Policy Issues for Pervasive Computing

Morris Sloman Imperial College London, Department of Computing m.sloman@doc.ic.ac.uk www.doc.ic.ac.uk/~mss

Contents

- What is pervasive computing
- Healthcare scenario
- Policy-based autonomic management
- Conflict Analysis
- Pervasive Computing Grand Challenges
- Conclusions

What is Pervasive Computing?

- Technology View
 - Pervasive, Ubiquitous, Sentient
 - Intelligent devices everywhere: home, office, street, car, trains, on-body, implanted, in appliances 100K devices per person?
 - Mobility of people, environment, and programs
 - Battery powered
 - Capable of wireless communication
- User View
 - Devices mostly invisible devices interact implicitly with each other and environment
 - Augment human abilities in performance of tasks

"The Computer of the 21st Century", Mark Weiser, 1991, Scientific American

The UbiComp Challenge!

- How to build the truly invisible intelligent environment?
- Designed rather than ad-hoc implementation
- Understandable
- Analysable based on underlying theory
- Manageable
- Dependable and secure
- Does not infringe privacy

Need both design and science

Healthcare Everywhere

Applications

- Automated monitoring
 - Implanted devices
 - Smart clothing
 - Swallow/inject intelligent sensors and actuators
 - Reaction to complex drug regimes
- Health advisor

Benefits

- High → lower risk monitoring
- Mobility for chronically ill
- Greater out-of-hospital patient management
- Mass data & analysis
- Emergency feedback or response

Wireless video camera pill

Body Sensor Nodes

TinyOS

- TI MSP430 ultra low power processor
 - 16 bits RISC processor
 - 64KB +256B Flash memory
 - 12-bit ADC
 - Very low power
- Chipcon CC2420 RF module
 - IEEE 802.15.4 (Zigbee) wireless link
 - 2.4GHz, 250kbps
 - Low current consumption (RX:19.7mA TX:17.4mA)
 - Hardware MAC encryption
 - Range 50m
- 6 analog channels (connect up to 6 sensors)
- 512kByte serial memory

Pervasive GC

Context Awareness

• Context defined by:

Current location

Need location detection eg GPS or base station Indoors – sonic or ultrawideband wireless tags \rightarrow 10cm

User activity

Walking, driving a car, running for a bus – how to detect this?

- Ambient environment
 In theatre, alone, in meeting
- Device capabilities
 Screen, input, processing power, battery life
- Current QoS availability particularly for radio links
- Fusion of information from multiple sources

- Lessons from history: everything worth hacking gets hacked
- SECURITY solutions that are proactive, minimally intrusive, easy to use
- Need for secure 'out of the box' set up
- Devices that recognise/respond to "owners" only
- Means of tracing stolen devices, proving transactions
- Ability to be invisible or anonymous when needed
- Protection from spam, viruses, denial of service, identity theft etc.....

SECURITY solutions that are adaptive and context-aware

Management – the nightmare!

- Huge, complex systems
 - Billions of processors
 - Multiple organisations
 - Managing physical world, controlling sensors, actuators
 - Humans will be in the way
- Hacker and virus paradise
- System propagates false information about individuals or organisation
- Complexity of s/w installation on a workstation or server how do you cope with billions?
- Cater for huge systems
 - + scale down to body area networks

Autonomic Management

- Autonomic self-organising, self-configuring, self-healing, self-optimising, adaptive management
- Remove human from the loop
- Intelligent agents, mobile agents, policy, genetic algorithms?

Self-Managed Cell (SMC)

Layered and Federated SMCs

SMC Composition

Enclosing SMC "programs" the nested SMCs

Body Sensor SMC 'Roles'

SMC defines role assignment policies
 + role interaction relationship policies

.

.

Discovery Policies

oblig on compDetect (compName, compRef, compType) ->
 medicRole.assign (compName, compRef)
 when compType = nurseT &
 signed (compRef.getCertificate, nursingCouncil_PK)
 oblig on compDetect (compName, compRef, compType) ->
 temperatureRole.assign (compName, compRef)
 when compType = tempSensorT

oblig every mins (1) -> discoveryService.findNewMembers()
oblig every mins(2) -> discoveryService.pollMembers()

poll all members of a role and remove any which have not responded after max tries.

Example Policies

tempSensorPolicies {
 oblig every mins (2) ->
 tempSensor.read (tempValue) ->
 tempSensor.tempEvent (tempValue)
 // trigger local event

oblig on tempEvent (tempValue) ->
 pda.reportTemp (tempValue)
 when (tempValue > maxtemp)

}

```
SMCAuthPolicies {
    auth+ tempSensor -> pda.reportTemp
}
```


Policies to Protect PDA

oblig on 3* fingerprintfail -> pda/policies/bodymonitor.disable -> pda/policies/selfprotect.enable -> timerEvents.trigger (shutdown, currentTime + 60)

pda/policies/selfprotect
oblig every minutes (5) ->
 sendSMS (07957341, "Stolen PDA", "ownerID", currentLocation)

oblig on shutdown -> pda.locked -> pda.switchoff

Assume this prevents pda from being rebooted or reset without an owner card.

Pervasive GC

Context aware policies

oblig on enterhome -> pda/policies/trusted.enable -> pda/policies/untrusted.disable

Oblig on leavehome -> pda/policies/untrusted.enable -> pda/policies/trusted.disable

Peer-to-Peer Interactions

- Assign peer SMC to pre-defined roles within each SMC
- Predefined policies specify obligations and authorisation for entity assigned to role
- Default entity(PDA) interprets obligation policies provided to it.

Other forms of cell interactions

- SMCs define implementable policies
- What about overall management strategy or goals?
- Requires goal refinement
 - Use *refinement patterns* in order to refine goals
 - Domain independent refinement patterns
 - Domain specific refinement patterns
 - Strategy defines how the goals are achieved. Note, there can be multiple strategies to achieve the same goals.
 - Derive strategy from goals and system description through abduction
- Very hard, not implementable on PDAs
- A Goal-based Approach to Policy Refinement by A Bandara et.al http://www.doc.ic.ac.uk/~bandara/publications.shtml

Policy Consistency

- Policies specify adaptive behaviour
- Multiple policies may apply to object within SMC
- Policies may be imposed by an external SMS peer or parent
- Need to ensure consistency and coherance

Policy Conflicts

- Policy Analysis Is the policy specification consistent (i.e., absence of conflicts)? Is it deterministic (i.e., conflicts can be resolved)? What properties does a set of policies satisfy?
- Two categories of conflicts
 - Modality conflicts occur because the policies are inherently incompatible e.g., auth+ and auth-
 - Semantic conflicts occur because the actions are incompatible or the policies violate desired properties of the system.
- Potential modality conflicts can be detected by looking at overlaps of subject, actions, target.
 - Does not take into account constraints
 - Can define precedence?

Conflict Resolution

- Negative policies override
 - Does not permit positive exceptions to negative policies.
- Specified Priorities
 - Hard to define priority
 - Several managers may specify inconsistent priority
- Evaluating a 'distance' between a policy and the object to which it refers
 - Refinement level more concrete overrides?
 - Time of last update more recent overrides?
 - Policy relevance policies specified for roles take precedence over policies for SMC.

Semantic (Application Specific) Conflicts

- Types of conflict:
 - Separation of duty e.g., the same person is not allowed to authorise prescription and issue drugs
 - Inconsistency eg
 - 2 policies for triggering temperature event with different maxtemp values
 - Multiple policies performing mutually exclusive actions, triggered by same event
- Need to specify the conditions which result in conflict
- Constraints on a set of policies (Meta-Policies).

Formal Analysis

- Most conflict analysis does not take into account policy constraints.
- Need to analyse the "behaviour" of the system under a given set of policies.
- Need to identify:
 - Which sequence of events leads to a policy conflict.
 - What consequences policies have when applied to the system
 - Check that under a set of policies the system satisfies desirable properties.
- Requires: a behavioural model of managed objects e.g. statecharts, logic reasoning (complexity?, decidability?, etc.)

Using Event Calculus to Formalise Policy Specification and Analysis http://www.doc.ic.ac.uk/~bandara/publications.shtml

Policy Analysis

- Specification errors
 - Empty subject/target domain.
 - Unsupported operations in action specification.
 - Unsupported attributes in constraint specification.
- Modality conflicts
 - Authorisation modality conflict (auth+ / auth-).
 - Unauthorised obligation modality conflict (oblig / auth-)
- Semantic conflicts
 - Separation of duty / interest conflict.
 - Application specific consistency conflicts.

Deductive reasoning over <u>system</u> organisation model and policy specification.

Abductive reasoning over system behaviour model and policy specification.

The UbiComp Challenge!

- How to build the truly invisible intelligent environment?
- Designed rather than ad-hoc implementation
- Understandable
- Analysable based on underlying theory
- Manageable
- Dependable and secure
- Does not infringe privacy

Need both design and science

You are now predictable

- System can co-relate location, context and behaviour patterns
- Do you want employer, colleagues or insurance company to know you carry a medical monitor?
- Tension between authentication and anonymity business want to authenticate you for financial transactions and to provide 'personalized' service
- Users should be aware of being monitored
- Ability to control who/what has access to "my" data (stored, communicated, inferred), ability to define levels of privacy, trust etc

Theory for Pervasive Systems

 We have theory for design and analysis of complex buildings, bridges, electronic circuits

- We need the theory to understand and model complex interactions of pervasive systems
- Currently use ad-hoc implementation, relying on skill of programmers.

Theory Challenges

- Large Scale, complex, dynamically self-modifying system, unplanned interactions ...
- To develop a coherant informatic science whose concepts, calculi, theories and automated tools allow descriptive and predictive analysis of a pervasive system at many levels of abstraction
- To employ these theories to derive all ubiquitous systems and software, including languages;
- To validate all constructions by these theories and tools.

Theoretical Foundations

- Basic notions Automata; Relational databases;
 Program logics; Verication; Mathematical semantics;
 Type theories; . . .
- Concurrent systems Petri nets; Process calculi; Logics of action; . . .
- Ubiquity Mobility (ambients, pi calculus); Security and privacy; Boundaries, resources and trust; Distributed data; Game-theoretic models; Hybrid systems; Stochastics; Model-checking; . . .

www.cl.cam.ac.uk/users/rm135/plat.pdf

Current UK Activities

- Equator IRC http://www.equator.ac.uk/
- DTI Next Wave Technologies http://www.nextwave.org.uk/index.htm
- EPSRC WINES Program
- Mostly engineering
- Need to develop scientific theory and engineering principles in a tight experimental loop
- UK-UbiNet + Grand Challenges

http://www-dse.doc.ic.ac.uk/Projects/UbiNet/

Conclusion

- Currently pervasive systems are more hype than reality
- Some component technologies are available
- Technology problems seamless communications, power
- Management problems adaptive self management
- Security and privacy are major issues.
- Most research focuses on Engineering aspects
- No theory to underpin understanding, analysis & design
- SMC provides a scope for theoretical analysis and implementation
- Adaptive behaviour specified by policies
- Policy analysis and refinement are still difficult problems