

REQ. 13 Flexibility in incorporating compensation logic into business logic. 

Compensation semantics should not be enforced only by the structure of the 
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REQ. 14 business process composition; instead, the LRT designer should be assisted by 

a correct mechanism for freely expressing the customized compensation 

relationship between transactions tasks without violating the integrity of the 

overall process. These should apply in the case of global failure of the LRT.  

From the correctness and reliability of execution perspective, LRT modeling imposes 

the following requirements (Chrysanthis & Ramamritham, 1990; Colombo & Pace, 

2012): 

REQ. 15 Providing the means of validating the correctness of execution semantics. 

REQ. 16 The transactional relationships between interrelated tasks are best being 

formalized in a way to make reasoning about their correctness a straight 

forward task, i.e. using the same formalism for both, modeling and correctness. 

This will also increase the extensibility of the model. 

From the reactive management perspective, LRT modeling imposes the following 

requirements (Papamarkos et al., 2006; Wieringa, 2003): 

REQ. 17 Execution behavior of LRT components need to be observed as events, such 

that when a component completes, fails or compensates, an event is fired. 

REQ. 18 Execution semantics of the LRT need to be implemented as rules (policies) to 

automatically execute business logic. 
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1.4 Modeling Objectives 

 

Our modeling objectives are driven by the modeling requirements discussed in the 

previous section, and motivated towards the following aims:  

1- Correct control flow of a long running transaction, both in its normal processing 

path and its compensation processing path.  

2- Flexibility in representation of execution semantics.  

3- Flexibility in compensation composition. 

4- Reliability of execution by correct handling of failures and compensations. 

5- Automation of management mechanism as step towards a self-healing transaction 

model.   

6- Formal modeling of execution behavior that provides the means of reasoning 

about correctness of the behavior. 

 

1.5 Research Questions and Statement 

 

The modeling requirements and objectives listed in the previous sections raise the 

following research questions: 

Q1- How can the structure of the business process be specified with complex and 

arbitrary levels of nesting? 

Q2- How can the control flow semantics of transactions with complex and nested 

structure be formally captured? How can the same formalism be used to capture 

failure and compensation semantics?  
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Q3- What failure mechanism best reflects the propagation of failures through nested 

structures?  

Q4- What formalism is ideal for the flexible incorporation of compensation logic into 

business logic? 

Q5- What management mechanism would be ideal for automating the control flow 

process? 

Q6- How can the control flow formalism be used for reasoning about correctness of 

control flow, concurrency, failure handling and compensation semantics? 

 

Thesis Statement 

In this research, we focus on flexible control flow of web-based workflow modeling with 

long running transaction support to deliver reliable execution behavior of business 

processes. Reliability is guaranteed through flexible and autonomous failure handling 

and comprehensive compensation handling mechanisms.  

 

1.6 Contribution 

 

Our contribution is a fourfold: 

 

Contribution 1: Fine-grained specification model for arbitrary nested transactions. 

We specify our LRT model as a hierarchical tree structure that provides a recursive 

nature for propagating execution events across and along hierarchy levels. Essential to 
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this fine-grained structure, we explicitly capture the semantics of execution paths and 

specify them as autonomous components of the LRT. By providing this, we are able to 

enrich the operational semantics of concurrency with flexibility and extensibility.  

 

Contribution 2: Autonomous Failure Handling Mechanism 

An essential propagation policy states that ñFailure of a vital atomic node, fails its 

superiorò. Based on this policy, we build an autonomous failure handling mechanism that 

propagates failures recursively through vital ancestors, if the failure event reaches the 

root of the hierarchy, the transaction fails. Basic to the failure handling mechanism, a 

downwards propagation of failures is applied to a failed concurrent scope, in order to 

cancel all its activated components. The failure handling mechanism is integrated with a 

partial compensation mechanism to apply partial recovery in the case of tolerable 

failures. 

 

Contribution 3: Compensation Composition Mechanism 

We regard compensation composition as being as important as service composition. 

Therefore, we provide business process designers with the underlying framework to 

freely specify the order in which compensation of tasks are required to be executed. This 

functionality is provided through the specification of compensation patterns that are 

mapped onto the workflow schema. The designer is allowed to specify compensation 

patterns on subsets of component services of an LRT. A compensation pattern then 

decides the order by which the specified services are compensated. Any services that are 

not involved in any compensation pattern are compensated concurrently. This will 
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increase the performance of the system in terms of time spent on the compensation 

process. We support reliable compensation compositions by validating such 

compositions, to avoid consistency violations. This implemented through the 

comprehensive compensation mechanism of COMPMOD.  

Contribution 4: Specification Extensibility  

One important feature of COMPMOD is its highly flexible extensibility, in the sense that 

the underpinning representation structure can be enriched with further concurrency, 

execution and compensation semantics.  

 

1.7 Model Overview 

 

The work presented proposes a reliable control flow management mechanism for 

sequencing and concurrency in web-based workflow transactions, such that tolerable 

failures are handled. A tolerable failure is a failure of a task to complete successfully but 

the failure is acceptable in the sense that it would not cause an interruption of the LRTôs 

execution nor cause a global failure of the transaction. Handling tolerable failures would 

typically involve partial compensation activities applied to subsets of tasks, but will not 

stop the transaction from completing its normal execution. In the case of intolerable 

failures, and when a consensus is reached about the failure of the LRT, a comprehensive 

compensation is applied to all previously succeeded tasks. The order of compensations 

can be customized on a subset or subsets of tasks. Tasks that are not part of a customized 

order can be compensated concurrently. Customized compensations mainly reflect the 

business and the compensation logic of the transaction.  
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Our approach for managing LRTs is based on a reactive system controller in event based 

architecture. Policies define the rules by which the controller acts. In general, an 

execution event is raised for a component to signal its readiness to perform an execution 

(activation or compensation), or to signal that an execution of a component has finished 

(completion or failure). The raised event is then assessed by management policies to 

reach a consensus as to the current state of the component and the next state of its 

correlated components.  

 

An LRT in COMPMOD is represented as an arbitrary nested WF transaction. The WF 

representation of the model imposes a hierarchical tree structure, where the root of the 

hierarchy represents the main execution path. The respective levels of the tree represent 

an alternating levels of nodes and execution paths, such that the superior of a path is its 

enclosing scope node and the superior of a node is its enclosing execution path.  This 

results in atomic nodes being the leaf nodes of the hierarchy tree. Each component in the 

hierarchy is directly correlated with its superior, inferior, and siblings in an encapsulated 

manner, such that a component can be indirectly correlated with another component if 

their superiors are correlated. As an example, nodes on concurrent paths are correlated, 

since their superiors are siblings.  

 

The encapsulated behavioral interrelationship between components is modeled by 

dependencies, and automated by policies. Behavioral dependencies and management 

policies both reflect the execution semantics of the model and complement each other.  
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The model allows for a separation between vital and non-vital components where a 

failure of a vital component has an impact on the cancellation of its correlated 

components, while failure of non-vital components is tolerated. Cancellations will invoke 

partial compensations to return to a place where an alternative  (if one exists) can be 

attempted without lasting side effects, and the failure of the LRT will lead to 

comprehensive compensation being applied to all composited nodes in the transaction. 

 

1.8 Thesis Structure  

 

The thesis is organized as follows: 

Á Chapter 2: discusses the literature background of the thesis and the related work 

in the field. 

Á Chapter 3: discusses the two modeling paradigms that we adopt in our workflow 

semantics; workflow patterns and transactional patterns and explains how we 

extend these models. 

Á Chapter 4: describes the representation structure of the COMPMOD model, and 

introduces the concepts of execution events, reactive management and 

management policies. We will also state our model assumptions in this chapter.  

Á Chapter 5: describes the execution semantics of the model and its formalism, and 

shows the management mechanism and the failure handling mechanism. 

Á Chapter 6: describes the logic and formalism of compensation events and policies, 

and illustrates the partial and the comprehensive compensation mechanisms of 

COMPMOD. 
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Á Chapter 7: provides a verification of COMPMOD in terms of the correctness of 

the proposed model and its extensibility feature. 

Á Chapter 8: concludes the thesis and provides details of future work. 

Á Bibliography 

Á Appendix A and B lists a table for all dependencies and management policies of 

COMPMOD for easier referencing, through related discussions.  

Á Appendix C: provides an assessment of the COMPMOD model based on the 

Workflow Patterns Initiative. 

 

 

 

 

 

 

 

 

 

 

 



 

20 

 

Chapter 2 

 

Background 

 

 

 

 

 

 

 

 

2.1 Introduction  

 

There is a large body of work in the area of business process modeling: transactions, 

workflows, and long running transactions. In this chapter, we provide a literature review 

of some of the well-known modeling approaches and we focus on the parts relevant to the 

respective compensation mechanism. We provide a critique on the limitations of 

compensation mechanism in WS-BPEL and Compensation spheres. The critique is 

exemplified by a case study from E-supply chain systems. Finally we show how our 

COMPMOD model fills the gap in the current compensation mechanism limitations.  
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2.2 Data-Base Centric Transactions 

 

Database centric transactional models provide a strong theoretical foundation for 

transactions. Failure recovery and concurrency control are inherent within the models.  

 

The first of these models is the ACID  flat transaction where a strict notion of ñall-or-

nothingò is applied. Recovery is mainly based on the roll-back mechanism to restore the 

state of the system to the state before the failure has happened. The ACID transactional 

model is very restrictive, and is not appropriate when transactions are long lived and 

complex and may span multiple local database systems. For this reason, a number of 

extended and relaxed transactional models have been proposed, which relax some of the 

ACID requirements. 

 

Advanced transactional models have been proposed to introduce: 

1- Multi -leveled and nested transactions such as in Nested Transactions  (Moss, 

1985). 

2- The compensation concept in Saga transactional model (Garcia-Molina & Salem, 

1987). 

3- Nesting with compensation mechanism in Open Nested Transactions (Weikum 

& Schek, 1992), Nested Sagas (Garcia-Molina et al., 1991), and Flexible 

transactions (Elmagarmid, 1992; Zhang et al., 1994; Mehrotra et al., 1992), and 

ConTracts (Reuter, 1989;  Reuter, Schneider & Schwenkreis, 1997). 
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Nested models allow transactions to be nested within transactions to form a tree 

transaction. The nesting structure is reflected on the commitment, abort, and 

compensation of its constituent sub-transactions where different models provide 

different protocols with varying flexibilities. 

 

However, transactional models have the following limitations in business process 

modeling:  

¶ They are developed from the point of view of database management systems and 

thus business related semantics such as activity automation are ignored. 

¶  Coordination support for multi-tasking and collaborative activities across 

organizations is limited, and thus they are not applicable to heterogeneous and 

loosely coupled systems.  

¶ Compensation mechanisms are strictly in reverse order of the sub-transactionsô 

commitment order and are hidden from transaction designers.  

 

2.3 Transactional Workflows 

 

Business Processes are usually defined by business analysts to capture the activities and 

their respective orders to achieve some larger business goal. Workflows add a technical 

layer between the services and the business process as seen by a business analyst 

(Montangero, Reiff-Marganiec & Semini, 2011; Gorton et al., 2009).  
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Workflows provide a key functionality in integrating heterogeneous and distributed 

applications into a coherent business process and provide process automation. 

Modeling of such workflows is usually conducted in some graphical notation such as 

BPMN (White, 2004), UML activity diagrams, or YAWL (Van Der Aalst & Hofstede, 

2005)  which are graphical and textual and have formally defined semantics. 

 

A structured work flow consists of symmetrical blocks of AND-split followed by AND-

join or OR-split followed by an OR-join. A workflow is well behaved if ñit can never 

lead to deadlock nor can it result in multiple active instances of the same activityò. The 

work in (Kiepuszewski, Hofstede & Bussler, 2000) shows that every structured workflow 

is well behaved.  

 

Workflow patterns in ( Van Der Aalst at al., 2000;  Van Der Aalst at al., 2003; Russell, 

Hofstede, & Mulyar, 2006) present standard defintions of workflow patterns found in 

practical workflow strucures. This is a  good standard for workflow developers, and we 

provide a detailed description of the approach in Chapter 3.  

 

Workflows lack a clear theoretical basis for correctness criteria and support for reliability 

in presence of failures. Hence, transactional workflow is supported with transactional 

semantics such as failure recovery mechanisms and reliable executions.  

 

Failure recovery in transactional workflows can be supported in many ways: 
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1- Direct compensation semantics such as compensation spheres as discussed in 

section 2.5.3. 

2- Indirect compensation support such as YAWL where it is possible to model 

compensation behavior by using YAWL constructs (Brogi & Popescu, 2006). 

3- Dynamic and ad-hoc workflow adaptations in case of failure events such as 

ADEPTflex in (Reichert & Dadam, 1997) (Reichert & Dadam, 1998) and (Müller, 

Greiner, & Rahm, 2004). 

 

Transactional patterns have been introduced first in  (Bhiri, Perrin, & Godart, 2005) to 

propose a transactional approach to ensure the failure atomicity of composite web service 

workflows. Further work in (Bhiri, Godart, & Perrin, 2006) and (Bhiri, Perrin, & Godart, 

2006) used the concept of trasnactional patterns to ensure reliable composite services 

accrording to designersô specific needs. Control and transactional dependencies are 

defined for component web services and are mapped onto workflow patterns. 

Dependencies expressed in first order logic are employed to validate the transactional 

behaviour of web service compositions. We have drawn inspiration from this work, and 

we provide a detailed descripiton of the approach in Chapter 3.  

 

2.4 LRT Modeling Approaches in Web Service Settings 

 

Web services are coordinated through coordination protocols, and orchestrated through 

orchestration languages at a high level of abstraction and where failures are dealt with as 

exceptions. Coordination protocols describe coordination through transaction messages. 
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Such as: Tentative Hold Protocol (Roberts & Srinivasan, 2001), Business Transaction 

Protocol (Ceponkus et al., 2002), and WS-Transaction (Cabrera et al., 2002). 

 

Web services are composited through orchestration and flow composition languages.  

The body of work in this area has been focused in two directions: Formal modeling and 

orchestration languages.  

2.4.1 Formal Modeling 

 

The semantics of flow or interaction based compositions of web services are achieved 

through proposing extensions of well-known calculi or process algebra. In brief, control 

flow of compensations is achieved through primitives to install and activate required 

compensation activities within compensable processes (processes that are paired with 

compensation activities). The mechanism for installing and activating compensations is 

similar to exception handling primitives (throw and try-catch) of high level languages 

such as C++ or Java. Common to all models, compensation handlers are called from fault 

handlers. What differentiates these models is the way compensations are composed and 

executed. In (Bruni et al., 2005) , these were classified as: 

(1) Compensable flow composition where the way compositions are orchestrated  is 

similar to WS-BPEL and where process algebras are designed from scratch to 

describe the flow of control among services, such as (Bruni, Melgratti, & Montanari, 

2005; Butler & Ferreira, 2004; Butler, Hoare, & Ferreira, 2005).  

(2) Interaction based compensations as extensions of well-known calculi where 

modeling dynamic compensations is addressed, such as ˊ-calculus (Bocchi, 2004) 



Chapter 2. Background                                                                                                    

 

26 

 

(3) based on BTP, webˊ (Laneve & Zavattaro, 2005), and webˊ infinity (Mazzara & 

Lanese, 2006). 

In these models, semantic definitions are somewhat complicated. Hence, they are not 

practical to use to model real time business scenarios.  

2.4.2 Orchestration Languages 

 

Orchestration languages build business workflows by developing graphical or XML-

based languages such as XLANG (Thatte, 2001) and WS-BPEL (Andrews et al., 2003) 

(OASIS, 2007). In this section we discuss the general structure and mechanism in WS-

BPEL and in section 2.5.2 we discuss by example some limitations of its compensation 

mechanism. 

WS-BPEL is an industrial standard and language for process modeling based on XML 

and for connecting process activities with web services. WS-BPEL has rich functionality 

and provides fault and compensation handling capabilities for business process designers.  

Scopes in WS-BPEL are used to group activities in the business process based on 

functionality or shared variables and events. Scopes can be nested, that is scopes can be 

defined within scopes. Fault, compensation, and termination handlers are process 

fragments that run if a fault is raised or in case of compensation, to reverse the effect of a 

set of successfully completed activities. Each scope is attached with its own fault and 

compensation handlers as well as a termination handler (to terminate the processing of 

the scope if its parent scope is terminating or exiting).  
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These handlers can either be specified explicitly or can follow a default specification as 

provided by WS-BPEL standard. The control flow of activities is defined by two 

schemes: (1) structured activities controlled by ñsequenceò or ñflowò to impose control 

logic on activities nested within them, and (2) explicit control links between source and 

target activities such that a target activity can only start executing after a source activity 

has completed. A compensation handler can only be invoked by a fault handler which is 

triggered by a fault in the executing process. Furthermore, compensation handlers can 

only be attached to scopes and not to activities 

One major drawback of orchestration languages is that they do not support formal 

definitions for their operational semantics. As a consequence, there has been research 

directed towards formalizing their operational semantics such as BPEL (Qiu et al., 2005) 

based on WS-BPEL and c-join (based on XLANG) (Bruni, Melgratti, & Montanari, 

2004). 

 

2.5 Limitations of Selected Approaches 

 

After having discussed different modeling approaches of business processes in the 

previous sections, we dedicate this section to highlight these limitations by examining a 

running example. We choose an example from an e-supply chain management system 

and we focus on the compensation mechanism of two widely used modeling approaches: 

(1) the modeling language WS-BPEL, and (2) the conceptual modeling approach of 

compensation spheres.  
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2.5.1 E-supply chain case study 

 

Internet based supply-chain systems are achieved through integration of information 

systems of all supply chain partners (customers, suppliers, and manufacturers). E-Supply 

Chain may be sourced from several countries, assembled in other countries, and delivered 

to customers all around the world. In service oriented environment, the integration 

between business parties is represented by business process activities (e.g. a workflow) 

which are achieved through web services. A typical customer order represented by a long 

running business transaction, triggers several B2B web services provided by a network of 

independent companies to provide a streamlined material flow between all partners.  

In this thesis, we use examples from E-Supply Chain to illustrate and justify our proposed 

model.  

The example in (figure 2.1) illustrates an inter-enterprise business process occurring in 

the supply chain: how the supplier does business with one of its trusted manufacturing 

partners.  

 

Figure 2.1 Supplier-Manufacturer outsourcing business process OP 
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The sub processes in OP has the following functionalities: 

¶ SALES: performs activities such as receive order from manufacturer, Audit 

order, and send order acceptance to manufacturer. 

¶ CHARGE: performs payment activities for the outsourced goods. 

¶ OUTSOURCE_ANALYSIS: is a routine activity that is performed with each 

order transaction to conduct metrics that are used later in determining companyôs 

strategies, marketing goals...etc. 

¶ DELIVERY: delivers the goods to the manufacturer. 

¶ CHECK_GOODS: the manufacturer checks the goods. If goods are acceptable 

then the outsourcing process is completed, otherwise an exception will occur.  

The OP process has the following logic: 

Once the sales activity is completed, three activities are run in parallel; CHARGE, 

OUTSOURCE_ANALYSIS, AND DELIVERY. This special outsourcing scenario is 

conducted with trusted manufacturers. That is why the delivery of goods is performed in 

parallel with payment. However, the process logic requests that if the goods were to be 

returned for any reason such as ñnot meeting the required specificationsò, the goods must 

be returned to the supplier warehouses before the payment is refunded to the 

manufacturer. 
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2.5.2 Compensation Mechanism in WS-BPEL 

 

Due to lack of compensation semantic formalism, the compensation mechanism in WS-

BPEL may show anomalies in certain execution scenarios such as neglecting 

compensation control links that cross scope boundaries as discussed in (Khalaf, Roller, & 

Leymann, 2009). In other words, WS-BPEL does not provide guarantee on compensation 

order.  

In WS-BPEL, the compensation order of activities within scopes is strictly in reverse 

order of their completion and this order is carried out by default compensation handlers. 

Although explicit control links are allowed between activities/scopes and they are obliged 

during the normal execution flow, the reverse order of control links during default 

compensation processing is not straightforward and hence could be violated (König, 

2006) and (Thatte & Roller, 2003). In addition, modeling compensation logic in WS-

BPEL exhibits high complexity behavior in the presence of scope nesting together with 

control links that cross scope boundaries.  

We will show next in a step by step fashion the compensation mechanism in WS-BPEL 

by discussing a running example and we show how inconsistencies could occur in the 

compensation behavior. In (figure 2.2), we show a high-level graphical illustration for the 

business process of (figure 2.1). The visual cues in (figure 2.2) are borrowed from 

(Khalaf et al., 2009). 
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Figure 2.2 WS-BPEL process for supplier-manufacturer outsourcing example 

 

Scope OP represents the outer most scope that groups scope DELIVERY, SCO, and 

activity CHECK-GOODS. We assume that scope SCO groups SALES, CHARGE, and 

OUTSOURCE-ANALYSIS activities based on some shared order, customer, and 

payment variables. The solid arrows represent the control logic of business process 

activities and the dashed bold arrow represents an explicit control link to represent the 

compensation logic of the process as explained in section 2.5.1. Hence stating that if the 

scope OP is compensated, then the goods must be returned first (compensator of 

DELIVERY) before payment is refunded to the manufacturer (compensator of 

CHARGE). 

In WS-BPEL, when a scope is activated and running then its fault and termination 

handlers are installed and its compensation handler is not installed. When a scope is 

completed successfully then its fault and termination handlers are de-installed and its 

compensation handler is installed. 
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The illustration in (figure 2.2) assumes an execution instance of OP and hence the 

execution states of OP components are as follows: OP, SCO and 

OUTSOURCE_ANALYSIS are activated where SALES, CHARGE, and DELIVERY 

have been completed. If we assume that CHECK_GOODS has failed, the compensation 

mechanism of WS-BPEL will perform the following: 

1- The failure of CHECK_GOODS will raise a fault exception to fault handler of OP 

and the termination handler of OP will initiate the termination of immediately 

nested activated components starting with non-scope components then scope 

components. In this scenario there are no activated non-scope components and 

only SCO is activated. 

2- The fault handler of SCO is deactivated and the termination handler of SCO 

terminates the activated OUTSOURCE-ANALYSIS.  

3- The termination handler of SCO then invokes the compensation handler of SCO 

in default compensation order. Since SALES and CHARGE are not linked 

through explicit control dependency therefore their compensation is performed in 

any order.  

4- When the compensation handlers of both SALES and CHARGE have finished, 

the control goes to the default fault handler of OP. 

5- The fault handler of OP then invokes the compensation handler of OP which 

invokes the compensation handler of DELIVERY and the scope is compensated. 
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The compensation mechanism of WS-BPEL on this specific scenario exhibits violation of 

the explicit control link between CHARGE and DELIVERY and that the payment has 

been refunded to the manufacturer before the actual goods have been returned to supplier. 

Hence, the default handlers in WS-BPEL in some execution settings may over rule 

explicit control links.  

There has been research directed to overcome such non-deterministic compensation 

behavior in WS-BPEL. For example, in (Khalaf et al., 2009) the authors  proposed a 

deterministic model for handling compensations by altering the behavior of handlers and 

relaxing restrictions on control links. In (Coleman, 2005), the authors request a richer 

capability of compensation handlers. However, the default compensation of activities 

within scopes remains the same: reverse order of their completion.  

One could argue that the business process could be modeled in a different way but this 

would necessitate that the business designer should comprehend all possible execution 

states of the process which is not a feasible solution. Furthermore, as the complexity of 

the business process increases, modeling compensation behavior becomes cumbersome.  

In COMPMOD, the compensation behavior is clearly determined at design time and 

during compensation mode, the explicit compensation links over rule any other control 

dependencies. In table in 2.1, we summarize some of the differences between the 

COMPMOD and WS-BPEL.  
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 WS-BPEL 2.0 COMPMOD 

Model  Executable modeling language Conceptual model 

Control flow Structured nested activities + 

explicit control links 

Control dependencies derived 

from workflow structure + 

explicit compensation 

dependencies  

Scopes  Explicitly assigned to group 

activities based on shared variables 

or functionality. 

 

Implicitly f ormed by the 

model to group activities 

nested within workflow 

structures. 

Compensation 

order 

Determined and calculated during 

runtime depending on execution 

state of scopes 

 

Determined and calculated at 

design time  

 

Compensation links could be over 

ruled by default handlers behavior  

 

Compensation dependencies 

have priority over control flow 

dependencies 

 

Reverse order  Based on designer tailored 

compensation dependencies 

Compensation 

design 

flexibility  

ñDefault handler behavior causes 

high complexity in the default 

compensation order making it 

difficult for a designer to 

anticipate the resulting behaviors 

when making process design 

decisionsò (Khalaf et al., 2009) 

Compensation dependencies 

can be assigned in any order 

independent of control flow of 

activities 

Compensation 

behavior  

Possible un-deterministic 

behaviors 

Deterministic  

Table 2.1 Compensation behavior WS-BPEL vs. COMPMOD 

 

 

2.5.3 Compensation Mechanism in Compensation Spheres 

 

Atomic and compensation spheres in (Leymann, 1995) and (Leymann & Roller, 2000) 

propose a conceptual model for workflow management systems to allow for transactional 
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properties such as ñall-or-nothingò and compensation mechanism to be applied to 

workflow business processes. We discuss in this section the compensation spheres. A 

compensation sphere is an arbitrary collection of activities that are tightly related and 

share a common fate. Each activity in the compensation sphere is coupled with a 

compensating activity. If an activity in the compensation sphere has failed and aborted, 

then all completed activities within the sphere are compensated in reverse order. We 

discuss by example (figure 2.3) the compensation sphere mechanism. The workflow of a 

business process P is detected as a directed graph (figure 2.3 (a)) where a designer can 

arbitrarily select a compensation sphere S. Based on this selection, the mechanism 

induces a compensating graph or map S* (figure 2.3 (c)) by deriving P
-1

 from P where P
-1 

represents the reversed edges of P. When a compensation sphere commences its 

compensation, the execution starts by compensating activity L and cascades 

compensation of activities following the control edges in S*.  

One advantage of this approach is offering flexibility by involving some degree of 

arbitrary assignments of compensation orders within a sphere- as opposed to strictly 

reverse order. For example, indirectly connected activities in P such as B and I but where 

I is reachable from B in P can be grouped in S. Furthermore, non-connected activities 

such as B and G in P but where B is reachable from G in P
-1

 can also be grouped in S.  
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Figure 2.3 Compensation Spheres borrowed from (Leymann & Roller, 2000) p. 271 

 

However, compensation spheres have two restrictions: 

R1. Any two activities that are non-connected in both P and P
-1
 cannot possibly be 

grouped alone in a single compensation sphere such as (A and B) or (E and I).  

R2. Compensation spheres approach does not provide the process designer the ability to 

assign extra compensation control flow edges such as to explicitly connect the non-

connected activities in the process graph.  

We apply the compensating graph algorithm in (figure 2.3) on our outsourcing example 

as depicted in (figure 2.4). Note that CHARGE and DELIVERY are not connected in 

both P and P
-1 

(restriction R1) and hence grouping them in a sphere leads to un-connected 
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graph S* (figure 2.4 (c)). And because of restriction R2, it is not possible to apply the 

required compensation dependency between CHARGE and DELIVERY. 

One could argue that the designer can change the design of process such as to be able to 

force the required compensation orders if they cannot be systematically applied. 

However, in COMPMOD model we strongly avoid restricting the making of the design 

decisions of the business process because of compensation mechanism limitations. 

 

Figure 2.4 applying compensation spheres on outsourcing busing process 

 

2.6 Conclusion 

 

One of the aims of our COMPMOD approach is to simplify the design of business 

processes. We do so by performing compensations when explicitly requested by the 

designer and in the order required by the business process logic regardless of how the 

LRT is structured or how activities are scoped. Hence, designers can easily view and 
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reason about the customized compensation order to decide how best to design their 

processes.   Scopes in COMPMOD are implicitly defined over nested structures. This 

structure is totally ignored during compensation and the priority is given to the explicitly 

defined dependencies 

We have shown that purely transactional models force a strict compensation mechanism 

and that the business designers are not provided with the capability to alter compensation 

orders and that reverse compensation order is automatically executed.  

While workflow models show a high degree of process automation, they fall short in 

showing transactional properties including compensations. 

The complexity of compensation in WS-BPEL is a problem.  It is hard for process 

designers to comprehend all possible behaviors a process will have, due to 

compensations, as they always must keep in mind all current states in all different scopes 

and their control link dependencies.  

We have also shown by example how there are cases in compensation spheres where un-

connected activities in the process cannot be grouped in a sphere which imposes 

restrictions on process designers. 

We strongly claim the importance of freely assigning compensation patterns over process 

activities without putting into consideration the restriction imposed by the process 

structure. 
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Chapter 3 

Fundamentals  

 

 

 

 

 

 

 

 

3.1 Introduction 

 

Our modeling approach adopts and extends two main approaches: Workflow Patterns and 

Transactional Patterns. In this chapter, we discuss each of the adopted approaches, and 

provide an informal description of the operational semantics of our extensions. 

Definitions are illustrated with examples from the E-supply Chain management systems.   

We also discuss some reliability and integrity issues related to COMPMOD patterns. 
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3.2 Workflow patterns 

 

A Long Running Transaction in COMPOD model is represented as a workflow schema 

(LRT-WF). A workflow systemsô functionality depends on task sequencing, split 

parallelism, synchronization and iteration constructs as means of automating the business 

process.  Different workflow management systems provide different semantics for the 

same construct. We adopt the semantics from ñWorkflow Patternsò (Russell et al., 2006)  

as a paradigm for the informal descriptions of our model constructs. The workflow 

patterns approach proposes an imperative definition of work flow patterns and provides 

the patterns as a standard to be employed by business process designers and workflow 

system developers. 

 

Workflow patterns have been developed as part of an initiative commenced in 2000 by 

(Van Der Aalst et al., 2000). They classify the core architectural constructs inherent in 

workflows in a language and technology independent way, thus allowing for the 

definition of the fundamental requirements of business process modeling. Workflow 

patterns consider workflow specifications from a control-flow perspective and 

characterize a range of control flow patterns that might be encountered when modeling a 

business workflow. Following the initial work, twenty patterns were introduced in (Van 

Der Aalst et al., 2003) and a total of forty three control patterns were revised/proposed in 

(Russell et al., 2006).  
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The patterns range from simple constructs that are supported by most of the workflow 

management systems to complex routing primitives that are not yet supported by todayôs 

commercial workflow management systems or business process modeling languages. The 

work supports each pattern with an informal description and context assumptions, formal 

descriptions using Colored Petri Nets (Jensen, 1997) implementation related issues, and 

provides evaluation criteria for workflow developers to assess their offerings of full, 

partial, or no support of a given pattern.  

 

Workflow Patterns are classified in (Russell et al., 2006) as (a) five basic control-flow 

patterns, (b) four advanced branching and synchronization patterns, (c) two structural 

patterns, (d) four multiple instance patterns, (e) three state-based patterns, (f) two 

cancellation patterns., and (f) twenty three new control flow patterns which add to the 

above classifications in addition to loops and multiple instances patterns. The 

COMPMOD model assumes only a single instance of activities for a given process 

instance and therefore multiple instances, loops and interleaved patterns are not yet 

supported by the model. However, their applicability is a practical extension of the model 

and is discussed as a future work in this research in (Chapter 8).  

 

Workflows embrace branches of execution that are split, synchronized, merged, or 

discriminated at different points in the workflow process. A split pattern splits a branch 

of execution into two or more branches and the type of split construct determines the 

mode of branch routing. There are three basic split patterns, namely; Parallel Spilt (AND-

split), Multi-Choice (OR-split), and Exclusive Choice (XOR-split). Parallel Spilt and 
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Multi -Choice create concurrent routing of execution branches, while Exclusive Choice 

creates exclusive routing, where only one of the split branches is enabled at runtime 

depending on distinct choice conditions associated with each branch. 

 

Two or more branches of executions can be synchronized, merged without 

synchronization, discriminated (only 1 out of M paths is chosen), or partially joined (N-

out-of-M) by using a join construct that reflects the required semantics of the join.   

 

The LRT-WF schema of COMPMOD is modeled as a structured workflow.  Structured in 

this context can be viewed as a notion of well-formedness (Kiepuszewski, Hofstede, & 

Bussler, 2000), where concurrent and exclusive branches are encapsulated within scope 

patterns. Scope patterns, our contribution to the workflow patterns initiative, start with a 

split pattern and end with a join pattern. The type of split and join patterns reflect the 

required operational semantics of the scope.  

 

Scope patterns in COMPMOD can encapsulate further scopes, thus allowing for the 

modeling of multi nested transactions. The number of splits and joins within a nested 

scope are balanced, and not interleaved.  

 

The structured nature and the operational semantics of our scope patterns are emphasized 

at both; the split type and the join type of the scope pattern. Due to the diversity of join 

constructs, we apply further classification to the patterns proposed in (Russell et al., 
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2006), based on the operational semantics of join patterns and utilize this classification in 

many different ways throughout the discussions in this thesis, including: 

 

1- Informal and formal description of proposed scope patterns 

2- Evaluation of partially supported join patterns 

3- Evaluation of potentially applicable new scope patterns given the underpinning 

structure semantics of the model. 

4- Discussions and Conclusions. 

We classify join patterns1 as follows: 

1- Synchronization (AND-join): the convergence of two or more branches into a 

subsequent branch such that the thread of control is passed to the subsequent 

branch when all input branches have been enabled. The context of the pattern 

assumes that (a) the incoming branches are parallel and result from an earlier 

AND-split, (b) each incoming branch executes only once, and (c) the construct is 

enabled once all incoming threads are completed. The (Generalized AND-join) is 

a variation of AND-join where multiple instances of incoming branches are 

allowed.   

2- Merge: the convergence of two or more branches into a single subsequent branch. 

Each enablement of an incoming branch results in the thread of control being 

passed to the subsequent branch. There are two variations of this construct, the 

Simple-Merge (XOR-join), which allows only one incoming thread to be active at 

any time, while in the (Multiple-Merge) construct, it is possible for more than one 

                                                 
1 Descriptions in italics are borrowed from RUSSELL, N., TER HOFSTEDE, A. H. M. & 

MULYAR, N. 2006. Workflow controlflow patterns: A revised view. 
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3- incoming branch to be active simultaneously. Note that incoming branches are 

assumed to be distinct, and do not necessarily diverge from an earlier split pattern, 

and need not to be synchronized.  

4- Partial join (N-out-of-M): the convergence of M branches into a single 

subsequent branch following a corresponding divergence earlier in the process. 

The thread of control is passed to the subsequent branch when N of the incoming 

branches have been enabled. Variations of this join pattern are: (a) Structured 

Partial Join, where subsequent ennoblements of incoming branches do not result 

in the thread of control being passed on. The join construct resets when all active 

incoming branches have been enabled. (b) Blocking Partial Join where the join 

construct resets when all active incoming branches have been enabled once for 

the same process instance and subsequent enablement of incoming branches are 

blocked until the join has reset ï ideal for scopes within loops, and (c) Cancelling 

Partial Join where triggering the join also cancels the execution of all of the other 

incoming branches and resets the construct.   

5- Discriminator (1-out-of-M): the convergence of two or more branches into a 

single subsequent branch following a corresponding divergence (in case of the 

Structured Discriminator), or following one or more corresponding divergences 

(in case of the Unstructured Discriminator) earlier in the process model. The 

thread of control is passed to the subsequent branch when the first incoming 

branch has been enabled. Variations of this join pattern are: (a) Structured 

Discriminator where subsequent enablement of incoming branches do not result 

in the thread of control being passed on and the construct is reset when all 
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6- incoming branches have been enabled, (b) Blocking Discriminator where the 

discriminator construct resets when all active incoming branches have been 

enabled once for the same process instance. Subsequent ennoblements for of 

incoming branches are blocked until the discriminator has reset ï ideal for 

constructs within loops, and (c) Cancelling Discriminator where triggering the 

discriminator also cancels the execution of all the other incoming branches and 

resets the construct. 

7- Synchronization Merge: the convergence of two or more branches into a single 

subsequent branch. The thread of control is passed to the subsequent branch 

when each active incoming branch has been enabled. Variations of this pattern 

are (a) Structured Synchronization Merge where the converged branches are 

diverged earlier in the process at a uniquely identifiable point -ideal for 

synchronizing branches resulting from an OR-Split, (b) Acyclic Synchronization 

Merge where the converged branches are diverged earlier in the process and 

determination of how many branches require synchronization is made on the 

basis of information locally available to the merge construct-ideal for non-

structured workflows, and (c) General Synchronization merge where the 

converged branches are diverged earlier in the process and the thread of control 

is passed to the subsequent branch when each active incoming branch has been 

enabled or it is not possible that the branch will be enabled at any future time-

ideal for non-structured and highly concurrent workflows that include looping 

structures. 



Chapter 3. Fundamentals                                                                                                   

 

46 

 

8- Other join patterns: there are a few more join constructs that deal with multiple 

instances of activities within a given process instance, and with multiple 

execution thread instances in a single branch. These patterns are not discussed in 

this work.  

In COMPMOD we provide: 

1- New operational semantics of exclusive split and join patterns: XOR
*
-split and 

XOR
*
-join that allows for alternative exclusive choices such that only one 

alternative can be tried at any time. 

2- Explicit support for sequence, AND-split, OR-split, and XOR
*
-split. 

3- Implicit support for AND-join (synchronization), OR-Join (Structured 

Synchronization Merge), and XOR
*
-join. 

4- Explicit support for the operational and transactional semantics of three new 

scope patterns: AND-scope, OR-scope, and XOR-scope. 

Further patterns (other than sequence, split, and join patterns) are also either fully 

supported by the model, as in ñimplicit terminationò or partially supported, as in ñcancel 

regionò. In Appendix C, we provide an evaluation for COMPMOD in terms of the extent 

of support of each pattern.   

 

3.3 Informal description of COMPMOD patterns 

 

In the following subsections we discuss the informal descriptions of the main workflow 

patterns in COMPMOD that explicitly outlines the three basic execution routing modes: 

sequence, concurrent, and exclusive execution of branches.   
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3.3.1 Sequence Pattern 

 

The sequence pattern is the main building block of the WF process. It allows connecting 

tasks2 in sequential order. The pattern is informally described as: 

Def. 3.1 (Sequence Pattern) (Russell et al., 2006): An activity in a workflow 

process is enabled after the completion of a preceding activity in the same process. 

 

For example, in a supplierôs sales department, after the order has been received from a 

manufacturer, an auditor activity will check the order to decide whether to accept it or not 

(Figure 3.1). 

 

 

Figure 3.1 Sequence pattern in supplier sales process 

 

In our model, a task or a set of interrelated tasks (scope pattern) can be appended to 

another task or scope in sequential order on the same execution branch.  

3.3.2 Scope Patterns 

  

Informally, a scope pattern is defined as follows: 

Def. 3.2 (scope pattern): A scope-pattern is a composite pattern that couples a 

split pattern with a join pattern to ensure a symmetrical structure of the scope. The 

                                                 
2 Throughout the discussions, tasks, activities, web services, and atomic nodes (Chapter 4 

onward) are all used to refer to an atomic unit of work. 
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scope starts at the split point and ends at the join point. The scope is enabled when 

the incoming branch to the scope is enabled. The split construct of the scope 

diverges the incoming branch into two or more branches which are converged 

later by the joint construct. Enabling diverged branches and the join construct 

depends merely on the semantics of the split and join patterns respectively.   

 

In Figure 3.2, we illustrate a generic representation of a scope pattern that scopes three 

activities A1, A2, and A3. 

 

 

Figure 3.2 A generic scope pattern representation 

 

A diverged branch within a scope may entail one or more tasks that are connected 

through sequence patterns. A task can be an individual task or a scope pattern, thus 

allowing the construction of nested scope patterns that contains a balanced number of 

splits and joins and thus is symmetrical by construction. 
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3.3.2.1 Concurrent Scopes  

 

A concurrent scope creates two or more parallel branches. Once the scope is enabled, all 

concurrent branches are enabled simultaneously. Concurrent branches are synchronized 

via a synchronizer join construct. The synchronizer is enabled when all parallel branches 

are completed. We introduce two concurrent scope patterns, AND-scope and OR-scope. 

An AND-scope starts with an AND-split (parallel split) pattern and is coupled with a 

synchronizer (AND-Join).  

 

We provide an informal description of the AND and OR scope patterns based on both, 

the semantics of the individual patterns involved as described in (Russell et al., 2006) and 

the general definition of scope patterns (Def. 3.2). 

 

Def. 3.3 (AND-scope): the divergence of a branch at the split point of the scope 

into two or more parallel branches that are executed concurrently when the scope 

is enabled. Concurrent branches are synchronized at the join end of the scope and 

execution control can be passed to the task immediately following the 

synchronizer once all of the concurrent branches have completed their executions.  

 

As an example, in Supplier-Manufacturer outsourcing business process OP (Figure 2.1), 

after the SALES activity is completed, three activities (CHARGE, 

OUTSOURCE_ANALYSIS, and DELIVERY) are instantiated in parallel. This control 

flow represents an AND-join pattern. In COMPMOD, this structure is represented by an 

AND-scope pattern as illustrated in Figure 3.3. Note that in the original process logic of 
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OP, the DELIVERY activity is followed by the CHECK_GOODS activity representing a 

sequence pattern between them. Therefore, CHECK-GOODS is enclosed within the 

AND-scope pattern. 

 

 

 

Figure 3.3 AND-scope pattern in OP process 

 

A variant of the concurrent scope is the conditional concurrent scope where only a subset 

of the parallel branches are enabled based on logical conditions paired with each parallel 

branch. The synchronizer is enabled when all enabled parallel branches are completed. 

An OR-scope starts with an OR-split (Multi-Choice) pattern, and is coupled with a 

Structured Synchronizer Merge.  
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Def. 3.4 (OR-scope): the divergence of a branch at the split point of the scope into 

two or more parallel branches where only a subset of the branches are executed 

concurrently when the scope is enabled. The selection is based on the outcome of 

logical expressions associated with each parallel branch. The selected concurrent 

branches are synchronized at the join end of the scope   and execution control can 

be passed to the task immediately following the synchronizer once all of the 

selected concurrent branches have completed their executions.  

 

As an example, in E-Supply Chain systems, after an order has been received by a 

company and the payment has been received from the customer, an inventory check is 

performed to investigate the availability of goods in the companyôs warehouses. If the 

ordered goods are available, the goods are delivered to the customer. If the ordered goods 

are not available, a manufacture plan process is instantiated to provide the customer with 

the ordered goods from different supplier(s)/manufacturer(s). In COMPMOD, this 

process logic is represented by the OR-scope pattern illustrated in Figure 3.4. 

 

 

Figure 3.4 OR-scope pattern in Supply Chain process 



Chapter 3. Fundamentals                                                                                                    

 

52 

 

3.3.2.1 Exclusive Scopes   

 

An exclusive scope creates two or more exclusive branches. Exclusive branches alternate 

with each other, but only one exclusive branch is enabled, based on some distinct criteria. 

If an enabled branch fails to complete, an alternative branch is enabled. The scope starts 

with an exclusive split pattern, and ends with an exclusive join pattern. The join pattern is 

enabled when exactly one of the incoming exclusive branches has completed.  In (Russell 

et al., 2006), diverged branches in XOR-split pattern are enabled, based on distinct 

logical values associated with each branch and does not provide alternative enablement of 

branches. The XOR-join (Simple Merge) allows only one incoming branch to be enabled 

at a time, but allows all incoming branches to be enabled. Therefore we extend Workflow 

Patterns with two individual patterns as a variation of both the XOR-split and XOR-join, 

namely the XOR
*
-split3 and XOR

*
-join.   

 

We extend the semantic of the XOR-split as follows:  

 

Def. 3.5 (XOR
*
-split): The divergence of a branch into two or more branches. 

When the incoming branch is enabled, the thread of control is immediately passed 

to precisely one of the outgoing branches based on the highest priority criteria, 

where the first branch has the highest priority. If a branch fails to complete, an 

alternative branch is enabled (if any). The alternative branch is the one with the 

next highest priority.  

                                                 
3 Similar to preference relation in ZHANG, A., NODINE, M., BHARGAVA, B. & 

BUKHRES, O. Ensuring relaxed atomicity for flexible transactions in multidatabase 

systems. 1994. ACM, 67-78. 
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Def. 3.6 (XOR
*
-join):  the convergence of two or more branches that had diverged 

from an XOR
*
-split at some point earlier in the WF process. The construct is 

enabled when exactly one of the incoming branches has been completed.  

 

Accordingly, we provide an informal description of the XOR-scope pattern based on 

definitions (Def. 3.2, 3.5, and 3.6). 

 

Def. 3.7 (XOR-scope): the divergence of a branch at an XOR
*
-split point of the 

scope into two or more exclusive branches that are converged later at an XOR*-join 

point. When the scope is enabled, execution control is immediately passed to 

precisely one of the outgoing branches, based on highest priority criteria where the 

first branch has the highest priority. If an exclusive branch fails to complete, an 

alternative branch (if any) is enabled.  The XOR*-join construct is enabled when 

exactly one branch is completed. 

 

The extension of XOR-scope is motivated by two aspects: 

 

(a) Business process aspect: often a number of alternative tasks are proposed in the 

workflow, but there is a clear preference for one over the other.  For example, an 

e-booking scenario could be searching for an outbound journey to a destination 

where the priority is given to flights. If no flights are available for the required 
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(b) date then trains may be tried. The last priority could be travelling by bus if no 

trains are available.   

(c) Long-Running transactional aspect: when a sequence of tasks is required to be 

executed by a business process that executes over a long period of time and the 

risk of failing this sequence is not affordable, then the sequence of tasks could be 

alternated by an alternative sequence of tasks from the business point of view. In 

case of the failure of the first priority scenario, an alternative scenario is tried. E.g. 

in an e-supply-chain business scenario, a contract with one of two or more 

suppliers (prioritized according to their quotes, location, or quality) should be 

guaranteed for a specific product where the contract process might include many 

interrelated tasks. If a contract process fails to complete for a specific supplier, an 

alternative supplier can be tried.  

 

To illustrate the XOR-pattern by example, we consider a delivery process in a typical 

supply chain system. Usually, different delivery methods are provided depending on the 

companyôs delivery policies or customer location. Let us assume that in a specific 

delivery scenario, a company offers two methods of delivery: deliver by car or deliver by 

plane where priority is given to car delivery. If car delivery is not possible, then delivery 

by plane is attempted. In COMPMOD, this process logic is represented by an XOR-scope 

pattern as illustrated in figure 3.5. 
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Figure 3.5 Delivery XOR-scope pattern 

 

3.4 Reliability and Integrity Issues 

 

Informal descriptions of workflow patterns clarify the operational semantics of the 

constructs in an abstract way and from the control point of view of their intended 

functionality. The descriptions designate when a construct is enabled with respect to the 

enablement of its incoming or outgoing branches. Our workflow model is a transactional 

workflow model where the control flow mechanism is influenced by transactional 

properties such as completions, failures, or cancellations of workflow activities or 

activity scopes. The transactional behavior of a certain activity has an impact on other 

interrelated activities. For example, in Def3.1, an activity is executed when the preceding 

activity has completed. The definition does not state what happens when the preceding 

activity fails.  

 

Given the nested structure nature of the workflow schema, a failure or cancellation of an 

activity has an impact on the transactional behavior of other interrelated activities or 
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encapsulated scopes. An additional challenge is that the transactional nature of our 

workflow model implies that the behavior of the workflow must be reliable and the 

overall system should always be guaranteed to be in a consistent state.  

 

A major concern in reliability assurance is on the failure handling mechanism supported 

by the management model of the workflow.  Analogous to failure handling support, and 

equivalent to it in importance is the compensation handling mechanism. The informal 

semantics of the exclusive scope Def3.7 states that when an exclusive branch is enabled 

but fails to complete, then an alternative branch is enabled. However, it does not state 

what happens to the partially completed activities in the failed branch. Transactional 

integrity assurance requires the partially completed activities to be compensated before 

the alternative branch is executed, due to the potential assumption that alternative 

branches attain the same overall task from the business point of view.  

 

Deadlocks may arise from the ambiguous behavior of join constructs. For example, a 

synchronizer with m incoming branches assumes m enablement of branches for the 

construct to be fired. If one or more of the branches fails, the construct goes into a 

deadlock state. Hence, the synchronizer should be supported with transactional semantics 

to constantly ensure the consistent behavior of the construct even in case of failures.  

 

To address the issues mentioned, we augment the operational semantics of workflow 

patterns with transactional semantics to formally define the implemented patterns in 

COMPMOD. Thus, each workflow activity, branch, and scope is defined with a set of 
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transactional dependencies: activation, completion, failure, cancellation (force-fail), and 

compensation (when necessary). Dependencies are employed to model a reliable 

interrelated behavior of workflow components which consequently guarantees a reliable 

overall behavior of the model. The formal transactional semantics of the model are 

defined through (a) Transactional Dependencies, and (b) Management and Compensation 

policies. Formal descriptions are detailed in chapters 5 and 6.  

3.5 Transactional Patterns  

 

In our model, workflow tasks are web services. Orchestration deals with how different 

services are composed into a coherent whole (LRT). It specifies the order in which 

services are invoked, and the conditions under which a certain service may or may not be 

invoked (Alonso, 2004).  Our orchestration mechanism is inspired by the ñTransactional 

Patternsò approach (Bhiri et al., 2006a) (Bhiri et al., 2006b). Transactional patterns are 

aimed at specifying flexible and reliable composite web services. They are a convergence 

concept between workflow patterns and advanced transactional models (Elmagarid, 

1991), and thus they combine the flexibility of work flow control patterns with the 

reliability of transactional models to ensure the transactional consistency of service 

compositions.  

 

Web services emphasize transactional properties for their characterization and correct 

usage. In (Bhiri et al., 2006a), these properties are assumed to be retriable, compensable, 

and pivot. A service s is said to be retriable if it is sure to complete after a finite number 

of activations, while s is compensable if it offers compensational policies to semantically 
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undo its effects, and s is said to be pivot if once it successfully completes then its effects 

cannot be undone. 

 

Each service has a set of operations, depending on the transactional property of the 

service.  A pivot service has a minimal set of abort(), activate(), cancel(), fail(), and 

complete() to allow its abortion, activation, cancellation, failure, and successful 

completion. A compensable service has in addition a compensate() operation to allow for 

its compensation. A retriable service has a retry() operation to allow for its activation 

after failure. 

 

The transactional patterns define orchestrations between services in a composite web 

service by using dependencies to define how services are combined and how the 

behaviour of some given services influences the behaviour of others. Dependencies are 

used to express the relationships that exist between services such as sequence, alternative, 

compensation, activation or cancellation dependencies. They also associate preconditions 

with service operations. The general definition of a dependency is:  

 

Def.3.8 (Bhiri et al., 2006a): A dependency from service s1 to service s2 

exists if a transition of s1 can fire an external transition of s2.  

 

It is assumed that a transition can be an internal or external transition, with internal 

transitions being fired by the service itself (e.g. complete(), fail(), or retry()) and external 

transitions being fired by external entities (e.g. abort(), cancel(), or compensate()). 
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The transactional patterns paradigm discusses simple patterns such as AND-split or 

XOR-split, where a single service exists on each split branch. In addition, the way in 

which the dependencies are defined does not allow for nesting in the composite service. 

The failure handling and recovery mechanism are implemented through compensation 

and alternative dependencies.  

 

We have drawn inspiration from transactional patterns, but provide solutions for multiple 

nested transactions. We extend the notion of transactional patterns to model multi-nested 

transactions by introducing the following concepts (detailed discussion in Chapter 4):  

 

¶ Atomic nodes, scopes, nested scopes, and execution paths and their transactional 

dependencies and attributes; 

¶ A hierarchical structure that mirrors the workflow structure of the LRT.  

¶ Vitality of nodes, scopes, and execution paths; 

¶ Encapsulation of dependencies on the scope and execution path level to facilitate 

automated propagation of events; 

¶ Management and compensation policies to support an underpinning framework 

for imposing and automating the control flow of events. 
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Chapter 4 

Model Architecture 

 

 

 

 

 

 

 

 

4.1 Introduction 

 

In this chapter, we discuss the underlying structure of the COMPMOD model. We 

discuss features of the model, the representation of our workflow model, our model 

assumptions, and formal definitions of the workflow patterns and the generic formal 

definitions of transactional dependencies and management policies. This chapter forms 

the basis for Chapters 5 and 6. 

4.2 Features of COMPMOD 

 

COMPMOD is a conceptual management framework for WF Long Running 

Transactions, focusing on the control flow perspective of management. Transactions are 

designed based on structured workflow schemas, where WF constructs are supported 
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with well-defined operational and transactional semantics. On the one hand, the model 

aims at ensuring the reliability and integrity of transaction execution in the context of 

long duration executed through autonomous and loosely coupled web services. On the 

other hand, and given the business oriented nature of LRTôs, the model is aimed at 

providing flexibility in incorporating business and compensation logic into the design of 

transactions in a clear and user friendly way. 

 

Transactional semantics of WF constructs are defined through behavioral dependencies 

and management control policies. Dependencies are defined as predicate logic formulas 

over component states and/or attribute values. Satisfying a dependency fires an execution 

event, such that when an LRT or one of its components activates, completes, fails, force-

fails or compensates, an execution event is fired. A management policy assesses the fired 

event and performs an action based on the operational semantics of the WF model. The 

applied event-control-action mechanism is built on top of a recursive hierarchical 

structure of the WF schema, and is facilitated through automated propagation 

mechanisms that are merely influenced by the recursive hierarchical nature of the WF 

schema.  

 

The management of LRTs must proceed in two parallel directions:  

 

(a) The management of the LRT during its normal execution mode, which must embrace 

a reliable and efficient fault-handling and partial compensation mechanism. 
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(b) The management of the LRT during the execution of its compensation mode 

comprehensive compensation, in case the LRT has failed to successfully complete.  

 

To handle LRTs, a modelling and management system would ideally support the 

following aspects. 1-3 are motivated by the structure of transactions and the fact that it is 

at the business level, where a full understanding of the implications exists; 4 allows for 

the separation of the actual process and handling of execution and exceptions in a vibrant 

and flexible way; and 5-8 are requirements that ensure the practicality of the approach.  

 

1- Multi -level nesting of transactions with reliable behavioural dependencies 

between transaction components and across hierarchy levels;  

2- Definition of designer-order compensation patterns that reflects the business logic 

of the LRT;  

3- Incorporating compensation logic into the business logic of long running 

transactions through transactional dependencies;  

4- Rule-based Policies for managing execution and compensation control flow;  

5- Automated method for propagating activation and successful completion events 

through the hierarchy structure   as a management mechanism. 

6- Automated method for propagating failure events through the hierarchy structure 

as a failure handling mechanism.  

7- Automated method for performing compensation actions while the LRT execution 

is in progress, through backward and forward order compensations.  

8- Flexibility in extending the model through new WF patterns. 
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Aspects 1-7 have been addressed in the proposed model and discussed in this thesis. The 

flexibility of the model is expressed through the extensibility property of COMPMOD, 

and is discussed in Chapter 8.   

4.3 Representations of Nested LRTs  

 

We use two main representations of the workflows in COMPMOD: a workflow 

representation that allows to abstract away from sub workflows and a tree representation 

that is used by the propagation mechanism.  

 

In our model we have two basic components: nodes and execution paths. A node can be 

an atomic node (a single web service) or a scope node ï a set of semantically connected 

nodes (atomic and/or scope). An execution path represents a trail of nodes that are 

executed in sequential order. A scope node encapsulated by an execution path is 

interpreted the same as an atomic node. In other words, scope nodes on an execution path 

are like black boxes that encapsulates execution paths and other nodes.  

 

4.3.1 Workflow Model  

 

An LRT, at its highest level, is executed as a flat transaction, i.e. a sequence of nodes that 

are executed sequentially (Figure 4.1). The main execution path is denoted as p0. A node 

can be an atomic node or a scope node. Each scope creates two or more execution paths 

that start from the split point and end at the join point of the scope. Each execution path is 

a sequence of one or more nodes, executed in sequential order where nodes along the 
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path again can be atomic or scopes allowing arbitrary levels of nesting. Through the rest 

of the discussion, we will use the term component to refer to both nodes (atomic/scope) 

and execution paths.  

 

 

 

Figure 4.1 A WF showing level 0 of a sample LRT 

 

The modelling method allows for multi-level nested transactions to address demands 

occurring in real cooperative business processes. In the representation model itself, we 

see alternating levels of paths and nodes. The main execution path of a transaction is 

regarded as level 0 in the workflow. Figure 4.2(a), demonstrates an expanded two level-

nesting of the sample LRT in Figure 4.1 and Figure 4.2(b) demonstrates the LRT with 

level 2 of the WF collapsed. 

 

Considering the execution path ὴ1 in ίὧέὴὩ2, the path consists of an atomic node ὲ6 

followed in sequence by a scope node ίὧέὴὩ2.1 that in turn encapsulates three execution 

paths. We provide a nodeList attribute on path objects to express this: for example 

ὴ1.ὲέὨὩὒὭίὸ=[ὲ6,ίὧέὴὩ2.1]. If we collapse level 1 of the WF, the main execution path 

becomes a flat WF that executes the nodes in  p0.ὲέὨὩὒὭίὸ = [ὲ1, ὲ2, ίὧέὴὩ1, ίὧέὴὩ2, 

ίὧέὴὩ3]  in sequential order (figure 4.1).  
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Figure 4.2 A WF showing multi levels of a sample LRT  

 

4.3.2 Hierarchical Structure Model  

 

Transaction components ïnodes and execution paths- are linked together in a hierarchical 

structure. Each component has a single superior, and an ordered set of one or more 

inferiors. More specifically:  

 

Node component: A superior of any node is the execution path that encapsulates the 

node.  An atomic node is a leaf node that has no inferiors. A scope node has two or more 

inferiors which represents the number of split execution paths it encapsulates.  
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Execution path component: The superior of any execution path is the scope node that 

encloses it. The main execution path of an LRT has no superior. Each execution path has 

one or more inferiors. The inferiors of a path represent an ordered set of one or more 

nodes that the path encloses. The root of the recursive hierarchy is the main execution 

path of the LRT ὴ0. Figure 4.3 illustrates the hierarchy structure of the sample workflow 

in Figure 4.2(a). 

 

Figure 4.3 Hierarchal Structure of WF schemas 

 

4.3.3 Transactional operators and scopes  

 

COMPMODôs WF schema is formed as a structured workflow that supports the design of 

arbitrary nested levels of transactions. The well-formed structure of the LRT is forced by 

the model, meaning that the burden of maintaining the balanced structure of (split and 

join) patterns is imposed by the model.  
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A scope node starts with a split operator (OR, AND, or XOR) that is explicitly assigned 

while constructing a scope. The syntax of the scope is defined as: 

 

╢╬▫▬▄▫▬▄►╪◄▫►ȟ▼▬■░◄╝▫▀▄ȢȢ▼▬■░◄╝▫▀▄□  

 

When a scope is initially defined, a split operator and a list of split nodes are specified. A 

split node can be an atomic node or a scope node, which facilitates the construction of 

nested scopes.  

 

The AND-split pattern in (Figure 4.4 (a)) is defined as (AND,[n1,n2,n3]) and is 

implemented in COMPMOD as depicted in (Figure 4.4 (b)) where the split pattern is 

coupled with a synchronisation point representing the implicit AND-Join. The number of 

split nodes corresponds to the number of execution paths encapsulated within the scope. 

Therefore, the scope in (Figure 4.4(b)) creates three execution paths namely p1, p2, and p3 

which are represented by the order list PathList of the defined scope node.  

 

A scope in COMPMOD is formally defined as:  

Def.4.1: (Scope Definition) 

A scope is defined as follows:  

░ᶅ= ..□ ▬░.▪▫▀▄╛░▼◄=▼▬■░◄╝▫▀▄░ ╪▪▀  

░ᶅ= ..□ ▪▫▀▄╛░▼◄░.◄◐▬▄={═╣╞╜╘╒,╢╒╞╟╔} : 

▼╬▫▬▄=(▫▬▄►╪◄▫►,[▼▬■░◄╝▫▀▄..▼▬■░◄╝▫▀▄□]) Ÿ 

▼╬▫▬▄.▬╪◄▐╛░▼◄=[▬..▬□]  

where operator ɴ {AND,OR,XOR}  
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As mentioned earlier, each execution path creates an ordered list of one or more nodes, 

denoted by nodeList. When a node is appended to an existing execution path ὴὭ, the node 

is appended to ὴὭȢὲέὨὩὒὭίὸ. The main building block construct of the WF is the 

sequence construct. A sequence pattern connects two nodes in a sequential order. The 

sequence pattern is formally defined as: 

 

Def.4.2: (Sequence pattern) 

A sequence pattern is defined as follows: 

node1.type={ATOMIC,SCOPE} and node2.type={ATOMIC,SCOPE}: 

SEQPattern=(SEQ,node1,node2)  O

pi.nodeList=pi.nodeList+[node2] ,  node2.superior=pi 

where pi=node1.superior 

 

Accordingly, the two level nested scope of (Figure 4,4 (c)) can be denoted by the 

following constructs: 

 

Scope1=(OR,[(SEQ,n1,scope1.1),n2,n3]) where scope1.1=(XOR,[(SEQ,n4,n7),n5,n6]). 
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Figure 4.4 Scope Structure 

 

4.3.4 Execution paths  

 

The type of scope pattern determines the routing mode of its encapsulated paths. An 

AND-scope creates two or more concurrent execution paths, while  an OR-scope creates 

a two or more concurrent paths where only a subset of these paths are executed during 

runtime, the executed paths are those whose enabling condition are satisfied. An XOR-

scope creates two or more exclusive paths: the first path has the highest priority and 

therefore execution starts with the path with the highest priority. If an exclusive path that 

has an alternative path with lower priority fails to complete, the path is compensated in 

backward order, until the split point of the scope is reached (this is done as part of the 
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forward compensation of the LRT), and then the alternative path is executed. Therefore, 

execution paths are assigned with the following transactional attributes:  

1. An execution path IsConcurrent if it is encapsulated within an immediate OR-

scope or AND-scope superior. 

path.superior={AND,OR} O  path.IsConcurrent=TRUE 

2. An execution path IsExclusive if it is encapsulated within an immediate XOR-

scope superior.   

path.superior=XOR O  path.IsExclusive=TRUE 

3. An execution path hasAlternative, if it IsExclusive and  has a path with lower 

priority in the same scope.  

path.IsExclusive ᷈  successor(path)ÍNULL  Opath.hasAlternative=TRUE 

4. A concurrent path does not have an alternative. 

 path.IsConcurrent=TRUE Ÿ path.hasAlternative=FALSE  

5. Apart from the main execution path, a path must either be concurrent or 

exclusive.  

 path.IsConcurrent=TRUE Ÿ path.IsExclusive=FALSE  

path.IsExclusive=TRUEŸ path.IsConcurrent=FALSE 

6. An execution path is IsEnabled if  and only if it IsConcurrent path within an OR 

immediate scope and its branching condition is satisfied at runtime. 

7. The main execution path is a special case where: 

path=p0  Opath.IsExclusive=FALSE ᷈  path.IsConcurrent=FALSE ᷈  

path.IsEnabled=FALSE 

 



4.3 Representations of Nested LRTs                                                                                  

 

71 

 

4.3.5 Vitality of components  

 

Each LRT component has a vitality attribute that allows it to specify whether a 

component is vital or non-vital. A vitality value IsVital={TRUE/FALSE} is assigned to 

each component, either by specification or by evaluation. Vitality of atomic and scope 

nodes is assigned by specification: that is, according to the business logic of the LRT. 

Essentially, vitality allows the workflow designer to express whether the failure of the 

specific service or scope of services can be tolerated and the workflow can proceed (an 

example of a non-vital task might be one sending a progress message to the invoking user 

ï nothing in the process will be broken if the message is not sent).  

 

Vitality of execution paths is assigned by evaluation according to the following rules. A 

path is  

Å vital if it encapsulates at least one vital node.  

Å non-vital if all the nodes it encapsulates are non-vital.  

 

Note that the decision of assigning the vitality value to nodes (atomic and scope) is based 

on the business logic of the LRT. It is important to note that our management/ 

compensation model does not investigate or analyse the business logic of the LRT. It is 

always assumed by the model that the logic provided for the LRT at design time is what 

it is required from the transaction by the business level.  

 

Vitality of components is utilised in the control propagation mechanism proposed in the 

model. The transactional implication of the vitality measure of a component expresses the 
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impact of successful completion or failure of a component on its immediate superior and 

on its successor in case of node components.  

 

A vital nodeôs successful completion is necessary for  

1- The successful completion of its superior path 

2- The activation of its successor node(if any) 

The failure of a vital node leads to the failure of it superior path (by propagation), and 

consequently the execution of the path, ends.  

Successful completion of non-vital nodes is desirable for the successful completion of 

its enclosing path, but is not necessary. In other words, the failure of a non-vital node 

will not fail its enclosing path unless it was a non-vital path and all its nodes have failed. 

The same applies to the activation of a non-vital nodeôs successor, if one exists. The 

successful completion of a non-vital node is desirable for the activation of its successor, 

but not necessary. Hence, the failure of a non-vital node will still trigger the activation of 

its successor (if any).   

 

Execution paths are either concurrent or exclusive. The effect of the successful 

completion or failure of paths, with respect to their vitality measure, is most evident for 

concurrent paths. 

 

The successful completion of a vital concurrent path is necessary for the successful 

completion of its immediate superior scope. The failure of a vital concurrent path will fail 
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its superior scope, and consequently force-fail all the concurrent paths within the same 

immediate superior scope.  

 

The vitality of an exclusive path does not have a direct impact on the successful 

completion or failure of its enclosing scope. An exclusive scope succeeds if one of its 

exclusive paths successfully completes, and fails if all its exclusive paths fail to succeed 

regardless of their vitality measure. Therefore, we consider only concurrent scopes when 

discussing the assignment of vitality measure to scope nodes. 

 

We classify concurrent scopes with regard to the assignment of vitality to the scope and 

its encapsulated paths into three cases: 

 

Case 1: a vital scope with at least one vital path. 

Case 2: a non-vital scope with any combination of encapsulated vital/non-vital paths. 

Case 3: a vital scope with all paths as non-vital. 

 

Case 3 does not seem useful from the business point of view. However, while case 3 

could be designed, it is not desirable, and hence, will exclude it through vitality 

assumptions 2 below. 

 

We justify our exemption of Case 3 as follows: vitality is a way of stating the necessity of 

success of a specific component. If we assume that a scope is vital and is necessary to 

succeed, then we implicitly assume that at least one of its paths is guaranteed to succeed. 
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In case 3, where not all paths are vital, they are all desirable but not necessary to succeed, 

which seems to contradict with the vital assignment of the enclosing scope. However, it 

may be argued that in some senses, a vital scope with only non-vital nodes would succeed 

if only one of the nodes succeeded; thus we wished to leave the option to the business 

process designer.  

 

However, to ensure that processes are generally sensible, we have assumed logical 

restrictions by the model with respect to the design of LRTs as listed in Section 4.7.  

 

4.4 Workflow  of OP Case Study in COMPMOD  

 

We represent the OP business process in (Chapter 2, Figure 2.1) using COMPMOD 

architecture. First, in Figure 4.5, we depict the workflow representation of OP in 

COMPMOD. At this stage, we ignore transactional and compensation dependencies but 

we will refer back to the OP workflow case study in Chapters 5 and 6. We assume that 

the process logic of OP defines the OUTSOURCE_ANALYSIS activity as a non-vital 

activity and hence its failure during runtime will not interrupt the execution of OP. 
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Figure 4.5 OP workflow in COMPMOD 

 

Syntactically, the OP workflow is defined as: 

OP=(SEQ,SALES,(AND,CHARGE,OUTSOURCE_ANALYSIS,(SEQ,DELIVERY,

CHECK_GOODS))) 

 

In the following, we list the transactional attributes of OP according to COMPMOD 

model. 

 

(1) Node Types: 

Note that nodeType is a transactional attribute which is assigned for nodes and hence 

the following values apply: 

SALES.nodeType=ATOMIC      Scope1.nodeType=SCOPE 

CHARGE.nodeType=ATOMIC   OUTSOURCE_ANALYSIS.nodeType=ATOMIC 

DELIVERY.nodeType=ATOMIC   CHECK_GOODS.nodeType=ATOMIC   

 

 



Chapter 4. Model Architecture                                                                                           

 

76 

 

(2) Node Lists: 

Note that nodeList is a transactional attribute which is assigned for execution paths 

and hence the following values apply: 

p0.nodeList=[SALES,Scope1]  

scope1.p1.nodeList=[CHARGE] 

scope1.p2.nodeList=[ OUTSOURCE_ANALYSIS] 

scope1.p3.nodeList=[ DELIVERY, CHECK_GOODS] 

 

(3) Path Lists: 

Note that pathList is a transactional attribute which is assigned for scope nodes and 

hence the following values apply: 

 

scope1.pathList=[p1,p2,p3] 

 

(4) Vitality attributes: 

Note that IsVital is a transactional attribute which is assigned for all workflow 

components and hence the following values apply (Table 4.1): 

 

Component IsVital  
p0 TRUE 

SALES TRUE 

CHARGE TRUE 

OUTSOURCE_ANALYSIS FALSE 

DELIVERY TRUE 

CHECK_GOODS TRUE 

scope1.p1 TRUE 

scope1.p2 FALSE 

scope1.p3 TRUE 

Table4.1 Vitality attributes of OP components 
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(5) Path Routing Attributes: 

Note that routing attributes are transactional attributes which are assigned for 

execution paths and hence the following values apply: 

 

Path IsConcurrent IsExclusive hasAlternative 

po FALSE FALSE FALSE 

scope1.p1 TRUE FALSE FALSE 

scope1.p2 TRUE FALSE FALSE 

scope1.p3 TRUE FALSE FALSE 

Table 4.2 Path attributes of OP case study 

4.5 Reactive Management and Execution states  

 

The management system of transactions (COMPMOD) is implemented as a reactive 

system controller (Wieringa, 2003) where system components change their execution 

states and actions in response to stimuli/events. In our model, an event is fired as a result 

of a behavioral dependency satisfaction. A stimulus is triggered as a result of a transition 

in the execution state of a transaction component or as a result of the application of a rule 

(policy), leading to the firing of an event. In other words, COMPMOD is an 

Event/Control driven WF management system that reacts continuously to stimuli/events 

until the LRT execution finally terminates in a state that is meaningful from both a 

system as well as a business perspective. 

 

During the execution life cycle of the transaction, the LRT and its components go 

through different execution states and they are marked with their current execution state. 

The state transition diagrams are depicted in Figures 4.6-4.9.  Initially, the LRT and all its 
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components are marked as NOT-ACTIVATED . State transitions are triggered by execution 

events, and they are marked by the transition actions deployed in the management 

policies. For example, when an activation event is fired for the LRT, commencing its 

execution, the activation event is assessed by an activation policy and the action 

activate(LRT) is performed, which transforms the state of the LRT from NOT-ACTIVTAED  

to ACTIVATED . Activation of the LRT fires the activation event of the main execution 

path, and subsequently an activate(p0) action is performed which transforms the state of 

p0 from NOT-ACTIVTAED  to ACTIVATED . The effects of events and actions in our model 

obligate a chain of state transformations that continuously change the state of the LRT 

and its components, in accordance with the management and compensation policies. The 

chain of transformations is controlled by the propagation of an events/actions mechanism 

implemented by the COMPMOD model. If we abstract from the propagation mechanism, 

then the events and actions have identical effects in our mode, and therefore, the two 

terms may be used alternatively to refer to state transformation of components.    

 

 

Figure 4.6 STD for LRT  
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Figure 4.7 STD for atomic nodes 

 

 

 

 

Figure 4.8 STD for scope nodes 

 

 

 


































































































































































































































































