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Introduction:
Software Product Line Engineering

! Development approach for customer specific software
– Systematic reuse

" Reduction of development cost and time; Increase in Quality

! Two development processes
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Introduction:
The Concept of Variability (1)

! Variability
– “Ability of an artefact to be adaptable”

! Employing variability

– Domain engineering:

- Modelling of “generic” domain artefacts

– Application engineering:

- Binding the variability of the domain artefacts

! Variation point (VP)
– Point at which an artefact can vary

! Variant (V)
– Concrete instances or alternatives for variable parts

– associated to one VP
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Introduction:
The Concept of Variability (2)

! Example: “Small Building Control System Familiy”
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Introduction:
Dependencies between Variants (1)

! Problem: Variants can influence each other

" Consider dependencies during application requirements engineering
– Example: artificial cooling hinders heating

" customer is aware that “artificial cooling” will impact “heating”

" choice of alternatives is possible (e.g., natural ventilation, integrated HVAC, …)

! Problem: Dependencies have to be known before application requirements engineering
– otherwise: frustration of customers
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Introduction:
Dependencies between Variants (2)

! Solution: Identify dependencies in domain engineering
– All possible applications have to be considered

! Problem: Number of possible combinations of variants
– Small example: 5 variants " (3+2+1) * (2+1) = 18 applications
– Large example: 14 variants " 639 applications
– In practical contexts: > 100 variants " >> 1000 applications

" Manual identification of dependencies does not scale!

! Our solution: Semi-automatic approach based on feature interaction detection

– Feature interaction between Vj and Vk # dependency between Vj and Vk
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Variability in Software Product Lines:
Variability Model (1)

! Variation point (VP)
– Point at which the artefact can vary

! Variant (V)
– Concrete instances or alternatives for 

variable parts

– associated to one VP

! VP-V Dependency
– Variant Group (VG)

- Constrains selection of variants for VP

! V-VP Dependency
– Allows hierarchical refinement

! V-V Dependency
– Dependencies between variants

- hard: excludes / requires
- subtle: hints / hinders

! similarities with feature diagrams
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Variability in Software Product Lines:
Variability Model (2)

! Example: “Building 
Control System Family 
(BCSF)”
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Deriving Dependencies between Product Variants:
Basic Approach

1. Automatically determine feature interactions for all possible applications

1.1 Select representatives from all possible combinations

" Tackling the problem of scale

for each representative:

1.2  Derive “application” by binding variants

1.3  Detect feature interactions 

- using algorithm from single system development

2. Manually derive and model dependencies

2.1 Determine relevant feature interactions

" Relevance cannot be derived from input models

2.2 Model dependencies between variants
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Deriving Dependencies between Product Variants:
1.1 Select Representatives (1)
! Number of possible variant combinations for one VG

– BCSF Example: 639 combinations

! Assumption: no m-way feature interactions
– m-way feature interaction := 

feature interaction that does not occur between 1 < r < m features but occurs among m features

– interaction between features F1, …, Fm

⇒ interactions between all features Fi1, …, Fir ∈ {F1, …, Fm} with 1 < r < m

# Select combination with largest possible number of variants:
– “worst case”: false positives " more interactions to check manually

– BCSF Example: 639 " 3
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Deriving Dependencies between Product Variants:
1.1 Select Representatives (2)

! Selection Algorithm (“Outline”)

1. Start with root VP

2. Resolve VP by adding maximum number of variants

- considering alternatives if k < n

3. Resolve hierarchical variants (replace by VP)

4. Repeat at 2. until no more VPs are contained
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Deriving Dependencies between Product Variants:
1.1 Select Representatives (3)

! Selection Algorithm
– BCSF Example:

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.1} {V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.3}

{VP1}

{V1, V2, V3, V4, V5}

{V1.1, V1.2, V2, V3, VP3, VP4, VP5}

{V1.1, V1.2, V2, V3, V4.1, V4.2, VP4, VP5}

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, VP5}

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.2}

{VP2, V2, V3, VP3, VP4, VP5}
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Deriving Dependencies between Product Variants:
1.2 Derive “Application” (2)

! Bind variants in GRL (Goal Oriented Requirements Language) models
– Each variant is assigned to one goal 

– BCSF Example (Excerpt):

{V1.1, V1.2, V2, V3, V4.1, V4.2, V4.3, V4.4, V5.1}

BlindAct

IllumSens

Natural 
Lighting

IllumCtrl

meansEnd

Task

Goal

……

RadAct TempSens

Glare Heating

GlareCtrl TempCtrl

Natural 
Ventilation

.

.

.



A. Metzger – ICFI 2005, Leicester, UK, June, 2005 © SSE (Prof. Pohl), University of Duisburg-Essen – 17

Deriving Dependencies between Product Variants:
1.3 Detect Feature Interactions

! Detect points of interaction (cf. [Metzger et al. 2003], [Metzger 2004])
– Point of interaction := task that 

- contributes to the realization of more than one goal
- has more than one direct parent 
- does not realize goals only

– Recursive algorithm on GRL metamodel instance

– BCSF Example:

– Interaction between NaturalLighting, Glare # Interaction between  V1.2, V2

– Extension for embedded systems:
- Additionally consider environment
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Deriving Dependencies between Product Variants:
2. Manually Derive and Model Dependencies

2.1 Determine relevant feature interactions
– BCSF example:

1. {V1.2, V2} @ Task
2. {V1.1, V1.2, V2, V3, V4.2} @ Task
3. {V1.1, V1.2, V2} @ Task
4. {V1.2, V2, V3, V5.2} @ environment
5. {V1.2, V2, V3, V5.1 } @ environment
6. {V4.1, V5.3} @ environment 
7. {V1.2, V2, V3, V5.3} @ environment

2.2 Model dependencies between variants
– BCSF example:
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Conclusion

! Semi-automatic approach
! Reduction of complexity/effort

! Automatic selection of representatives: 639 " 3

! Automatic detection of interactions: 37 goals/tasks, 39 means-end-links " 7 interactions

! Model-based approach
– Inputs/outputs are models

– Model-based implementation of detection tool
- Core: 175 manually implemented Java LOCs

! Generality of approach
- Variability model " feature diagrams could also be used
- Requirements model (GRL) " other detection approaches are applicable

“Positive” use of Feature Interactions for Product Line Engineering
" Selection of alternatives to “avoid” undesired interactions
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