
Considering Feature Interactions in
Product Lines

Towards the Automatic Derivation of
Dependencies Between Product Variants

Andreas Metzger, Stan Bühne, Kim Lauenroth, Klaus Pohl

Software Systems Engineering

Institute for Computer Science and Business Information Systems
University of Duisburg-Essen, Germany

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 2

Outline

! Introduction

! Variability in Software Product Lines

! Deriving Dependencies between Product Variants

! Conclusion

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 3

Introduction:
Software Product Line Engineering

! Development approach for customer specific software
– Systematic reuse

" Reduction of development cost and time; Increase in Quality

! Two development processes

D
o

m
ai

n
E

n
g

in
ee

ri
n

g

Domain
Req. Engineering

Domain
Realization

Domain
Testing

Domain
Design

Domain Artefacts

A
p

p
lic

at
io

n
E

n
g

in
ee

ri
n

g Application
Req. Engineering

Application
Realization

Application
Testing

Application Artefacts

Application
Design

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 4

Introduction:
The Concept of Variability (1)

! Variability
– “Ability of an artefact to be adaptable”

! Employing variability

– Domain engineering:

- Modelling of “generic” domain artefacts

– Application engineering:

- Binding the variability of the domain artefacts

! Variation point (VP)
– Point at which an artefact can vary

! Variant (V)
– Concrete instances or alternatives for variable parts

– associated to one VP

VP

[Name]

[Name]

V

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 5

Introduction:
The Concept of Variability (2)

! Example: “Small Building Control System Familiy”

Natural
Ventilation

VVVV
Artificial
Cooling

Air
Conditioning

VP

VV
Artificial

Ventilation

Controlled
Effect

VP

VV

Heating

VV

Illumination

BindingBinding

VV
Artificial
Cooling

Air
Conditioning

VP

Controlled
Effect

VP

VV

Heating

D
o

m
ai

n
E

n
g

in
ee

ri
n

g
A

p
p

lic
at

io
n

E
n

g
in

ee
ri

n
g

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 6

Introduction:
Dependencies between Variants (1)

! Problem: Variants can influence each other

" Consider dependencies during application requirements engineering
– Example: artificial cooling hinders heating

" customer is aware that “artificial cooling” will impact “heating”

" choice of alternatives is possible (e.g., natural ventilation, integrated HVAC, …)

! Problem: Dependencies have to be known before application requirements engineering
– otherwise: frustration of customers

VV
Artificial
Cooling

Air
Conditioning

VP

Controlled
Effect

VP

VV

Heating

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 7

Introduction:
Dependencies between Variants (2)

! Solution: Identify dependencies in domain engineering
– All possible applications have to be considered

! Problem: Number of possible combinations of variants
– Small example: 5 variants " (3+2+1) * (2+1) = 18 applications
– Large example: 14 variants " 639 applications
– In practical contexts: > 100 variants " >> 1000 applications

" Manual identification of dependencies does not scale!

! Our solution: Semi-automatic approach based on feature interaction detection

– Feature interaction between Vj and Vk # dependency between Vj and Vk

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 8

Outline

! Introduction

! Variability in Software Product Lines

! Deriving Dependencies between Product Variants

! Conclusion

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 9

VV

Heating

VV

Illumination
Natural

Ventilation

VVVV
Artificial
Cooling

VV
Artificial

Ventilation

Variability in Software Product Lines:
Variability Model (1)

! Variation point (VP)
– Point at which the artefact can vary

! Variant (V)
– Concrete instances or alternatives for

variable parts

– associated to one VP

! VP-V Dependency
– Variant Group (VG)

- Constrains selection of variants for VP

! V-VP Dependency
– Allows hierarchical refinement

! V-V Dependency
– Dependencies between variants

- hard: excludes / requires
- subtle: hints / hinders

! similarities with feature diagrams

Air
Conditioning

VP

Natural
Ventilation

VVVV
Artificial
Cooling

VV
Artificial

Ventilation

1..1

Air
Conditioning

VP

Controlled
Effect

VP

1..*

Controlled
Effect

VP

VV

Heating

VV

Illumination

hinders

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 10

Variability in Software Product Lines:
Variability Model (2)

! Example: “Building
Control System Family
(BCSF)”

Controlled
Physical Effect

VP1

Intrusion
Detection

VP3

VV4.1
Hull

Monitoring

VV4.2
Internal

Surveillance

1..*

Light
Source

VP2

VV1.1
Artificial
Lighting

VV1.2
Natural
Lighting

1..*

Alarm
Notification

VP4

VV4.3

Sound

VV4.4

Light

1..*

Air
Conditioning

VP5

Natural
Ventilation

VV5.3VV5.1
Artificial
Cooling

1..1

VV5.2
Artificial

Ventilation

VV4

Security

1..*

VV5

Air Quality

VV3

Heating

VV2

Glare

VV1

Illumination

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 11

Outline

! Introduction

! Variability in Software Product Lines

! Deriving Dependencies between Product Variants

! Conclusion

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 12

Deriving Dependencies between Product Variants:
Basic Approach

1. Automatically determine feature interactions for all possible applications

1.1 Select representatives from all possible combinations

" Tackling the problem of scale

for each representative:

1.2 Derive “application” by binding variants

1.3 Detect feature interactions

- using algorithm from single system development

2. Manually derive and model dependencies

2.1 Determine relevant feature interactions

" Relevance cannot be derived from input models

2.2 Model dependencies between variants

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 13

Deriving Dependencies between Product Variants:
1.1 Select Representatives (1)
! Number of possible variant combinations for one VG

– BCSF Example: 639 combinations

! Assumption: no m-way feature interactions
– m-way feature interaction :=

feature interaction that does not occur between 1 < r < m features but occurs among m features

– interaction between features F1, …, Fm

⇒ interactions between all features Fi1, …, Fir ∈ {F1, …, Fm} with 1 < r < m

Select combination with largest possible number of variants:
– “worst case”: false positives " more interactions to check manually

– BCSF Example: 639 " 3

∑ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= k

ji i

n
n)k,K(j,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k

n
n)k,K(j,

j..k

VPx

VP

VV

Vx.1

VV

Vx.n

…

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 14

Deriving Dependencies between Product Variants:
1.1 Select Representatives (2)

! Selection Algorithm (“Outline”)

1. Start with root VP

2. Resolve VP by adding maximum number of variants

- considering alternatives if k < n

3. Resolve hierarchical variants (replace by VP)

4. Repeat at 2. until no more VPs are contained

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 15

Deriving Dependencies between Product Variants:
1.1 Select Representatives (3)

! Selection Algorithm
– BCSF Example:

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.1} {V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.3}

{VP1}

{V1, V2, V3, V4, V5}

{V1.1, V1.2, V2, V3, VP3, VP4, VP5}

{V1.1, V1.2, V2, V3, V4.1, V4.2, VP4, VP5}

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, VP5}

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.2}

{VP2, V2, V3, VP3, VP4, VP5}

VP1

VP3

V
V4.1

V
V4.2

1..*

VP2

V
V1.1

V
V1.2

1..*

VP4

V
V4.3

V
V4.4

1..*

V5.3
VV

V5.1

VP5

1..1
V
V5.2

V
V4

1..*

V
V5

V
V3

V
V2

V
V1

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 16

Deriving Dependencies between Product Variants:
1.2 Derive “Application” (2)

! Bind variants in GRL (Goal Oriented Requirements Language) models
– Each variant is assigned to one goal

– BCSF Example (Excerpt):

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.1}

BlindAct

IllumSens

Natural
Lighting

IllumCtrl

meansEnd

Task

Goal

……

RadAct TempSens

Glare Heating

GlareCtrl TempCtrl

Natural
Ventilation

.

.

.

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 17

Deriving Dependencies between Product Variants:
1.3 Detect Feature Interactions

! Detect points of interaction (cf. [Metzger et al. 2003], [Metzger 2004])
– Point of interaction := task that

- contributes to the realization of more than one goal
- has more than one direct parent
- does not realize goals only

– Recursive algorithm on GRL metamodel instance

– BCSF Example:

– Interaction between NaturalLighting, Glare # Interaction between V1.2, V2

– Extension for embedded systems:
- Additionally consider environment

IllumSens RadAct TempSens

Natural
Lighting

IllumCtrl

Glare Heating

BlindAct

GlareCtrl TempCtrl

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 18

Deriving Dependencies between Product Variants:
2. Manually Derive and Model Dependencies

2.1 Determine relevant feature interactions
– BCSF example:

1. {V1.2, V2} @ Task
2. {V1.1, V1.2, V2, V3, V4.2} @ Task
3. {V1.1, V1.2, V2} @ Task
4. {V1.2, V2, V3, V5.2} @ environment
5. {V1.2, V2, V3, V5.1 } @ environment
6. {V4.1, V5.3} @ environment
7. {V1.2, V2, V3, V5.3} @ environment

2.2 Model dependencies between variants
– BCSF example:

VV4.1
Hull

Monitoring

VV4.2
Internal

Surveillance

VV1.1
Artificial
Lighting

VV1.2
Natural
Lighting

VV4.3

Sound

VV4.
4

Light
Natural

Ventilation

VV5.3VV5.1
Artificial
Cooling

VV5.2
Artificial

Ventilation

VV4

Security

VV5

Air Quality

VV3

Heating

VV2

Glare

VV1

Illumination

hinders

A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 19

Conclusion

! Semi-automatic approach
! Reduction of complexity/effort

! Automatic selection of representatives: 639 " 3

! Automatic detection of interactions: 37 goals/tasks, 39 means-end-links " 7 interactions

! Model-based approach
– Inputs/outputs are models

– Model-based implementation of detection tool
- Core: 175 manually implemented Java LOCs

! Generality of approach
- Variability model " feature diagrams could also be used
- Requirements model (GRL) " other detection approaches are applicable

“Positive” use of Feature Interactions for Product Line Engineering
" Selection of alternatives to “avoid” undesired interactions

Further Information …

… Contact:

Dr. Andreas Metzger

Software Systems Engineering
Schützenbahn 70
University of Duisburg-Essen
45117 Essen, Germany

metzger@sse.uni-essen.de
www.sse.uni-essen.de

… Text Book:

Pohl, Böckle, van der Linden:
Software Product Line
Engineering ─ Foundations,
Principles and Techniques.
Springer, 2005

… Questions?

