MAINTAINING TRANSACTIONAL INTEGRITY IN LONG
RUNNING WORKFLOW SERVICES: A POLICY -DRIVEN

FRAMEWORK

Thesis submitted for the degree of
Doctor of Philosophy

At the University ofLeicester

By

Manar Salamah Ali
Department of Computer Science

University of Leicester

2012

ABSTRACT

Business to Business integration is enhanced by Workflow structures, which allow for
aggregating web services as interconnected business tasks to achieve a business outcome.
Business processes naturally involve long running activities, and require ti@maslact
behavior across them addressed through general management, failure handling and
compensation mechanisni®ose coupling and the asynchronous nature of Web Services
make an LRT subject to a widaange of communication failuresTwo basic
requirementf transaction management models are reliability and consistency despite
failures. This research presents a framework to provide autonomous handling of long
running transactions, based on dependencies which are derived from the workflow. The
framework preents a solution for forward recovery from errors and compensations
automatically applied to executing instances of workflow$e failure handling
mechanism is based on the propagation of failures through a recursive hierarchical
structure of transactiomomponents (nodes and execution paths). The management
system of transactions (COMPMOD) is implemented as a reactive system controller,
where system components change their states based on rules in response to triggering of
executionevents One practicafeature of the model is the distinction of vital and non

vital components, allowing the process designer to express the cruciality of activities in
the workflow with respect to the business logicnovel feature of this research is that

the approach pertsi the workflow designer to specify additional compensation
dependencies which will be enforce®l notable feature is the extensibility of the model

that is eased by the simple and declarative based formalism. In our approach, the main
concern is the prosion of flexible and reliable underlying control flow mechargsm
supported by management policies. The main idea for incorporating policies is to manage
the static structure of the workflow, as well as handling arbitrary failure and
compensation events. Uiy, we introduce new techniques and architectures to support
enterprise integration solutions that support the dynamics of business needs.

DECLARATION

This thesis reports on work undertaken in the Department of Computer Science,
University of Leicester, supervised by Dr. Stephan Rddfganiec. | hereby declare

that the contents of this submission have not previously been published for a degree or
diploma at any other university or institute.

All the material submitted is the result of my own research, except where otherwise
indicated.

The research work presented in some sections has been previously published: in
particular:

1 A brief description of OMPMOD architecture that is presented in Chapter 4 and
the failure handling mechanism presented in (Chapter 5, section 5.4) has been
published in(Ali and ReiffMarganiec, 201p

1 The compensation mechanism presented in Chaptesébeen published as a
Book Chapter in"Servicedriven Approaches to Architecture and Enterprise
Integration”, IGI Global, 2013, ISBN 97B466641938. The fitle of the book
chapter issi Mai nt ai ning Transactional I ntegri
Servies: A Policydriven Framework" (Authors: Re#¥larganiec and Ali.)

Manar Salamah Ali
LeicesterOctober 2012

ACKNOWLEDGMENTS

| would like to convey my sincere gratitude to my supervisor Dr. Stephan- Reiff
Marganiecfor his helpful advices, continuous support and valuable feedback on the
context of my research and thesis, and his constant encouragement during the course of
my PhD study.Forhiskinds uper vi si on and gnatefd.ance, I 6 m

My exceptional olbigations are to my dearest parents, Mr. Salamah and Mrs. Muazzez,
for all their love, support and faith in me, for being my inspiration, and for making me
everything | am. For all this, I will be forever thankful.

| would like to thank my loving familymy sisters Dr.Inas and Mrs.Nibras , my brother
Mr. Abdullah, and my dear friends Mrs. Dina Mulla and Mr. Mustafa Jabbar for their
encouragement, mostly for being there forasewell ador their patientistening to all

my worries, over and over again thaut complaining. For all this, | owe them much.

| would like to acknowledge Dr. Ammar Amin, the Supervisor General of the Joint
Supervision Program, King Abdul Aziz University. For his great support, | am
truly thankful.

| would like to express my heartfelt appreciation and gratitude to Mr. Massimiliano
Canali for his valuable support and encouragement during the final year of my PhD work.
For hisdevotednesd am genuinely indebted.

My love and admiration for my threkids, Layan, Lara, and Ammar. Without their
patience, relentless praise and their shoulderingrezt responsibilities during my oft
recurring absenceom home, | would never have been able to complete this work. For
their courage, | am full of pride ataimble gratitude.

Thank you!

Manar

S

Contents

(@ gF=T o) (= g [1 £ Yo [111 [0 o 1
00 1Y o 1 117 Ui (o] PP P PP SPTPPPPRN 1
1.2 ReSearChAllENgES........ccoo oo e e e e e e e emenas 2
1.3 LRT Modeling REQUIFEMENLS.........ccoviiiiiiiiiiiimmreeeetice s e e e e e e e ermmane e e e e e eaea e 9
1.4 Modeling ODJECHIVES.........ccoiiiiieeeieii et e e e e e e e e e e e enes 13
1.5 Research Questions and StatemenLt.............oovuviuiiciiiieeeiiiiiiee e 13
1.6 CONIIDULION. ...t r et eeeeeeeees 14
1.7 MOAEI OVEIVIBW.....cuueiiiiiiiiieee e e e et areee s e e e e e e e e e e e e eeeeeseebbsnnne e e e 16
1.8 THESIS SHUCKUIE.... oo it eeee ettt e e e e e emrnnnne 18
Chapter 2: BaCKgrOUNG...........ccooiiiiiiiiiiiiieeee e e e e e e e e e e e e e eaas 20
pZ2 I [1 0T [V Tt 1 [PR 20
2.2 DataBase Centric TranSACONS.........cuiiiieeii i e rees e 21
2.3 Transactional WOrKfIOWS............uuiiiiiiiiiii i 22
2.4 LRT Modeling Approaches in Web Service Settings...........ccuvvvivvieeeciivvnnnnnee. 24
2.4.1 FOrmal MOAEliNgccoviiiiiiiiiiiiii e 25

2.4.2 Orchestration LAnNQUAGES........ccveiiiiiiiieiiiieeeeiee e eenee e 26

2.5 Limitations of Selected APProaches...........ooooooiiiiiiieee e 27
2.5.1 Esupply chain case StUdY.............uuuuiiiiiiicceeee e reeere s 28

2.5.2 Compensation Mechanism in VBEEL.................ccoeviiiiieee e, 30

2.5.3 Compensation Mechanism in Compensation Spheres..................... 34

pZ G I ©o] o Tox (1] o] o PSRRI 37
Chapter 3: FUNAAMENTAIS........uuiiiiiiiiiiiiiie e 39
G 700 I8 1 11 o T [1o U 39
3.2 WOrkflow patterns...........ooooooiiiiiiiinnen i ceesssnnssseeeeeeeeeeeeeeeeeeeeeme . A0
3.3 Informal description of COMPMOD PAtternS.........cevvviiiiiiiiiiieeriieieeeieeeeeeee e 46
3.3.1 SeqUENCE PAterN........cevviiiiiiiiiisieeeeiee e e eneene e e e e eeeeeen Bl

3.3.2 SCOPE PatleINS. ... it erenr e eees 47
3.3.2.1 CONCUITENT SCOMES. ...uuuiiiiiiieiiiieeeeinmmriaeeerie e e eri e e eea s ennnesesnneas 49

3.3.2.1 EXCIUSIVE SCOPES....uuiiiiiiii e eeiieieiieeei et eeee e 52

3.4 Reliability and INtegrity ISSUEBS...........coviiiiiiiiiiiiemmr e 55
3.5 Transactional Patterns..........cooviiiiiiiiiiieee e e e e e e e 57
Chapter 4: Model ArChItECIUIEcoviiiiiiiiiee e 60
g 1 1 o o [o 1o) S 60
4.2 Features Of COMPMOND...........ccoiiiiiiiiiiieeee e as 60
4.3 Representations of Nested LRTS........c.uiiiiiiiiiiicc e eeeme e 63
4.3.1 WOrKFIOW MOAEL......ooeieiiiiee e 63

4.3.2 Herarchical Structurlodel............ooovviiiiiiiiiiieeeeeeiii e 65

4.3.3 Transactional operators and SCAPES........ccvvvvrriiiieieeeiee e e eeeaiaanns 66

4.3.4 EXECULION PALNS......coiiiieieeeeeeme e 69

4.3.5 Vitality of COMpPONENtS.........ccooviiiiiiiiiiieeee e smmmeeeeeeeeeen L

4.4 Workflow of OP Case Study in COMPMQD...............uuviuuiiimreeeeeniiiieeeen 74
4.5 Reactive Management and EXECULION SEALES............eviviiiiieeciiiiiiiiieiiiieeeeeeeeen 7.7
4.6 Hierarchical Transactional Dependis and Policies...............cccceiiiieenneens 80
4.6.1 DEPENUENCIES.uuuiiiiiiiiiiiieeieieeetetee ettt ettt e e e e e e e e e e s s e e e e e e e e e e e e e e 81

A.6.2 POICIES ..ottt ere e e e e e e e nnne e 83

4.7 MOdel ASSUMPLIONS.....ccciieeeeieiieieeeeeee ettt s e e e e e e e e e eneas 36
4.7.1Vitality ASSUMPLIONSoviiiiiiiiiiie s e e e e e ceeecrs e e e e e e e e e e e e e e e eeree e e e e e eaeaaaes 86

4.7.2 Failure ASSUMPLIONS.....ccciiieeieiiiieiieeeeeee e e e e ee e e e e eenennnnne 86

4.7.3 Cancellation asSUMPLIONS..........coiiiiiiiiiiiimemee e erenennnae 87

4.7.4 Compensation aSSUMPLIQNS.........ccocuuuuiiirirrmraeiiieeee e eeeereeeees 88
Chapter 5: Management MeChaNISM..........couiiiiiiiiiiiiii e 90
Lo 00 I 11 0 T [0 Tox 1 o USSP 90
5.2 Path an@®Cope EXECULION.......ccviiiiieeeeieii e ee e 91
5.2.1 Sequence CONtLQL.........c.ooiiiiiiiiiieeee e 92

5.2.2 ConcurrencCy CONrOL.........uiiiiiii e eeeeeeree e Q8

5.3 Control Management MechaniSm..................uuviiicceiieceeeeee e 103
5.3.1 ACtIVAtiON SEMANTICS......uuuiiiiiiiiiiiiiiiiieeetiiiieeee e e e e e e e e e s eseeeaeeeaee s 104

5.3.2 Completion SEMANTICS.........ooiiiiiiiiiiireer s eeeeeeeeeeeees 107

5.4 FailureHandling MECNaNISM.........coviiiiiiiiiii e 112
5.4.1 Failure SEeMaANTtICS......ccceeeeiiiiiiiiieiiieeee e e e e e e e e e mmme e e e eeeeeeneennnnns 115

5.4.2 FOrcarail SEMANTICSuuuuiiiieiee e e et ieeee e e et mmme e e e e eeeneees 117

D S EXAMIPIES. .t 120
5.5.1 ControFlow Dependencies of OP Case Study..........ccceeeeeeeiiieeennnnns 120

5.5.2 EBOOKING EXaMPIE....ccoiiiiiiiei e 121

5.5.3 Nested LRT Sample.........ccooiiiiiiiiiiiieee e 123
Chapter 6: Compensation MechaniSM................eiiiiiiiiieeciiiiiics e veeeenn 127
G300 I [0T [T4 1 o] o 127
6.2 Partial CoOMPENSALION........cutiiiiiiiiie e 128
6.2.1 Compensational ABULES............cccuiiiiiiiiiiieeee e 131

6.2.2 Dependencies SEMANLCS........ccccuuuuuiiiiiieeeriiiibee e e eeeeeeeeees 133
6.2.2.1 Compensation Dependencies................uvvvvvimmeerieeeeevennnnnnnn. 135

6.2.2.2 Compensation Completion Dependencies.............ccccvvuuennes 136

6.2.3 Partial Compensation Mechanism............cccccooviiiieeen i, 138

B.2.4 EXAMPIC.. ..o e ———— 143

6.3 Compreherge COMPENSALION.uuuuiiiiiiiiiiii et 146
6.3.1 Customized Compensation Dependency Graph...........ccccoeeviieeneen. 148

6.3.2 Compensational AIULES...........cccciiiiiiiiii e 152

6.3.3 Validity of Compesation DependencCies..........ccccuuvvrriereieencivrnrenennnne. 153

6.3.4 Compensational BENAVIOL...............uuuuiuiiiireeeeeeiiiiee e e eeeeennnes 156

6.3.5 Customized Compensation Dependencies.......cccoeeeeeeeeeeceeiccceeeeennn. 157
6.3.6 Customized compensation mechanism.............ccceevvvveeeeiieeeeeeeeeee, 158
6.3.7 EXAMPIES.....ouiiiiiiiiiiiiiii e 160

6.3.7.1 Customized Compensation Dependencies for OP Case.StudB0
6.3.7.2 Comprehensive Compensation Mechanism for Sample.LRT63

Chapter 7: Verification and Extensibility of COMPMODccccccoeiiiiiiiiiiiieeenn. 165
4% R 11 (o To [Tox 1 o n ISP PPPPPR 165
7.2 Verification APPrOACKL............vuiiiuiiiii i e e errnree e e e e e e e e e eeees 166
7.3 Soundness Of WF MOAEL.......coooiiiiiiiiii i eceeee e ereee e 168
7.3.1 Consistent Rule INVOCALION.uuiiiiiiiiiieemeeeice e eaenne e 172
7.3.2 DeadloCK ADSENCE.........o oot 177
7.3.3 R@ChabIlity........cooi e 178
7.3.4 Proofof-concept by EXamplen........oooiiiiiiiieee 179
7.4 EXTENSIDIITY ...t 181
T4 L EXAMDIES .. oo emrn e e e e e e e e e e e aeens 183
Chapter 8: Conclusions and Future WOrK...........ccccoeiiiiiiiecciceeeiiciie e 186
8.1 General REMAIKS.........uuiiii it ceeeii ettt ettt e e e e e e eaba e e e e e sessammmeees 186
8.2ThESIS CONCIUSIONS......cvvuiiiieiiiiiiiie e ceeee e e e e e e e e e e et e e eesee s e e e eeesaaneeeeeesraan s enns 189
8.3 FULUIE WOTK ...cerieeeite ettt eeeme e e e e e e e e et e e e e s e e e enannns 192
APPENDIX AT TABLE OF DEPENDENCIES........ccoovtieie et 194
APPENDIX BT TABLE OF POLICIES.......o oot eeme e 196
APPENDIX Ci An assessment of COMPMOD model based on Workflow
Patterns INMALIVE.coevie et eeeme e e e e e e e e et e e eeaans 199

BIBLIOGRAPHY ..ottt 202

LIST OF FIGURES

Figure 1.1 Place Order Business Proce
Figure 2.2WS-BPEL process for suppliena nuf act ur er out sour
Figure 2.3 Compensation Spheres borrowed filoeymann & Roller, 2000p . 2 7 1
Figure 2.4 applying compensation sphe
Figure 3.1 Sequence pattern in suppl:.i
Figure3. 2 A generic scope pattern repres
Figure3.3ANDs cope pattern in OP processécée
Figure3.4OR cope pattern in Supply Chain p
Figure 3.5 Delivery XORE cope patternééecéécé@eeadaeédec«
Figure 4.1 A WF showing |l evel 0 of a
Figure42A WF showing mul ti l evel s of a sas
Figure 4.3 Hierarchal Structure of WF
Figure 4.5 OP workflow in COMPMODEéZ¢éZ¢éé¢
Figure 4.6 STD for LRTééééeeeeeeeeéece
Figure 4.7 STD for atomic nodeséééééé
Figure 4.9 STD for execution pathseéeéé
Figure 5.1 Execution path scenarios w
Figure 5.2 Concurrent scope cases with respect to vitality of encapsulated @athé
Figure53Ebooki ng Exampl eéééééééeécééeéeéceé
Figure 5.4 An execution instance of L

rrrrrrrrrrrr

Figure 55Scopé s -Biudr archy Tree éééééééeéeée

7

51
55
64
65
66
69
75
78
79
79
80
93
100

Figure 6.3: ASample LRsiwi t h customi zed compensat.i 149
Figure 6.4 Dependency Graph forsample LiRE é ¢ é € é 6 é é e é e éée é . . 152
Figure 6.5 Final OP workflosthemag é € € € € 6 é é é é éééeéeééé 161
Figure 7.1 Verification Approach Char 168
Figure 7.2 Rule Invocation Graph for sample LREcssccscccsccssccssccses. . 171

Figure 7.3 STDswithMang e ment Rul esééééééééééeéeéé 176

Figure 7.4 Rule invocation graph for 181

LIST OF TABLES

Table 2.1 Compensation behavior VB E L

Tabl
Tabl
Tabl
Tabl
Tabl

Table5 .

Tabl
Tabl
Tabl

Table 5.8 Forcé a i
Table 5.9 Forcé a i

Tabl

Compl eti on

ed. 1
e 4.
e 4.
e 5.
e 5.
3

e 5.
e 5.
e 5.

e

5.

N P W N

4
6
7

1

Vitality attr

Path attribu

vV sS.

COMP MOD e é ééece « 34

i butes of OPé &.0 76

tes of OP cas8é.

STT of actionséééééeéececeegeé

Activation Dependenciesééceé

Activation Policies éééé

,,,,,,,,

Compl etion Policies éeéeéé

Failure Depe

Failure Polii

ndenci es éeé¢ég

,,,,,,,

cies éééeéeéeeé

,,,,,,,,,,

A

s sz 7

s z 7

eee

4

| Dependenciesééeéeééeecececéeés:

,,,,,,,,,,,,,,,,,,

[Policieséééééééécéeéeéec.aé:

O Control flow dependenci eés.

,,,,,,,,,,,,,,,,

Table 5.11Execution Instances@BA A ®é é ¢ ¢ ¢ éééééééééééé..é

Tabl
Tabl
Tabl
Tabl

Table 6.5 Current Execution State Instances of failed sggpen f i gur e

Table 6.6 Current Execution State Instances of compensated.pcope

Tabl
Tabl
Tabl

e

e

e

e

e

e

e

6 .
6 .
6 .
6 .
6 .

6 .
6 .

1
2
3
4

7
8
9

Compensation
Compensation
Compensation

Compensation

Customi zed ¢
Customi zed c

Customi zed c

Dependenci es.é&é

Compl etion Deéep
Policieséeééeéeée

Compl etion Pol

6. .

f i guér.e

ompensation déep
ompensation pol
ompensation de.p
,,,,,,,,,,,,,,,,, 66

77

80

105
105
107
108
117
117
118
118
121
124
136
138
139
139
144
146

. 158

158
162
164

LIST OF CHARTS

ControlChart1Acti vati on of LRTéééeééeeéeééeeé 106
Control Chart 2. Activation of Pathéeéé 106
Control Chart 3. Activation of Nodeéée 106
Control Chart 4. Successful Compl et i o 109
Control Chart5 Successful Completion of Pat h110
Control Chart 6. Completion of a Conc 111

Control Chart 7. Failureofneii t al Nodeééééeééeéééeéeéeéeéeé 111
Control Chart 8. Failure of a Vital N 114
Control Chart 9. Failure of nemi t a | Pathéééeéeéeéeéeéeée 115
Control Chart 10. ForcE a i | Scopeéééééééééeéeéeééeéeéé 119
Control Chart 11. ForeE a i | LRTééeééeéeéeéeéeéeéeél20

Control Chart 12. Compensation of Pat 140
Control Chart 13. Compensation of nod 141
Control Chart 14. Compensation Compl e 142
Control Chart 15. Compensation Compl e 143
Control Chart 16. Comprehensi@Zeco mpensati on éééééééééé 159

Control Chart 17. Customised compensa 160

Chapter 1

Introduction

1.1 Motivation

Two widely demanding trends, both in web technologies and in the business world, drive

and motivate the research in this thesis. In the business world, the trend is towards the
collaboration of companies and enterprises as networked organizations. This is

accomplished by adopting collaborative mechanisms of business processes integration
within a large community of business partners. On the other hand, web technologies are
transforming the web from an infrastructure for sharing information to an infrageuct

where networked organizations can collaborate and integrate their business interests.

Essentially, Service Oriented Computing (SOC) has had a significant impact as the

computing paradigm to support collaborative Business to Business (B2B) integration

Chapter 1. Introduction

over the internet(Papazoglou ah Georgakopoulos, 203 Service Oriented
Architectures (SOA) forms a foundation for rapid application integration and automated
business processes, ideally through web service implementafd&wcomer and

Lomow, 2003.

In this chapter, we highlight the main challenges associated with the web servide base

business process modeling and management. These challenges enact modeling
requirements that must be satisfied in order to achieve one general common objective:
correctness and reliability of the management model. We discuss these requirements and

state oir research questions, research statement, model overview and assumptions.

1.2 Research Challenges

Web servicesa r eseltd@scribing, open components that support rapid, -dost
composition (Phpazagiop and Ganrgakapoums) A008eb services are
offered by service providers (business organizations) by implementing services, together
with their description and associated technical and business support. A B2B process can
then be composed by aggregating web services to form a composite service, in order to
achieve a required business outcome. Autonomy, loose coupling, the heterogeneous
nature of web services and human interaction for some tasks makes a business process

into a long running one.

1.2 Research Challenges

A composite service would typically entail a complex structure of interrelated dtivit
that would exhibit a high degree of concurrency and interrelationship. Therefore its
composition requires flexibility in terms of the construction of the overall business
processWorkflow systems integrate, automate and manage B2Bs and enable business
processes to fulfill their business goals through flexible representations of the control
flow of their tasks. A serviebased workflow process is a long running workflow,
composed of web services that relate to each other through workflow constalcisssu
split and join, to allow for sequencing, parallelism or choices in the control flow. A
workflow management system is required to coordinate the sequence of service
invocations within a process, to manage control flows and data flows between web
services, and to ensure execution of the process as a reliable transactipfaaret al.,

2005.

One of the important aspects of managenoéf@2B long running processes is to ensure

their reliability, consistent outcomes and the correct execution of the composite services.

In particular, in case of failure of some of the component services, it is required that the
business tadkorenrnaitmnomyt amd | oose couplir
composite service more prone to failure than other business processing environments, in

that the failure of services can happen at any time, with a higher probability, and
therefore an efficient faire handling mechanism is required. In addition, a collaborative

B2B process usually involves different parties, and spans different organizations; thus,

correct and reliable execution is an important aspect of business integration which

Chapter 1. Introduction

guarantees thatlgarties involved in the business process always maintain their systems
consistently, especially in the case of failure occurrences.

Reliability, failure handling and correct execution behavior constitute the main properties
on which transaction managenent models are based and where these properties are
typically inherent within their execution semantics. Transaction management has been
widely exploited in the literature as a mean of correct execution of database processes
and has resulted in a plethooé proposed transaction models. TAE€ID correctness
properties(Gray, 198)(Haerder and Reuter, 1983zsu and Valduriez, 199Establish

the main properties on which other database transaction models have built their

correctnss.

In essence, an ACID transaction is (a) Atomic-¢alhothing), by which all operations

of a transaction are expected to either successfully commit or if the transaction fails
(aborts), then all its effects are undone (rolled back), (b) Consigtenttransaction

moves the state of the system from one consistent state to another consistent state, i.e.
requires the transaction to be correct, (c) Isolated: this requires that correct concurrent
transactions execute as if they are sequenced, and (dplButhis requires that once a
transaction is committed then its outcome is made permanent in spite of future failures.
To achieve overall correctness of transactions, different concurrency and recovery
protocols have been proposed to ensure atomiditgs& protocols mainly depend on the
exclusive locking of shared resources for the duration of the transaction, e.g. the two

phase locking protocol i(Moss, 1982

1.2 Research Challenges

As a result, in traditional database transactions, it is a requirement for transactions to

enforce ACID properties, so as to ensure that only consistent state changes take place in
the presence of concurrent access or failures. Even in complex busingeatiapp,

ACID properties ensured that consistency of state is preserved. It is a very useful fault

tolerance technique when multiple or remote resources are shared. The atomicity property
ensures a reliable fault handling mechanism, but ACID transactiomgegarded as

Ashloirtedo entities, running on tightly couj

Applying ACID properties in long processing environments will oblige locking resources
for long periods of time, which is inappropriate. Atomicity in long running transactons i

not a straightforward notion, since it is not always possible to semantically undo the
effects of all tasks in the transaction, due to the complexity of the transaction model and
the nature of the business taskdasks can mean anything from a databapdate
operation to sending email to a client or shipping goods. Instead, ACID properties are
relaxed to suit long running transaction requirements where the atomicity requirement is
replaced with the concept of Compensation. Compensation in long runairsgdtions
defines the behavior of the transactions in the case of occurrence of failures or
cancellations. Failures need to be handled correctly, to ensure overall system consistency

and data integrity.

Compensationwas first introduced in the saga mo¢@harciaMolina and Salem, 1987
where a long running transaction consists of a set of ACID transactions, the saga itself is

not ACID. Failure atomicity is guaranteed for sudngactions such that when one falils, it

Chapter 1. Introduction

is aborted and retried through forward recovery. If the saga fails, it is aborted, and all
committed sub transactions are compensated in backward order by running compensators

associated with each sub transaction.

The compensation concept has been adopted in long running transaction models as a
mean of recovery and reliability in the case of failure occurrences; primarily to relax
atomicity of ACID transactions. Compensation tends to undo effects of previously
competed tasks. Therefore, if an LRT failed, all previously completed activities are
compensated by running their compensators. Generally, LRT management models apply
compensation of activities using two standard methods: (1) Forward order. when a
recoverale failure occurs, a subset of LRT activities are compensated in the reverse
order of their completion order until a safe point is reached and then the same activities
are retried and (2) Backward order: in the case of irrecoverable failures, the LRahéhils

all previously completed activities are compensated in reverse order of their completions:
that is, reverse order in case of sequenced tasks and parallel or any order in case of
concurrent tasks. However, whatever the order by which compensationgeatged,

this order is always enforced by the structure of the LRT model being applied, and results

in a long running compensating transaction.

In real B2B applications, it is the case that business process logic requires that
compensation logic diverges from the standard compensation order that is obliged by the
LRT structure by freely incorporating compensation logic into business logic. The

redricted backward recovery mechanism makes implementing an arbitrary order for

1.2 Research Challenges

compensations not a straight forward process. Furthermore, tasks that are not

compensationdl independent may execute their compensations in parallel.

A motivating example ishe followingepr ocur ement wor kfl ow case

workflow:

- T
- ~

\"4 A

Reserve Payment
Goods v

Update
Customer
Account

Delivery by
car
Delivery by
plain

Figure 1.1 Place Order Business Process Scenario

Receive
Order

The dashed arrows represent compensation logic

The businessompensation logic in this-grocurement case study states as follows: if

the transaction is compensated, then it has to be guaranteed that the compensators of
UpdateCustomerAccouandReserveGoodsan be executed only after tRaymenthas
completed its compensation. With the default backward compensation mechanisms, if
UpdateCustomerAccountvas completed aftePaymenthas been completed, then,
UpdateCustomerAccouill be compensated befordaymenthas been refunded, or

they could bdt compensate concurrently which contradicts the compensation logic of
this specific LRT. Therefore, and in the context of business process logic, we view an
LRT as two transactions represented by one schema: the transaction in its normal

intended form, and compensating transaction.

Chapter 1. Introduction

Collaborative B2B business applications normally include tasks rumoimgurrently as

part of the overall transaction, which requires consistent and correct modeling of their
behavior. Two important issues regarding concurrency execution are (a) the reliable
modeling of the synchronization of concurrent tasks and (b) the preventiassible
deadlocks. Concurrency modeling is usually influenced by the underlying paradigm for
representing transactions and the protocols used for the interactions between transaction
tasks. The more flexible the transaction representation paradigm mptkechallenging

it becomes to define a correct behavior for concurrency.

The increasing availability of business processes is an important feature to the practicality
of a proposed model. This could be accomplished in many ways, but more importantly,
by providing compensation techniques to allow for tolerable failures to be recovered

without interrupting the normal processing path of the business process. Availability can
be further increased by distinguishing between crucial tasks that must complete
successfully and those tasks that are less crucial and their failure is tolerable and will not

require any further actions.

Externalizing management aspects from actual execution aspects of process tasks
increase the practicality of business process modeling. First, operational semantics can be
captured at a higher abstract level than the actual executing t@tksjng for
implementing different methods for recovery without being tied to the underlying
structure of the process. Second, it is a good way to provide the management model with

extensibility of its operational semantics by adding new semantics. -Exsalition

1.2 Research Challenges

Action rules are a natural candidate to fulfil management externalization and for

implementing this kind of functionality.

1.3 LRT Modeling Requirements

As an essential part of conducting this research, we have defined a set ofddeTling
requirements. These requirements are derived from the literature provided on LRT
modelling approaches as well as from analysis of a number of example business

processes.

Principally, our Long Running Transaction is:
1- Web service based: tasks timle LRT are web services that are composited to

achieve a business outcome.

2- Transactional: the modeling of LRT exhibits transactional semantics.

3

A workflow: the LRT is represented as a workflow schema with arbitrary levels
of nested tasks.

4

A Reactive Maagement Model: it is executed in an environment where changes
are detected as events and automatically responded to by applying appropriate
execution logic through management policies.

From aweb-based business procegserspective, LRT modeling imposestfollowing
requirements (AguilaBaven, 2004; Papazoglou, 2003; Peltz, 2003):

REQ. 1 Transactional support to guarantee consistent outcome for participating parties.
REQ. 2 Flexible representation of complex web service compositions that allows

nesting and concurreneyhich naturally occurs in business processes.

9

Chapter 1. Introduction

REQ. 3

REQ. 4

Recovery protocols to undo completed tasks and to choose anoteptable
execution path (Dalal et al., 2003).

Composition of web services must be supported with failure handling
mechanisms that allow some failures to be tolerable and/or compensable while
others could fail the business process from successfully etingldepending

on the crucially of the task to the overall outcome of the business process.

One of the main differences between a traditional transactional model and a loosely

coupled LRT is that the former is datantric while the latter is activitgentric or more

generally, procesaware (Reichert & Weber, 2012). Therefore, from titamsactional

perspective, LRT modeling imposes the following requirements (Colombo & Pace, 2012;

Dalal et al., 2003; Dayal, Hsu, & Ladin, 1991):

REQ. 5

REQ. 6

Transactions support siing and concurrent execution, but they are not
flexible enough to capture the highly collaborative and concurrent nature of
real B2B processes and hence more flexibility in representation is required as
such to allow for selective and alternative chaices

Transactionsd recovery is based on
inherent in their semantics which delimits flexibility of expressing
compensation logic of the business process. Therefore, the failure handling
mechanisms should be separated fexacution mechanisms, and both should

operate in tandem to achieve correct recovery mechanisms.

From theworkflow perspective, LRT modeling imposes the following requirements:

10

1.3 LRT Modeling Requirements

REQ. 7 Control flow of workflows should be supported by transactional semantics in
order to achieve a reliable contftdw (Bhiri et al., 2006a).

REQ. 8 Synchronization of concurrent tasks should be foyndkfined to resolve
potential operational ambiguities and potential dead®ittkations (Russell et
al., 2006).

REQ.9 Extensibility of a model s operational
modeling which facilitates additions of new control flow consts to comply
with web service composition requirements and to confirm the practicability of
the model.

REQ. 10 Transaction support for workflows requires wielfmed infrastructure and
well-formed relationships between the correlated tasks and hence transactiona
workflows require welformed structure applied to the workflow schemas
(Kiepuszewski, Hofstede, & Bussler, 2000).

From thecompensationperspective, LRT modeling imposes the following requirements

(Colombo & Pace, 2012; Greenfield et al., 2003):

REQ. 11 Separation of failure handling and compensation handling semantics.

REQ. 12 A mechanism for applying partial compensations that is integrated with the
failure handling semantics as part of the failure recovery process. If failure
handling requires compensationpéipd to completed tasks, this can be done
without interrupting the execution of the transaction, i.e. tasks that are not
interrupted with failures, will continue their executions.

REQ. 13 Flexibility in incorporating compensation logic into business logic.

Compensation semantics should not be enforced onthdostructure of the

11

Chapter 1. Introduction

REQ. 14 business process composition; instead, the LRT designer should be assisted by
a correct mechanism for freely expressing the customized compensation
relationship between transactions tasks without violating the integrity of the
overallprocess. These should apply in the case of global failure of the LRT.

From thecorrectness and reliability of execution perspective, LRT modeling imposes

the following requirements (Chrysanthis & Ramamritham, 1990; Colombo & Pace,

2012):

REQ. 15 Providing the mans of validating the correctness of execution semantics.

REQ. 16 The transactional relationships between interrelated tasks are best being
formalized in a way to make reasoning about their correctness a straight
forward task, i.e. using the same formalism fohbotodeling and correctness.
This will also increase the extensibility of the model.

From thereactive managementperspective, LRT modeling imposes the following

requirements (Papamarkos et al., 2006; Wieringa, 2003):

REQ. 17 Execution behavior of LRT componentsad to be observed as events, such
that when a component completes, fails or compensates, an event is fired.

REQ. 18 Execution semantics of the LRT need to be implemented as rules (policies) to

automatically execute business logic.

12

1.4 Modeling Objectives

1.4 Modeling Objectives

Our modeling objectives are driven by the modeling requirements discussed in the

previous section, and motivated towards the following aims:

1-

Correct control flow of a long running transaction, both in its normal processing
path and its compensation processing path.

Flexibility in representation of execution semantics.

Flexibility in compensation composition.

Reliablity of execution by correct handling of failures and compensations.
Automation of management mechanism as step towards-hesgifig transaction
model.

Formal modeling of execution behavior that provides the means of reasoning

about correctness of tiehavior.

1.5 Research Questions and Statement

The modeling requirements and objectives listed in the previous sections raise the

following research questions:

Q1-How can the structure of the business process be specified with complex and

arbitrary levelsf nesting?

Q2-How can the control flow semantics of transactions with complex and nested

structure be formally captured? How can the same formalism be used to capture

failure and compensation semantics?

13

Chapter 1. Introduction

Q3-What failure mechanism best reflects the propagatiofaitures through nested
structures?

Q4- What formalism is ideal for the flexible incorporation of compensation logic into
business logic?

Q5-What management mechanism would be ideal for automating the control flow
process?

Q6-How can the control flow formalism be used for reasoning about correctness of

control flow, concurrency, failure handling and compensation semantics?

Thesis Statement
In this research, we focus on flexible control flow of Alwabed workflow modeling with
long running transaction support to deliver reliable execution behavior of business
processes. Reliability is guaranteed through flexible and autonomous failure tandlin

and comprehensive compensation handling mechanisms.

1.6 Contribution

Our contribution is a fourfold:

Contribution 1: Fine-grained specification model for arbitrary nested transactions.
We specify our LRT model as a hierarchical tree structure tlatidaes a recursive

nature for propagating execution events across and along hierarchy levels. Essential to

14

1.6 Contribution

this finegrained structure, we explicitly capture the semantics of execution paths and
specify them as autonomous components of the LRT. By prayitiis, we are able to

enrich the operational semantics of concurrency with flexibility and extensibility.

Contribution 2: Autonomous Failure Handling Mechanism

An essenti al propagation policy states th
superioro. Based on this policy, we build
propagates failuresecursively through vital ancestors, if the failure event reaches the

root of the hierarchy, the transaction fails. Basic to the failure handling mechanism, a
downwards propagation of failures is applied to a failed concurrent scope, in order to
cancel allits activated components. The failure handling mechanism is integrated with a
partial compensation mechanism to apply partial recovery in the case of tolerable

failures.

Contribution 3: Compensation Composition Mechanism

We regard compensation compositias being as important as service composition.
Therefore, we provide business process designers with the underlying framework to
freely specify the order in which compensation of tasks are required to be executed. This
functionality is provided through éhspecification of compensation patterns that are
mapped onto the workflow schema. The designer is allowed to spmmifipensation
patternson subsets of component services of an LRT. A compensation pattern then
decides the order by which the specified/ggrs are compensated. Any services that are

not involved in any compensation pattern are compensated concurrently. This will

15

Chapter 1. Introduction

increase the performance of the system in terms of time spent on the compensation
process. We support reliable compensation coripos by validating such
compositions, to avoid consistency violations. This implemented through the
comprehensive compensation mechanism of COMPMOD.

Contribution 4: Specification Extensibility

One important feature of COMPMOD is its highly flexible extensibility, in the sense that
the underpinning representation structure can be enriched with further concurrency,

execution and compensation semantics.

1.7 Model Overview

The work presented propes a reliable control flow management mechanism for
sequencing and concurrency in wedised workflow transactions, such that tolerable
failures are handled tolerable failure is a failure of a task to complete successfully but
the failure is acceptabien t he sense that it would not
execution nor cause a global failure of the transachi@mdling tolerable failures would
typically involve partial compensation activities applied to subsets of tasks, but will not
stop he transaction from completing its normal execution. In the case of intolerable
failures, and when a consensus is reached about the failure of the LRT, a comprehensive
compensation is applied to all previously succeeded tasks. The order of compensations
can be customized on a subset or subsets of tasks. Tasks that are not part of a customized
order can be compensated concurrently. Customized compensations mainly reflect the

business and the compensatiogic of the transaction.

16

1.7 Model Overview

Our approach for managing LRTs is based on a reactive system controller in event based
architecture. Policies define the rules by which tletwller acts. In general, an
execution event is raised for a component to signal its readiness to perform an execution
(activation or compensation), or to signal that an execution of a component has finished
(completion or failure). The raised eventtieen assessed by management policies to
reach a consensus as to the current state of the component and the next state of its

correlated components.

An LRT in COMPMOD is represented as an arbitrary nested WF transaction. The WF
representation of the modehposes a hierarchical tree structure, where the root of the
hierarchy represents the main execution path. The respective levels of the tree represent
an alternating levels of nodes and execution paths, such that the superior of a path is its
enclosing sepe node and the superior of a node is its enclosing execution path. This
results in atomic nodes being the leaf nodes of the hierarchy tree. Each component in the
hierarchy is directly correlated with its superior, inferior, and siblings in an encagubulat
manner, such that a component can be indirectly correlated with another component if
their superiors are correlated. As an example, nodes on concurrent paths are correlated,

since their superiors are siblings.

The encapsulated behavioral interrelasiop between components is modeled by

dependencies, and automated by policies. Behavioral dependencies and management

policies both reflect the execution semantics of the model and complement each other.

17

Chapter 1. Introduction

The model allows for a separation between vital and-uitah components where a
failure of a vital component has an impact on the cancellation of its correlated
components, while failure of nevital components is tolerated. Cancellations will invoke
partial compensations to return to a place where an alternative (if one exists) can be
attempted without lasting side effects, and the failure of the LRT will lead to

comprehensive compensation being applied to all composited nodes in the transaction.

1.8 Thesis Structure

The thesis is organized as follows:

A Chapter 2: discusses the literature background of the thesis and the related work
in the field.

A Chapter 3: discusses the two modeling paradigms that we adopt in our workflow
semanticsworkflow patternsand transactional patternsaand explains how we
extend these models.

A Chapter 4: describes the representation structure of the COMPMOD model, and
introduces the concepts of execution events, reactive management and
managemenpolicies. We will also state our model assumptions in this chapter.

A Chapter 5: describes the execution semantics of the model and its formalism, and
shows the management mechanamd the failure handling mechanism.

A Chapter 6: describes the logic and formalism of compensation events and policies,
and illustrates the partial and the comprehensive compensation mechanisms of

COMPMOD.
18

1.8 Thesis Structure

Chapter 7:providesa verification of COMPMOD in tems of the correctness of

the proposed model and its extensibility feature.

Chapter 8: concludes the thesis and provides details of future work.

Bibliography

Appendix A and B lists a table for all dependencies and management policies of

COMPMOD for easier referencing, through related discussions.

Appendix C: provides a assessment of the COMPMOD model based on the

Workflow Patterns Initiative

19

Chapter 2

Background

2.1 Introduction

There is a large body of work in the area of business process modeling: transactions,
workflows, and long running transactions. In this chapter, we provide a literature review
of some of the welknown modeling approaches and we focus orptrés relevant to the
respective compensation mechanism. We provide a critique on the limitations of
compensation mechanism in WBRPEL and Compensation sphere§he critique is
exemplified by a case study fromdpply chain systems. Finally we show how ou

COMPMOD model fills the gap in the current compensation mechanism limitations.

20

2.2 DataBase Centric Transactions

2.2 DataBase Centric Transactions

Database centric transactional models provide a strong theoretical foundation for

transactions. Failure recovery and concurrency control are inherent within the models.

The first of these models ist#CID f | at transaction wilorer e a
nothingo is applied. R e eback mechanismdgo restare thd y b a
state of the system to the state before the failure has happened. The ACID transactional
model is very restrictive, and is not appropriate when transactions ardivedgand

complex and may span multiple local database systems. For this reason, a number of
extended and relaxed transactional models have been proposed, which relax some of the

ACID requirements.

Advanced transactional models have been proposed ool ucie:

1- Multi-leveled and nested transactions such allested Transactions (Moss,
1985).

2- The compensation concept@agatransactional moddiGarciaMolina & Salem,
1987.

3- Neding with compensation mechanism @pen Nested TransactiongWeikum
& Schek, 1992 Nested Sagas(GarciaMolina et al., 199}, and Flexible
transactions (Elmagarmid, 1992; Zhang et al., 1994; Mehrotra et al., 1992), and

ConTracts (Reuter, 1989 Reuter, Schneider & Schwenkreis, 1297

21

Chapter 2. Background

Nested models allow transactions to be nested within transactions to form a tree
transaction. The nesting structure isflected on the commitment, abort, and
compensation of its constituent stwhnsactions where different models provide

different protocols with varying flexibilities.

However, transactional models have the following limitations in business process
modelng:

1 They are developed from the point of view of database management systems and
thus business related semantics such as activity automation are ignored.

1 Coordination support for muiltasking and collaborative activities across
organizations is limitedand thus they are not applicable to heterogeneous and
loosely coupled systems.

1 Compensation mechanisms are strictly in reverse order of the suansacti on:

commitment order and are hidden from transaction designers.

2.3 Transactional Workflows

Business Processes are usually defined by business analysts to capture the activities and
their respective orders to achieve some larger business goal. Workflows add a technical
layer between the services and the business process as seen by a business analyst

(Montangero, ReifMarganiec & Semini, 2011; Gorton et al., 2009).

22

2.3 Transactional Workflows

Workflows provide a key functionality inntegrating heterogeneous and distributed
applications into a coherent business process and provide process automation.
Modeling of such workflows is usually conducted in some graphical notation such as
BPMN (White, 2003, UML activity diagrams, or YAWL Yan Der Aalst& Hofstede,

2005) which are graphical and textual and have formally defined semantics.

A structuredwork flow consists of symmetrical blocks of AN&plit followed by AND

join or ORsplit followed by an OR o i n . A wor kfl owtcansevaeve | |
lead to deadlock nor can it result in multiple active instances of the same activityT h e
work in (Kiepuszewski, Hofstede & Bussler, 2000) shows that every structured workflow

is well behaved.

Workflow patterns in (Van Der Aalstat al., 2000; Van Der Aalstat al., 2003; Russell,
Hofstede, & Mulyar, 2006) present standard defintions of workflow patterns found in
practical workflow strucures. This is a good standard for workflow developers, and we

provide a detailed description of the approach in Ch&pter

Workflows lack a clear theoretical basis for correctness criteria and support for reliability

in presence of failures. Hence, transactional workflow is supported with transactional

semantics such as failure recovery mechanisms and reliable executions

Failure recovery in transactional workflows can be supported in many ways:

23

Chapter 2. Background

1- Direct compensation semanticschuascompensation spheress discussed in
section 2.5.3.

2- Indirect compensation support such as YAWL where it is possible to model
compensation behavior by using YAWL constructs (Brogi & Popescu, 2006).

3- Dynamic and adhoc workflow adaptations in case &dilure events such as
ADEPTex in (Reichert & Dadam, 19971Reichert & Dadam, 1998nd (Mdiller,

Greiner, & Rahm, 2004

Transactional patterns have been introduced firs{Bhiri, Perrin, & Godart, 2005to
propose a transactional approach to ensure the failure atomicity of composite web service
workflows. Further work ir(Bhiri, Godart, & Perrin, 2006and(Bhiri, Perin, & Godart,

2006 used the concept of trasnactional patterns to ensure reliable composite services
accrording to des Cantmokand transacpoeat depeandencieseaeed s .
defined for component web services and are mapped onto workflovernsatt
Dependencies expressed in first order logic are employed to validate the transactional
behaviour of web service compositioNge have drawn inspiration from this work, and

we provide a detailed descripiton of the approach in Chapter 3.

2.4 LRT Modeling Approaches in Web Service Settings

Web services are coordinated through coordination protocolspr@héstrated through
orchestration languages at a high level of abstraction and where failures are dealt with as

exceptions. Coordination protocalescribe coordination through transaction messages.

24

2.4 Modeling Approaches in web Service Settings

Such as: Tentative Hold Protocol (Roberts & Srinivag®)1), Business Transaction

Protocol(Ceponkus et al., 2002and WSTransadbn (Cabrera et al., 2002

Web services are composited througiithestrationand flow composition languages.
The body of work in this area has beexused in two directions: Formal modeling and

orchestration languages.

2.4.1 Formal Modeling

The semantics of flow or interaction based compositions of web services are achieved

through proposing extensions of wktown calculi or process algebra. Indby control

flow of compensations is achieved through primitivegnistall and activate required

compensation activities within compensable processes (processes that are paired with

compensation activities). The mechanism for installing and activatimpeasations is
similar to exception handling primitivesh(ow and try-catch) of high level languages

such as C++ or Java. Common to all models, compensation handlers are called from fault

handlers. What differentiates these models is the way compensat@osemposed and

executed. In (Bruni et al., 2005) , these were classified as:

(1) Compensable flow composition where the way compositions are orchestrated is
similar to WSBPEL and where process algebras are designed from scratch to
describe the flow of cdrol among services, such as (Bruni, Melgratti, & Montanari,
2005; Butler & Ferreira, 2004; Butler, Hoare, & Ferreira, 2005).

(2) Interaction based compensations as extensions of-kneln calculi where

model ing dynamic compens-aaculus@@ecchij204addr es

25

Chapter 2. Background

B)based on @anéve & Xaeaharo, 2000 and we lpMazzaran& i ni ty

Lanese, 2006
In these models, semantic definitions are somewhat complicated. Hence, they are not

practical b use to model real time business scenarios.

2.4.2 Orchestration Languages

Orchestration languages build business workflows by developing graphical or XML
based languages such>EANG (Thatte, 2001 and WSBPEL (Andrews et al., 2003
(OASIS, 2007. In this section we discuss the general structure and mechanism-in WS
BPEL and in section 2.5.2 we discuss by example some limitations of its compensation

mechanism.

WS-BPEL is an industrial standard and language for process modeling based on XML
and for connecting process activities with web services:BRNEL has rich functionality

and provides fault and compensation handling capabilities for business process designers.

Scopes in WSBPEL are used to group activities in the business process based on
functionality or shared variables and events. Scopes can be nested, that is scopes can be
defined within scopes. Fault, compensation, and termination handlers are process
fragments that run if a fault is raised or in case of compensation, to reverse the effect of a
set of successfully completed activities. Each scope is attached with its own fault and
compensation handlers as well as a termination handler (to terminate thesprgad

the scope if its parent scope is terminating or exiting).

26

2.4 LRT Modeling Approaches in Web Service Settings

These handlers can either be specified explicatlgan follow a default specification as

provided by WSBPEL standard. The control flow of activities is defined by two
schemes: (1) structured activities control
logic on activities nested within them, and &Xplicit control links between source and

target activities such that a target activity can only start executing after a source activity

has completed. A compensation handler can only be invoked by a fault handler which is
triggered by a fault in the exemug process. Furthermore, compensation handlers can

only be attached to scopes and not to activities

One major drawback of orchestration languages is that they do not support formal
definitions for their operational semantics. As a consequence, thetteebasresearch
directed towards formalizing their operational semantics such as BPEL (Qiu et al., 2005)
based on WSBPEL andc-join (based on XLANG)(Bruni, Melgratti, & Montanari,

2004).

2.5 Limitations of Selected Approaches

After having discussed different modeling approaches of business processes in the
previous sections, we dedicate this section to highlight these limitations by examining a
running example. We choose an example from @opmply chain management system
and we focus on the compensation mechanism of two widely used modeling approaches:
(1) the modeling language WESPEL, and (2) the conceptual modeling approach of

compensation sphes

27

Chapter 2. Background

2.5.1 Esupply chain case study

Internet based supplyhain systems are achieved through integration of information
systems of all sygly chain partners (customers, suppliers, and manufactureg)ppy

Chain may be sourced from several countries, assembled in other countries, and delivered
to customers all around the world. In service oriented environment, the integration
between busiess parties is represented by business process activities (e.g. a workflow)
which are achieved through web services. A typical customer order represented by a long
running business transaction, triggers several B2B web services provided by a network of

independent companies to provide a streamlined material flow between all partners.

In this thesis, we use examples frorSHpply Chain to illustrate and justify our proposed

model.

The example in (figure 2.1) illustrates an inggterprise business prosesccurring in
the supply chain: how the supplier does business with one of its trusted manufacturing

partners.

OoP

EE—
CHARGE <
—_—

1
1
OUTSOURCE | !
SALES ANALYSIS |
| S |
7
/ CHECK
DELIVERY COODS
—

Control Flow Compensation

>
/Logic Order/Logic

Figure 2.1 SupplierManufacturer outsourcing business proces®P

28

2.5 Limitations of Selectedpproaches

The sub processes in OP has the following functionalities:

1 SALES: performs activities such as receive order from manufacturer, Audit

order, and send order acceptance to manufacturer.

1 CHARGE:performs payment activities for the outsourced goods.

1 OUTSOURCE_ANALYSIS: is a routine activity that is performed with each
order transaction to conduct metrics t

strategies, marketing goals...etc.

1 DELIVERY: delivers the goods to the manufacturer.

1 CHECK_GOODS: the manufacturer checks the goods. If goods are acceptable

then the outsourcing process is completed, otherwise an exception will occur.

The OP process has the following logic:

Once the sales activity is cqheted, three activities are run in parallel; CHARGE,
OUTSOURCE_ANALYSIS, AND DELIVERY. This special outsourcing scenario is
conducted with trusted manufacturers. That is why the delivery of goods is performed in
parallel with payment. However, the procésgic requests that if the goods were to be
returned for any reason such as fAnot meet.
be returned to the supplier warehouses before the payment is refunded to the

manufacturer.

29

Chapter 2. Background

2.5.2 Compensation Mechanism in WSPEL

Due to lack of compensation semantic formalism, the compensation mechanism in WS
BPEL may show anomalies in certain execution scenarios such as neglecting
compensation control links that cross scope boundaries as discugkadlaf, Roller, &
Leymann, 2009 In other words, WBPEL does not provide guarantee on compensation

order.

In WS-BPEL, the compensation order of activities within scopes is strictly in reverse
order d their completion and this order is carried out by default compensation handlers.
Although explicit control links are allowed between activities/scopes and they are obliged
during the normal execution flow, the reverse order of control links during tefaul
compensation processing is not straightforward and hence could be vi(i{aiteid,

2006 and (Thatte & Roller, 2003). In addition, modeling compensation logic in WS
BPEL exhibits high complexity behavior in the presemf scope nesting together with

control links that cross scope boundaries.

We will show next in a step by step fashion the compensation mechanism-BPBIS
by discussing a running example and we show how inconsistencies could occur in the
compensatiomehavior. In (figure 2.2), we show a hitgvel graphical illustration for the
business process of (figure 2.1). The visual cues in (figure 2.2) are borrowed from

(Khalaf et al., 200Q

30

2.5 Limitations of Selected Approaches

Key

Non-scope
activity

Scope with
(F)ault
(C)ompensation

[FO U

(T)ermination
handlers

QUTSOURCE

ANAYSIS - GOODs Shading activity/scope:

Black : faulted

SCO White: running
Grey: completed

oP 3% p
Shading handlers:
Shaded : activated
—> Control = = 3 Explicit Control link White: not-activated

flow/logic

Figure 2.2 WSBPEL process for suppliermanufacturer outsourcing example

Scope OP represents the outer most st¢bpe groups scope DELIVERY, SCO, and
activity CHECK-GOODS. We assume that scope SCO groups SALES, CHARGE, and
OUTSOURCEANALYSIS activities based on some shared order, customer, and
payment variables. The solid arrows represent the control logic of bssprecess
activities and the dashed bold arrow represents an explicit control link to represent the
compensation logic of the process as explained in section 2.5.1. Hence stating that if the
scope OP is compensated, then the goods must be returnedcdinspefrsator of
DELIVERY) before payment is refunded to the manufacturer (compensator of

CHARGE).

In WS-BPEL, when a scope is activated and running then its fault and termination
handlers are installed and its compensation handler is not installed. Whepeis
completed successfully then its fault and termination handlers arestdéed and its

compensation handler is installed.

31

Chapter 2. Background

The illustration in (figure 2.2) assumes an execution instance of OP and hence the
execution states of OP components are as follows: OP, SCO and
OUTSOURCE_ANALYSIS are activated where SALES, CHARGE, and DELIVERY
have been completed. If véssume that CHECK_GOODS has failed, the compensation

mechanism of WBPEL will perform the following:

1- The failure of CHECK_GOODS will raise a fault exception to fault handler of OP
and the termination handler of OP will initiate the termination of immelgiat
nested activated components starting with -eoope components then scope
components. In this scenario there are no activateesompe components and

only SCO is activated.

2- The fault handler of SCO is deactivated and the termination handler of SCO

teminates the activated OUTSOUR@EALYSIS.

3- The termination handler of SCO then invokes the compensation handler of SCO
in default compensation order. Since SALES and CHARGE are not linked
through explicit control dependency therefore their compensatiperisrmed in

any order.

4- When the compensation handlers of both SALES and CHARGE have finished,

the control goes to the default fault handler of OP.

5- The fault handler of OP then invokes the compensation handler of OP which

invokes the compensation handDELIVERY and the scope is compensated.

32

2.5 Limitations of Selected Approaches

The compensation mechanism of MBBEL on this specific scenario exhibit®lation of

the explicit control link between CHARGE and DELIVERY and that the payment has
been refunded to the manufacturer before the actual goods have been returned to supplier.
Hence, the default handlers in VBPEL in some execution settings may ovale

explicit control links.

There has been research directed to overcome suclilet@ministic compensation
behavior in WSBPEL. For example, ifKhalaf et al., 200pthe authors promed a
deterministic model for handling compensations by altering the behavior of handlers and
relaxing restrictions on control links. §Coleman,2009, the authors request a richer
capability of compensation handlers. However, the default compensation of activities

within scopes remains the same: reverse order of their completion.

One could argue that the business process could be modelaifierant way but this
would necessitate that the business designer should comprehend all possible execution
states of the process which is not a feasible solution. Furthermore, as the complexity of

the business process increases, modeling compensatavidogbecomes cumbersome.

In COMPMOD, the compensation behavior is clearly determined at design time and
during compensation mode, the explicit compensation links over rule any other control
dependencies. In table in 2.1, we summarize some of the ddéxebpetween the

COMPMOD and WSBPEL.

33

Chapter 2. Background

WS-BPEL 2.0 COMPMOD
Model Executable modeling language | Conceptual model
Controlflow | Structured nested activities + Control dependencies derive(
explicit control links from workflow structure +
explicit compensation
dependencies
Scopes Explicitly assigned to group Implicitly formed by the
activities based on shared variab| model to group activities
or functionality. nested within workflow
structures.
Compensatior] Determined and calculated during Determined and calculated af
order runtime depending on execution | design time
state of scopes
Compensation links could be ovel Compensation dependencies
ruled by default handlers behavig have priority over control flow
dependencies
Reverse order Based on designer tailored
compensation dependencies
Compensation iDef aul t handl el Compensationdependencies
design high complexity in the default can be assigned in any order
flexibility compensation order making it independent of control flow ol
difficult for a designer to activities
anticipate the resulting behaviors
when making process design
d e ci s(khalaf stal., 2009
Compensation Possible urdeterministic Deterministic
behavior behaviors

Table 2.1 Compensation behavior WSBPEL vs. COMPMOD

2.5.3 Compensation Mechanism in Compensation Spheres

Atomic and compensation spheres(iieymann, 199band (Leymann & Roller, 2000

propose a congéual model for workflow management systems to allow for transactional

34

2.5 Limitations of Selected Approaches

properties-oranthi mgo fAand compensation me c h
workflow business processes. We discuss in this section the compensation spheres. A
compensation sphetis an arbitrary collection of activities that are tightly related and
share a common fate. Each activity in the compensation sphere is coupled with a
compensating activity. If an activity in the compensation sphere has failed and aborted,
then all complet@ activities within the sphere are compensated in reverse order. We
discuss by example (figure 2.3) the compensation sphere mechanism. The workflow of a
business process P is detected as a directed graph (figure 2.3 (a)) where a designer can
arbitrarily séect a compensation sphere S. Based on this selection, the mechanism
induces a compensating graph or map S* (figure 2.3 (c)) by derivirfigf P where P
represents the reversed edges of P. When a compensation sphere commences its
compensation, the ewetion starts by compensating activity L and cascades

compensation of activities following the control edges in S*.

One advantage of this approach is offering flexibility by involving some degree of
arbitrary assignments of compensation orders within reerspas opposed to strictly
reverse order. For example, indirectly connected activities in P such as B and | but where
| is reachable from B in P can be grouped in S. Furthermorecammected activities

such as B and G in P but where B is reachable &omP" can also be grouped in S.

35

Chapter 2. Background

(a)

Figure 2.3 Compensation Spheres borrowed frorfLeymann & Roller, 2000) p. 271

(b)

However,compensation spherésive two restrictions:

R1. Any two activities that are nenonnected in both P and'Rcannot possibly be

grouped alone in a single compensation sphere such as (A and B) or (E and 1).

R2. Compensation spheres approach does not provide the process designer the ability to

assign extra compsation control flow edges such as to explicitly connect the non

connected activities in the process graph.

We apply thecompensating graph algorithm in (figure 2.3) on our outsourcing example
as depicted in (figure 2.4). Note that CHARGE and DELIVERY are not connected in

both P and P(restriction R1) and hence grouping them in a sphere leadsdorumected

36

(c)

2.5 Limitations of Selected Approaches

graph S* (fgure 2.4 (c)). And because of restriction R2, it is not possible to apply the

required compensation dependency between CHARGE and DELIVERY.

One could argue that the designer can change the design of process such as to be able to
force the required compengm orders if they cannot be systematically applied.
However, in COMPMOD model we strongly avoid restricting the making of the design

decisions of the business process because of compensation mechanism limitations.

P Pt
7 ~~ -~) / -
OUTSOURCE OUTSOURCE
[DELIVERY] [ANALYSIS] [CHARGE] [DELIVERY] [ANALVSIS J [CHARGE]
CHECK CHECK
GOODS GOODS
(a) (b)

¢ (=) (=)

(c)

Figure 2.4 applying compensation sphes on outsourcing busing process

2.6 Conclusion

One of the aims of our COMPMOD approach is to simplify the design of business
processes. We do so by performing compensations when explicitly requested by the
designer and in the order required by the business process logic regardless of how the

LRT is structured or how activities are scoped. Hence, designers can easily view and

37

Chapter 2. Background

reason about the customized compensation order to decide how best to design their
processes. Scopes in COMPMOD are implicitly defined over nested structures. This
structure is totally ignored during compensation and the priority is given to the explicitly

defined dependencies

We have shown that purely transactional models force a strict compensation mechanism
and that the business designers are not provided with the capability to alter compensation

orders and that reverse compensation order is automatcaituted.

While workflow models show a high degree of process automation, they fall short in

showing transactional properties including compensations.

The complexity of compensation in ABPEL is a problem. It is hard for process
designers to comprehgnall possible behaviors a process will have, due to
compensations, as they always must keep in mind all current states in all different scopes

and their control link dependencies.

We have also shown by example how there are cases in compensation wpeezasA
connected activities in the process cannot be grouped in a sphere which imposes

restrictions on process designers.

We strongly claim the importance of freely assigning compensation patterns over process
activities without putting into consideratiothe restriction imposed by the process

structure.

38

Chapter 3

Fundamentals

3.1 Introduction

Our modeling approach adopts and extends two main approd¢bddiow Patternsand
Transactional Patternsin this chapter, we discuss each of the adopted approaches, and
provide an informal description of the operational semantics of our extensions.
Definitions are illustrated with examples from theslpply Chain management systems.

We also discuss some reliability and integrity issues related to COMPMOD patterns.

39

Chapter 3. Fundamentals

3.2 Workflow patterns

A Long Running Transaction in COMPOD model is represented as a workflow schema
(LRT-WF) . A workflow systems6é functionality
parallelism, synchronization and iteration constructs as means of automating the business
process. Different workflow management systems provide different semantics for the
same construct. We adopt t heRussellmtaah 2dQ& s f r o
as a paradigm for the informal descriptions of our model constructs. The workflow
patterns approach proposes an imperative definition of work flow patterns and provides

the pattera as a standard to be employed by business process designers and workflow

system developers.

Workflow patterns have been developed as part of an initiative commenced in 2000 by
(Van Der Aalstet al., 2000). They classify the core architectural constinberent in
workflows in a language and technology independent way, thus allowing for the
definition of the fundamental requirements of business process modeling. Workflow
patterns consider workflow specifications from a confti@h perspective and
charaterize a range of control flow patterns that might be encountered when modeling a
business workflow. Following the initial work, twenty patterns were introducedan (

Der Aalstet al., 2003) and a total of forty three control patterns were revised/popos

(Russell et al., 2006

40

3.2 Workflow Patterns

The patterns range from simple constructs that are supported by most of the workflow
management systems to complex routing prim
commercial workfbw management systems or business process modeling languages. The
work supports each pattern with an informal description and context assumptions, formal
descriptions using Colored Petri Nédensen, 1997mplementation related issues, and

provides evaluation criteria for workflow developers to assess their offerings of full,

partial, or no support of a given pattern.

Workflow Patterns are classified (Russell et al., 20Q6as (a) five basic contrdlow
patterns, (b) four advanced branching and synchronization patterns, (c) two structural
patterns, (d) four multiple instance patterns, (e) three -btsed patterns, (f) two
cancellation patterns., and (f) twenty three new control flow patterns which add to the
above classifications in addition to loops and multiple instances patterns. The
COMPMOD model assumes only a single instance of activities for a given process
instance and therefore multiple instances, loops and interleaved patterns are not yet
supported by the model. However, their applicability is a practical extension of the model

and is discussed as a future work in this research in (Chapter 8).

Workflows embrace branches of execution tha aplit, synchronized, merged, or
discriminated at different points in the workflow process. A split pattern splits a branch
of execution into two or more branches and the type of split construct determines the
mode of branch routing. There are three bsglit patterns, namely; Parallel Spilt (AND

split), Multi-Choice (ORsplit), and Exclusive Choice (XGOBplit). Parallel Spilt and

41

Chapter 3. Fundamentals

Multi-Choice create concurrent routing of execution branches, while Exclusive Choice
creates exclusive routing, where onlgeoof the split branches is enabled at runtime

depending on distinct choice conditions associated with each branch.

Two or more branches of executions can be synchronized, merged without
synchronization, discriminated (only 1 out of M paths is choserpadially joined (N

out-of-M) by using a join construct that reflects the required semantics of the join.

The LRT-WF schema of COMPMOD is modeled as a structured workflow. Structured in
this context can be viewed as a notion of vietmedness (Kiepazewski, Hofstede, &
Bussler, 2000), where concurrent and exclusive branches are encapsulatedaojein
patterns Scope patterns, our contribution to the workflow patterns initiasteet with a

split pattern and end with a join pattern. The type of split and join patterns reflect the

required operational semantics of the scope.

Scope patterns in COMPMOD can encapsulate further scopes, thus allowing for the
modeling of multi nestedransactions. The number of splits and joins within a nested

scope are balanced, and not interleaved.

The structured nature and the operational semantics of our scope patterns are emphasized

at both; the split type and the join type of the scope pattern. Due to the diversity of join

constructs, we apply further classification to the patterns proposédussell et al.,

42

3.2 Workflow Patterns

2000, based on the operational semantics of join patterns and utilize this classification in

manydifferent ways throughout the discussions in this thesis, including:

1- Informal and formal description of proposed scope patterns

2- Evaluation of partially supported join patterns

3- Evaluation of potentially applicable new scope patterns given the undigpin
structure semantics of the model.

4- Discussions and Conclusions.

We classify join patterdss follows:

1- Synchronization (ANBoin): the convergence of two or more branches into a
subsequent branch such that the thread of control is passed to the smisequ
branch when all input branches have been enabléw context of the pattern
assumes that (a) the incoming branches are parallel and result from an earlier
AND-split, (b) each incoming branch executes only once, and (c) the construct is
enabled once all incoming threads are completed. The (General@goin) is
a variation of ANDjoin where multiple instances of incoming branches are
allowed.

2- Merge:the convergnce of two or more branches into a single subsequent branch.
Each enablement of an incoming branch results in the thread of control being
passed to the subsequent bran€here are two variations of this construct, the
SimpleMerge (XORjoin), which allows only one incoming thread to be active at

any time, while in the (Multiplverge) construct, it is possible for more than one

! Descriptions in italics are borrowed frdRUSSELL, N., TER HOFSTEDE, A. H. M. &
MULYAR, N. 2006. Workflow controlflow patterns: A revised view.

43

Chapter 3. Fundamentals

3-

incoming branch to be active simultaneously. Note that incoming branches are
assumed to be distinct, and do not necessarilygigviom an earlier split pattern,

and need not to be synchronized.

Partial join (Nout-of-M): the convergence of M branches into a single
subsequent branch following a corresponding divergence earlier in the process.
The thread of control is passed t@thubsequent branch when N of the incoming
branches have been enablédariations of this join pattern are: (a) Structured
Partial Join, whereubsequent ennoblements of incoming branches do not result
in the thread of control being passed on. The joirstroict resets when all active
incoming branches have been enabl@). Blocking Partial Join wherthe join
construct resets when all active incoming branches have been enabled once for
the same process instance and subsequent enablement of incomingebrarech
blocked until the join has resktideal for scopes within loops, and (c) Cancelling
Partial Join wherériggering the join also cancels the execution of all of the other
incoming branches and resets the construct.

Discriminator (toutof-M): the convergence of two or more branches into a
single subsequent branch following a corresponding divergéncease of he
Structured Discriminator)or following one or more corresponding divergences
(in case of the Unstructured Discriminat@arlier in the process model. The
thread of control is passed to the subsequent branch when the first incoming
branch has been enkdul. Variations of this join pattern are: (a) Structured
Discriminator wheresubsequent enablement of incoming branches do not result

in the thread of control being passed on and the construct is reset when all

44

3.2 Workflow Patterns

6-

incoming branches have been enabl@a), Blocking Discriminator wherghe
discriminator construct resets when all active incoming branches have been
enabled once for the same process instance. Subsequent ennoblements for of
incoming branches are blocked until the discriminator has réseleal for
constructs within loopsand (c) Cancelling Discriminator whetaggering the
discriminator also cancels the execution of all the other incoming branches and
resets the construct

Synchronization Mergethe convergence of two or more branches mtsingle
subsequent branchlhe thread of control is passed to the subsequent branch
when each active incoming branch has been enaMadations of this pattern

are (a) Structured Synchronization Merge where dbevergedbranches are
diverged earlier inthe process at a uniquely identifiable pointeal for
synchronizing branches resulting from an-Sglit, (b) Acyclic Synchronization
Merge wherethe converged branches are diverged earlier in the process and
determination of how many branches requir@ctyonization is made on the
basis of information locally available to the merge constidetal for non
structured workflows, and (c) General Synchronization merge wlhisee
converged branches are diverged earlier in the process and the thread of control
is passed to the subsequent branch when each active incoming branch has been
enabled or it is not possible that the branch will be enabled at any future time
ideal for nonstructured and highly concurrent workflows that include looping

structures.

45

Chapter 3. Fundamentals

8- Other join patterns: there are a few more join constructs that deal with multiple
instances of activities within a@iven process instance, and with multiple
execution thread instances in a single branch. These patterns are not discussed in
this work.

In COMPMOD we provide:

1- New operational semantics of exclusive split and join patterns: ¥pR and
XOR'-join that alows for alternative exclusive choices such that only one
alternative can be tried at any time.

2- Explicit support for sequence, ANSplit, ORsplit, and XOR-split.

3- Implicit support for ANDjoin (synchronization), ORoin (Structured
Synchronization Mergejnd XOR-join.

4- Explicit support for the operational and transactional semantics of three new
scope patterns: ANIBcope, ORscope, and XORcope.

Further patterns (other than sequence, split, and join patterns) are also either fully
supported by the moded, s i n Ai mpl i cit terminationo or
regi ono. C, we plopigeamevaluation for COMPMOD in terms of the extent

of support of each pattern.

3.3 Informal description of COMPMOD patterns

In the following subsectigwe discuss the informal descriptions of the main workflow
patterns in COMPMOD that explicitly outlines the three basic execution routing modes:

sequence, concurrent, and exclusive execution of branches.

46

3.3 Informal Descripton of COMPMOD Patterns

3.3.1 Sequence Pattern

The sequence pattern is the main building block of the WF process. It allows connecting
taskg in sequential order. The pattern is informally described as:
Def. 3.1 (Sequence PatternRussell et al.,, 2006 An activity in a workflow

process is enabled after the completion of a preceding activity in the same process.

For exampl e, in a supplierds sales departr
manufacturer, an auditor activity will check the erdb decide whether to accept it or not

(Figure 3.1).

Receive -
Audit

Figure 3.1 Sequence pattern in supplier sales process

In our model, a task or a set of interrelated tasks (scope pattern) can be appended to

another task or scope in sequential order on the same execution branch.

3.3.2 Scope Patterns

Informally, a scope pattern is defined as follows:
Def. 3.2 (scope pattern): A scogmattern is a composite pattern that couples a

split pattern with a join pattern to ensure a symmetrical structure of the scope. The

2 Throughout the discussions, tasks, activities, web services, and atomi¢@bdpter 4
onward) are all used to refer to an atomic unit of work.

47

Chapter 3. Fundamentals

scope starts at the split point and ends at the join point. The scope is enabled when
the incomig branch to the scope is enabled. The split construct of the scope
diverges the incoming branch into two or more branches which are converged
later by the joint construct. Enabling diverged branches and the join construct

depends merely on the semanticshaf split and join patterns respectively.

In Figure 3.2, we illustrate a generic representation of a scope pattern that scopes three

activities A1, A2, and A3.

Al

A2

A3

(a) pattern {b) COMPMOD scope

1
. Activity |:| Spilt pattern @ Join pattern | Scope pattern

|-
|
L

Figure 3.2 A generic scope pattern representation

A diverged branch within a scope mawgtal one or more tasks that are connected
through sequence patterns. A task can be an individual task or a scope pattern, thus
allowing the construction of nested scope patterns that contains a balanced number of

splits and joins and thus is symmetricgldonstruction.

48

3.3 Informal Description of COMPMOD Patterns

3.3.2.1 Concurrent Scopes

A concurrent scope creates two or more parallel branches. Once the scope is enabled, all
concurrent branches are enabled simultaneously. Concurrent branches are synchronized
via a synchronizer join construct. The synchronizer is enabled when all paratiehbs

are completed. We introduce two concurrent scope patterns;ssNpe and ORcope.

An AND-scope starts with an ANBplit (parallel split) pattern and is coupled with a

synchronizer (ANRJoin).

We provide an informal description of the AND and ®¢bpe patterns based on both,
the semantics of the individual patterns involved as describ@ulssell et al.2006 and

the general definition of scope patterns (Def. 3.2).

Def. 3.3 (ANDscope):the divergence of a branch at the split point of the scope
into two or more parallel branches that are executed concurrently when the scope
is enabled. Concurrent brelres are synchronized at the join end of the scope and
execution control can be passed to the task immediately following the

synchronizer once all of the concurrent branches have completed their executions.

As an example, in Supplidanufacturer outsourcing business process OP (Figure 2.1),
after the SALES activity is completed, three activies (CHARGE,
OUTSOURCE_ANALYSIS, and DELIVERY) are instantiated in parallel. This control
flow represents an ANfpin pattern. In COMPMOD, this structure is represented by an

AND-scope pattern as illustrated in Figure 3.3. Note that in the original process logic of

49

Chapter 3 Fundamentals

OP, the DELIVERY activity is followed by the CHECK_GOODS activity representing a
sequence pattern betweemem. Therefore, CHECGKSOODS is enclosed within the

AND-scope pattern.

CHARGE

—
)
OUTSOURCE
ANALYSIS
 —

S

DELIVERY

—

 AND Scope

[AND spilt & AND Join

Figure 3.3 AND-scope pattern in OP process

A variant of the concurrent scope is the conditional concurrent scope where only a subset
of the parallel branches are enabled based gindbconditions paired with each parallel
branch. The synchronizer is enabled when all enabled parallel branches are completed.
An OR-scope starts with an O$plit (Multi-Choice) pattern, and is coupled with a

Structured Synchronizer Merge.

50

3.3 Informal Description of COMPMOD Patterns

Def. 3.4 (ORscope)ithe divergence of a branch at the split point of the scope into
two or more parallel branches where only a subset of the branches are executed
concurrently when the scope is enabled. The selection is based on the outcome of
logical expressions associatetth each parallel branch. The selected concurrent
branches are synchronized at the join end of the scope and execution control can
be passed to the task immediately following the synchronizer once all of the

selected concurrent branches have compléieid €xecutions.

As an example, in Supply Chain systems, after an order has been received by a
company and the payment has been received from the customer, an inventory check is
performed to investigate the avauasesllathei | ity
ordered goods are available, the goods are delivered to the customer. If the ordered goods
are not available, a manufacture plan process is instantiated to provide the customer with
the ordered goods from different supplier(s)/manufacturet(s) COMPMOD, this

process logic is represented by the-&Rpe pattern illustrated in Figure 3.4.

__

DELIVERY

MANUFAC-
TURE PLAN

-
[oRrspilt & oRloin | | ORscope

Figure 3.4 OR-scope pattern in Supply Chain process

51

Chapter 3. Fundamentals

3.3.2.1 Exclusive Scopes

An exclusive scope creates two or more exclusive branches. Exclusive branches alternate
with each other, but only one exclusive branch is enabled, based on some distinct criteria.
If an enabled branch fails t@mplete, an alternative branch is enabled. The scope starts
with an exclusive split pattern, and ends with an exclusive join pattern. The join pattern is
enabled when exactly one of the incoming exclusive branches has completRdsdall

et al., 2008 diverged branches in XO&lit pattern are enabled, based on distinct
logical values associated with each branch and does not provide alternative enablement of
branches. The XO#fvin (Simple Merge) allows only one incoming branch to be enabled

at a time put allows all incoming branches to be enabled. Therefore we ewerdlow
Patternswith two individual patterns as a variation of both the X§#t and XORjoin,

namely the XORsplit® and XOR-join.

We extend the semantic of the X&Rlit as follawvs:

Def. 3.5 (XOR-split): The divergence of a branch into two or more branches.
When the incoming branch is enabled, the thread of control is immediately passed
to precisely one of the outgoing branches basedhe highest priority criteria,

where thefirst branch has the highest priority. If a branch fails to complete, an
alternative branch is enabled (if any). The alternative branch is the one with the

next highest priority.

% Similar to preference relation ZHANG, A., NODINE, M., BHARGAVA, B. &
BUKHRES,O. Ensuring relaxed atomicity for flexible transactions in multidatabase
systems. 1994. ACM, 678.

52

3.3 Informal Description of COMPMOD Patterns

Def. 3.6 (XOR-join): the convergence of two or more branches that had diverged
from an XOR-split at some point earlier in the WF process. The construct is

enabled when exactly one of the incoming branches has been completed.

Accordingly, we provide an informal description of the XOQ&bpe pattern based on

definitions (Def. 3.2, 3.5, and 3.6).

Def. 3.7 (XORscope):the divergence of a branch at an X@®lit point of the
scope into two or more exclusive branches that are converged latex@Raroin

point. When the scope is enabled, execution control is immediately passed to
precisely onef the outgoing branches, basaalhighest prioritycriteria where the

first branch has the highest priority. If an exclusive branch fails to complete, an
alternative branch (if any) is enabled. The X@Bih construct is enabled when

exactly one branclsicompleted.
The extension of XORcope is motivated by two aspects:
(a) Business process aspect: often a number of alternative tasggoposed in the
workflow, but there is a clear preference for one over the other. For example, an

e-booking scenario could be searching for an outbound journey to a destination

where the priority is given to flights. If no flights are available for thguired

53

Chapter 3. Fundamentals

(b) date then trains may be tried. The last priority could be travelling by bus if no
trains are available.

(c) Long-Running transactional aspect: when a sequence of tasks is required to be
executed by a business process that executes over a long period of time and the
risk of failing this sequence is not affordable, then the sequence of tasks could be
alternated byan alternative sequence of tasks from the business point of view. In
case of the failure of the first priority scenario, an alternative scenario is tried. E.qg.
in an esupplychain business scenario, a contract with one of two or more
suppliers (prioritied according to their quotes, location, or quality) should be
guaranteed for a specific product where the contract process might include many
interrelated tasks. If a contract process fails to complete for a specific supplier, an

alternative supplier careltried.

To illustrate the XORpattern by example, we consider a delivery process in a typical
supply chain system. Usually, different delivery methods are provided depending on the
companyo6s delivery policies or @ spscifio mer
delivery scenario, a company offers two methods of delivery: deliver by car or deliver by
plane where priority is given to car delivery. If car delivery is not possible, then delivery
by plane is attempted. In COMPMOD, this process logic isesgmted by an XORcope

pattern as illustrated in figure 3.5.

54

3.3 Informal Descriptionof COMPMOD Patterns

Delivery Scope

BY PLANE

B xor spilt & XxOR Join

.
| XOR scope

Figure 3.5 Delivery XOR-scope pattern

3.4 Reliability and Integrity Issues

Informal descriptions of workflow patterns clarify the operational semantics of the
constructs in an abstract way and from the control point of view of their intended
functionality. The descriptions designate when a cansis enabled with respect to the
enablement of its incoming or outgoing branches. Our workflow model is a transactional
workflow model where the control flow mechanism is influenced by transactional
properties such as completions, failures, or cancatiatiof workflow activities or
activity scopes. The transactional behavior of a certain activity has an impact on other
interrelated activities. For example, in Def3.1, an activity is executed when the preceding
activity has completed. The definition doest istate what happens when the preceding

activity fails.

Given the nested structure nature of the workflow schema, a failure or cancellation of an

activity has an impact on the transactional behavior of other interrelated activities or

55

Chapter 3. Fundamentals

encapsulated scopes. An additional challenge is that the transactiona ofatour
workflow model implies that the behavior of the workflow must be reliable and the

overall system should always be guaranteed to be in a consistent state.

A major concern in reliability assurance is on the failure handling mechanism supported
by the management model of the workflow. Analogous to failure handling support, and
equivalent to it in importance is the compensation handling mechanism. The informal
semantics of the exclusive scope Def3.7 states that when an exclusive branch is enabled
but fails to complete, then an alternative branch is enabled. However, it does not state
what happens to the partially completed activities in the failed branch. Transactional
integrity assurance requires the partially completed activities to be compebstiesl

the alternative branch is executed, due to the potential assumption that alternative

branches attain the same overall task from the business point of view.

Deadlocks may arise from the ambiguous behavior of join constructs. For example, a
synchroizer with m incoming branches assumes enablement of branches for the
construct to be fired. If one or more of the branches fails, the construct goes into a
deadlock state. Hence, the synchronizer should be supported with transactional semantics

to constatly ensure the consistent behavior of the construct even in case of failures.

To address the issues mentioned, augment the operational semantics of workflow
patterns with transactional semantics to formally define the implemented patterns in

COMPMOD. Thus, each workflow activity, branch, and scope is defined with a set of

56

3.4 Reliability and Integrity Issues

transactional dependencies: activatiormptetion, failure, cancellation (fordail), and
compensation (when necessary). Dependencies are employed to model a reliable
interrelated behavior of workflow components which consequently guarantees a reliable
overall behavior of the model. The formahansactional semantics of the model are
defined through (a) Transactional Dependencies, and (b) Management and Compensation

policies. Formal descriptions are detailed in chapters 5 and 6.

3.5 Transactional Patterns

In our model, workflow tasks are web services. Orchestration deals with how different
services are composed into a coherent whole (LRT). It specifies the order in which
services are invoked, and the conditions under which a certain service may or may not b
invoked (Alonso, 20043. Our orchestration mechanism
Patt er ns Bhiragt al.r 2066g(Bhiri et al., 2006h Transactional patterns are
aimed at specifying flexible and reliable composite web services. They are a convergence
concept between workflow patterns and advanced transactional m@dedagarid,

1991, and thus they combine the flexibility of work flow control patterns with the
reliability of transactional models to ensure the transactional consistency of service

compositions.

Web services emphasize transactional properties for their characterization and correct
usage. In(Bhiri et al., 2006p these properties are assumed todbeable, compensable
andpivot A servicesis said to beetriable if it is sure to complete after a finite number

of activations, whilesis compensabl# it offers compensational policies to semantically

57

Chapter 3. Fundamentals

undo its effects, andis said to beivotif once it successfully completéisen its effects

cannot be undone.

Each service has a set of operations, depending on the transactional property of the
service. A pivot service has a minimal setatvort(), activate(), cancel(), fail()and
complete() to allow its abortion, activation cancellation, failure, and successful
completion. A compensable service has in additicorapensate(@peration to allow for

its compensation. A retriable service hasetry() operation to allow for its activation

after failure.

The transactional pa&itns define orchestrations between services in a composite web
service by using dependencies to define how services are combined and how the
behaviour of some given services influences the behaviour of others. Dependencies are
used to express the relatibiyss that exist between services such as sequence, alternative,
compensation, activation or cancellation dependencies. They also associate preconditions

with service operations. The general definition of a dependency is:

Def.3.8 (Bhiri et al., 20063: A dependencyfrom service s; to service s,

exists if atransition of s; can fire an external transitionof s,.

It is assumed that a transition can be an internal or external transition, with internal
transitions being fired by the service itself (eegmplete(), fail()or retry()) and external

transitions being fired by external entities (@lgort(), cancel()pr compensatey)

58

3.5 TransactionalPatterns

The transactioal patterns paradigm discusses simple patterns such asspiNDor
XOR-split, where a single service exists on each split branch. In addition, the way in
which the dependencies are defined does not allow for nesting in the composite service.
The failurehandling and recovery mechanism are implemented through compensation

and alternative dependencies.

We have drawn inspiration from transactional patterns, but provide solutions for multiple
nested transactions. We extend the notion of transactional patterns to modelestel

transactions by introducing the following concepts (detailed discussidmapt€r 4):

1 Atomic nodes, scopes, nested scopes, and execution paths and their transactional

dependencies and attributes;

9 A hierarchical structure that mirrors the workflow structure of the LRT.

1 Vitality of nodes, scopes, and execution paths;

1 Encapsulatin of dependencies on the scope and execution path level to facilitate

automated propagation of events;

1 Management and compensation policies to support an underpinning framework

for imposing and automating the control flow of events.

59

Chapter 4

Model Architecture

4.1 Introduction

In this chapter, we discuss the underlying structure of the COMPMOD model. We
discuss features of the model, the representation of our workflow maakeimodel
assumptions, and formal fi@tions of the workflow patterns and the generic formal
definitions of transactional dependencies and management policies. This chapter forms

thebasis for Chapters 5 and 6.

4.2 Features of COMPMQOD

COMPMOD is a conceptual management framework for WF Long Running
Transactions, focusing on the control flow perspective of management. Transactions are
designed based on structured wtowf schemas, where WF constructs are supported

60

4.2 Features of COMPMOD

with well-defined operational and transactional semantics. On the one hand, the model
aims at ensuring the reliability and integrity of transaction execution in the context of

long duration executed througlitanomous and loosely coupled web services. On the

ot her hand, and given the business orient
providing flexibility in incorporating business and compensation logic into the design of

transactions in a clear and useendly way.

Transactional semantics of WF constructs are defined through behavioral dependencies
and management control policies. Dependencies are defined as predicate logic formulas
over component states and/or attribute values. Satisfying a depgritles@n execution

event, such that when an LRT or one of its components activates, completes, faHs, force
fails or compensates, an execution event is fired. A management policy assesses the fired
event and performs an action based on the operatiomainsies of the WF model. The
applied eventontrolaction mechanism is built on top of a recursive hierarchical
structure of the WF schema, and is facilitated through automated propagation
mechanisms that are merely influenced by the recursive hierarclaitake of the WF

schema.

The management of LRTs must proceed in two parallel directions:

(&) The management of the LRT during its normal execution mode, which must embrace

a reliable and efficient faultandling and partial compensation mechanism.

61

Chapter 4. Model Architecture

(b) The management of the LRT during the execution of its compensation mode

comprehensive compensation, in case the LRT has failed to successfully complete.

To handle LRTs, a modelling and management system would ideally support the
following aspects. -B are motivated by the structure of transactions and the fact that it is
at the business level, where a full understanding of the implications exists; 4 allows for
the separation of the actual process and handling of execution and exceptions in a vibrant

and flexible way; and 8 are requirements that ensure the practicality of the approach.

[
1

Multi-level nesting of transactions with reliable behavioural dependencies

between transaction components and across hierarchy levels;

2- Definition of designeoorder ompensation patterns that reflects the business logic
of the LRT;

3- Incorporating compensation logic into the business logic of long running
transactions through transactional dependencies;

4- Rule-based Policies for managing execution and compensation kcibodvp

5- Automated method for propagating activation and successful completion events
through the hierarchy structure as a management mechanism.

6- Automated method for propagating failure events through the hierarchy structure
as a failure handling mecham.

7- Automated method for performing compensation actions while the LRT execution

is in progress, through backward and forward order compensations.

8- Flexibility in extending the model through new WF patterns.

62

4.2 Features of COMPMOD

Aspects 17 have been addressed in the proposed model and discussed in this thesis. The
flexibility of the model is expressed through the extensibility property of COMBM

and is discussed in Chapter 8.

4.3 Representations of Nested LRTs

We use two main representations of the workflows in COMPMOD: a workflow
representation that allows to abstract away from sub workflows and a tree representation

that is used by therppagation mechanism.

In our model we have two basic components: nodes and execution paths. A node can be
an atomic node (a single web service) or a scope hadset of semantically connected
nodes (atomic and/or scope). An execution path represetrtsl af nodes that are
executed in sequential order. A scope node encapsulated by an execution path is
interpreted the same as an atomic node. In other words, scope nodes on an execution path

are like black boxes that encapsulates execution paths amahoties.

4.3.1 Workflow Model

An LRT, at its highest level, is executed as a flat transaction, i.e. a sequence dhabdes

are executed sequentially (Figure 4.1). The main execution path is denoted asge

can be an atomic node or a scope node. Each scope creates two or more execution paths
that start from the split point and end at the join point of the scopb.&acution path is

a sequence of one or more nodes, executed in sequential order where nodes along the

63

Chapter 4. Model Architecture

path again can be atomic or scopes allowing arbitrary levels of nesting. Through the rest
of the discussion, we will use the term component to refeotb nodes (atomic/scope)

and execution paths.

Scope 1 Scope2 Scope3

nl n2
0—e & 00 @ (]

START END

. Atomic or Scope Node

Figure 4.1 A WF showing level 0 of a sample LRT

The modelling method allows for mulgvel nested transactions to address demands
occurring in real cooperative business processes. In the represematieh itself, we

see alternating levels of paths and noddse main execution path of a transaction is
regarded as level 0 in the workflow. Figure 4.2(a), demonstrates an expanded two level
nesting of the sample LRT in Figure 4.1 dfidure 4.2(b)Ydemonstrates the LRT with

level 2 of the WF collapsed.

Considering the execution path in i G&1Q, the path consists of an atomic nodg
followed in sequence by a scope nodenQ 1 that in turn encapsulates three execution
paths.We provice a nodeListattribute on path objects to express this: for example
N.EE D=6, GENQ.1]. If we collapse level 1 of the WF, the main execution path
becomes a flat WF that executes the nodepdEé QD= [&1, &, [d&ENQ, [&nQ,

/ a&n@) in sequential order (figure 4.1).

64

4.3 Representationof Nested_RTs

Scope 2 Scope 2

(a) All nesting levels expanded

Scope 1

. Atomic Node (2 synchronisation/join point D AND operator

' Scope Node D or operator €P XOR operator

Figure 4.2 A WF showing multi levels of a sample LRT

4.3.2 Hierarchical Structure Model

Transaction componenisiodes and execution patlae linked together in a hierarchical
structure. Each component has a single superior, and an ordered set of one or more

inferiors. More specifically:

Node componentA superior of any node is the execution path that encapsulates the
node. An atomic node is a leaf node that has no inferiors. A scope node has two or more

inferiors which represents the number of split execution paths it encapsulates.

65

Chapter 4. Model Architecture

Execution path componenthe superior of any execution path is the scope node that
encloses it. The main execution path of an LRT has no supEach execution path has
one or more inferiors. The inferiors of a path represent an ordered set of one or more
nodes that the path encloses. The root of the recursive hierarchy is the main execution
path of the LRTo. Figure 4.3 illustrates the hiechy structure of the sample workflow
in Figure 4.2(a).

PO

e

nl n2 Scopel Scope2 Scope3

ﬂ\ /R AN

P2 P3 P1 P2 P3

/\\\ |

n3 nd nS n6 Scope2.1 n/ Scope3.1 nle nl7

Execution Path /K\ /N

P1 P2 P3 P1 P2 P3

Atomic Node /| ‘ ‘

Scope Node n9 nil2 nl0 nll nl3 nl4 nls

Figure 4.3 Hierarchal Structure of WF schemas

4.3.3 Transactional operators and scopes

COMPMODG6s WF schema i svorkflomnthatesdppoatsthe alesigntof u c t u
arbitrary nested levelsf transactions. The welbrmed structure of the LRT is forced by
the model, meaning that the burden of maintaining the balanced structw@itoérid

join) patterns is imposed by the model.

66

4.3 Representations of Nested LRTs

A scope node starts with a split operator (OR, AND, or XOR) that is explicitly assigned

while constructing a scope. The syntax of the scope is defined as:

[4 oy > fivmn glivBn g W

When a scope is initially defined, a split operator and a list of split nodes are specified. A
split node can be an atomic node or a scope node, which facilitates the construction of

nested scopse

The AND-split pattern in (Figure 4.4 (a)) is defined as (ANRJmNg]) and is
implemented in COMPMOD as depicted in (Figure 4.4 (b)) where the split pattern is
coupled with a synchronisation point representing the implicit ANID. The number of

spit nodes corresponds to the number of execution paths encapsulated within the scope.
Therefore, the scope in (Figure 4.4(b)) creates three execution paths ngmghampd p

which are represented by the orderRathListof the defined scope node.

A scope in COMPMOD is formally defined as:

Def.4.1:(Scope Definition)
A scopes defined as follows:

£ D ey e o L
bz 0= v g (= F b FEFR:
V{}n..-(e el B)Y
W gt V(. e |

where operator® {AND,OR,XOR}

67

Chapter 4. Model Architecture

As mentioned earlier, each execution path creates an ordered list of one or more nodes,
denoted bynodeList When a node is appended to an existing executionmfathe node
is appended t& ¢ 'Q'Q0 Tie dnain building blockconstruct of the WF is the
sequence construct. A sequence pattern connects two nodes in a sequential order. The

sequence pattern is formally defined as:

Def.4.2:(Sequence pattern)

A sequence pattern is defined as follows:
node.type={ATOMIC,SCOPE} and ode.type={ATOMIC,SCOPE}:
SEQPattern=(SEQ,nodenode) ©

pi.nodeList=p.nodeList+[nodg] , node.superior=p

where p=node.superior

Accordingly, the two level nested scope of (Figure 4,4 (c)) can be denoted by the

following constructs:

Scope=(0OR,[(SEQ,m,scope.1),nz,n3]) where scope 1=(XOR,[(SEQ,N4,n7),ns,Ng]).

68

4.3 Representationsf Nested_RTs

nl

n2

n3

(a) pattern

(b) COMPMOD scope (c) Two level nested scope
with synchronise point

@ AtomicNode & Synchronisationfjoin point [> AND operator

| Scope Node [> ORoperator 5 XOR operator

V-
1
L

Figure 4.4 Scope Structure

4.3.4Execution paths

The type of scope pattern determines the routing mode of its encapsulated paths. An
AND-scope creates two or more concurrent execution paths, while @tdpR creates

a two or more concurrent paths where only a subset of these paths are executed during
runtime, the executed paths are those whose enabling condition are satisfied. An XOR
scope creates two or more exclusive paths: the gt has the highest priority and
therefore execution starts with the path with the highest priority. If an exclusikelat

has an alternative path with lower priority fails to complete, the path is compensated in

backward order, until the split point of the scope is reached (this is done as part of the

69

Chapter 4. Model Architecture

forward compensation of the LRT), and then the alternative pagkdcuted. Therefore,
execution paths are assigned with the following transactional attributes:
1. An execution patthsConcurretif it is encapsulated within an immediate OR
scope or ANDBscope superior.
path.superior={AND,ORP path.IsConcurrent=TRUE
2. An execution patisExclusivef it is encapsulated within an immediate XOR
scope superior.
path.superior=XOR® path.IsExclusive=TRUE
3. An execution patimasAlternativeif it IsExclusiveand has a path with lower
priority in the same scope.
path.ISExclusivé s ucces s or (9 paththgsAltbruative=TRUE
4. A concurrent path does not have an alternative.
path.IsConcurrent=TRUE Y path. hasAltern
5. Apart from the main execution path, a path must either be concurrent or
exclusive.
path.IsConcurrent=TRJE Y pat h. | sExcl usi ve=FALSE
path. |l sExclusive=TRUEY path.IsConcurren
6. An execution path issEnabledif and only if itisConcurrentpath within an OR
immediate scope and its branching condition is satisfied at runtime.
7. The main execution path isspecial case where:
path=p © path.IsExclusive=FALSE path.IsConcurrent=FALSE

path.IsEnabled=FALSE

70

4.3 Representations of Nested LRTs

4.3.5 Vitality of components

Each LRT component has wtality attribute that allows it to specify whether a
component is vital or newital. A vitality value IsVital={TRUE/FALSE} is assigned to

each component, either Ispecificationor by evaluation Vitality of atomicand scope
nodes is assigned by specification: that is, according to the business logic of the LRT.
Essentially, vitality allows the workflow designer to express whether the failure of the
specific service or scope of services can be tolerated and thdomorddn proceed (an
example of a nowital task might be one sending a progress message to the invoking user

T nothing in the process will be broken if the message is not sent).

Vitality of execution paths is assigned by evaluation according to theviotjorules. A
path is
Avital if it encapsulates at least one vital node.

Anon-vital if all the nodes it encapsulates are +wital.

Note that the decision of assigning the vitality value to nodes (atomic and scope) is based
on the business logic of the LRT. It is important to note that our management/
compensation model does not investigate or analyse the business logic of the iIBRT. It
always assumed by the model that the logic provided for the LRT at design time is what

it is required from the transaction by the business level.

Vitality of components is utilised in the control propagation mechanism proposed in the

model. The transactional implication of the vitality measure of a component expresses the

71

Chapter 4. Model Architecture

impact of successful completion or failure of angwnent on its immediate superior and

on its successor in case of node components.

Avi t al sucaeshfal@snpletion iecessaryor

1- The successful completion of its superior path

2- The activation of its successor node(if any)
The failure of avital node leads to the failure of it superior path (by propagation), and
consequently the execution of the path, ends.
Successful completion afon-vital nodesis desirablefor the successful completion of
its enclosing path, but is not necessary. In other sydtee failure of anon-vital node
will not fail its enclosing path unless it was a notal path and all its nodes have failed.
The same applies to the activation of awon t a | nodeds successor,
successful completion of a neital node isdesirablefor the activation of its successor,
but not necessary. Hence, the failure of a-mited node will still trigger the activation of

its successor (if any).

Execution paths are either concurrent or exclusive. The effect of the successful

completion or failure of paths, with respect to their vitality measure, is most evident for

concurrent paths.

The succedsal completion of a vital concurrent path is necessary for the successful

completion of its immediate superior scope. The failure of a vital concurrent path will fail

72

4.3 Representations of Nested LRTs

its superior scope, and consequently fefeskall the concurrent paths within the same

immediate superior scope.

The vitality of an exclusive path does not have a direct impact on the successful
completion or failure of its enclosing scope. An exclasscope succeeds if one of its

exclusive paths successfully completes, and fails if all its exclusive paths fail to succeed
regardless of their vitality measure. Therefore, we consider only concurrent scopes when

discussing the assignment of vitality me&sto scope nodes.

We classify concurrent scopes with regard to the assignment of vitality to the scope and

its encapsulated paths into three cases:

Case l:a vital scope with at least one vital path.
Case 2:a nonvital scope with any combination ehcapsulated vital/newital paths.

Case 3:a vital scope with all paths as ruital.

Case 3 does not seem useful from the business point of view. However, while case 3
could be designed, it is not desirable, and hence, will exclude it through vitality

assumptions 2 below.

We justify our exemption of Case 3 as follows: vitality is a way of stating the necessity of
success ok specific component. If we assume that a scope is vital and is necessary to

succeed, then we implicitly assume that at least one of its paths is guaranteed to succeed.

73

Chapter 4. Model Architecture

In case 3, where not all paths are vital, they are all desirable but not necessacetd,
which seems to contradict with the vital assignment of the enclosing scope. However, it
may be argued that in some senses, a vital scope with ondjitabnodes would succeed

if only one of the nodes succeeded; thus we wished to leave the tptibe business

process designer.

However, to ensure that processes are generally sensible, we have assumed logical

restrictions by the model with respect to the design of LRTs as irsteekction 4.7.

4.4Workflow of OP Case Studyn COMPMOD

We reresent the OP business process in (Chapter 2, Figure 2.1) using COMPMOD
architecture. First, in Figure 4.5, we depict the workflow representation of OP in
COMPMOD. At this stage, we ignore transactional and compensation dependencies but
we will refer backto the OP workflow case study in Chapters 5 and 6. We assume that
the process logic of OP defines the OUTSOURCE_ANALYSIS activity as avitaln

activity and hence its failure during runtime will not interrupt the execution of OP.

74

4.4 Workflow of OP Case Study in COMPMOD

——

CHARGE

—

 EE—

OUTSOURCE
ANALYSIS

START N~

Non-vital

DELIVERY

[AND spilt &) ANDJoin ! Scope

Figure 4.5 OP workflow in COMPMOD

Syntactically, the OP workflow is defined as:
OP=(SEQ,SALES,(AND,CHARGE,OUTSOURCE MALYSIS,(SEQ,DELIVERY,
CHECK_GOODS)))

In the following, we list the transactional attributes of OP according to COMPMOD

model.

(1) Node Types:

Note thatnodeTypas a transactional attribute which is assigned for nodes and hence
the following values apply:

SALES.nodeType=ATOMIC Scope.nodeType=SCOPE
CHARGE.nodeType=ATOMIC OUTSOURCE_ANALYSIS.nodeType=ATOMI(
DELIVERY.nodeType=ATOMIC CHECK_GOODS.nodeType=ATOMIC

75

Chapter 4. Model Architecture

(2) Node Lists:

Note thatnodelListis a transactional attribute which is assigned for execution paths
and hence the following values apply:

Po.nodeList=[SALES,Scop¢

scope.p:1.nodeList=[CHARGE]

scope.pz.nodeList=[OUTSOURCE_ANALYSIS]

scope.ps.nodeList=[DELIVERY, CHECK_GOODS]

(3) Path Lists:

Note thatpathListis a transactional attribute which is assigned for scope nodes and

hence the following values apply:

scope.pathList=[p1,p2,p3]

(4) Vitality attributes:

Note thatlsVital is a transactional attribute which is assigned for all workflow

components and hence the following values apply (Table 4.1):

Component IsVital
p0 TRUE
SALES TRUE
CHARGE TRUE
OUTSOURCE_ANALYSIS FALSE
DELIVERY TRUE
CHECK_GOODS TRUE
scope.px TRUE
scope.p; FALSE
scope.ps TRUE

Table4.1 Vitality attributes of OP components

76

4.4 Workflowof OP Case Study in COMPMOD

(5) Path Routind\ttributes:

Note that routing attributes are transactional attributes which are assigned for

execution paths and hence the following values apply:

Path IsConcurrent | IsExclusive | hasAlternative
po FALSE FALSE FALSE
scope.p: | TRUE FALSE FALSE
scope.p; | TRUE FALSE FALSE
scope.ps | TRUE FALSE FALSE

Table 4.2 Path attributes of OP case study

45 Reactive Management and Execution states

The management system of transactions (COMPMOD) is implemented as a reactive
system controllefWieringa, 2003 where system componenthange their execution
states and actions in response to stimuli/events. In our model, mniefieed as a result

of a behavioral dependency satisfaction. A stimulus is triggered as a result of a transition
in the execution state of a transaction component or as a result of the application of a rule
(policy), leading to the firing of an evenin other words, COMPMOD is an
Event/Control driven WF management system that reacts continuously to stimuli/events
until the LRT execution finally terminates in a state that is meaningful from both a

system as well as a business perspective.

During the execution life cycle of the transaction, the LRT and its components go
through different execution states and they are marked with theentexecution state.

The state transition diagrams are depicted in Figue4.4. Initially, the LRT and all its

77

Chapter 4. Model Architecture

components are marked RST-ACTIVATED. State transitions are triggered by execution
events, and they are marked by the transition actions deployed in the management
policies. For example, when an activation event is fired for the LRT, commencing its
execution, the activation event is assesbgdan activation policy and the action
activate(LRT) is performed, which transforms the state of the LRT ROMACTIVTAED

to ACTIVATED. Activation of the LRT fires the activation event of the main execution
path, and subsequently an activagg@rtionis performed which transforms the state of

Po from NOT-ACTIVTAED to ACTIVATED. The effects of events and actions in our model
obligate a chain of state transformations that continuously change the state of the LRT
and its components, in accordance withrir@nagement and compensation policies. The
chain of transformations is controlled by the propagation of an events/actions mechanism
implemented by the COMPMOD model. If we abstract from the propagation mechanism,
then the events and actions have identgfédcts in our mode, and therefore, the two

terms may be used alternatively to refer to state transformation of components.

Completion
Event

1 Compensation
‘1 Completion
1 Event

COMPENSATED

O Initial State © Final State > External Event - Internal Event

Figure 46 STD for LRT

4.5 Reactive Management and Execution States

ised Compensation

Completion event

Activation Event

Ac-,'-‘:‘c,’;m ACTIVATED ~ J- = = = — = SUCCEEDED
Fwd/Bwd
Compensation X"
Event " \‘f“/ Fwd/Bwd /customised
;a'\\‘j‘ - Force-Fail Compensation
d Compensation P - Event Event
Customiseg
Event
FAILED COMPENSATI
NG

Fwd/Bwd
Compensation
Event

|Compensation
jcompletion
jEvent

Customised Compensation

Fwd/Bwd
Compensation
Event

O Initial State © Final State > External Event - Internal Event

Figure 4.7 STD for atomic nodes

NOT-
ACTIVATED

Figure 48 STD for scope nodes

79

