
Projector colour check

Structural elements

Example text

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 1

School of Informatics
University of Edinburgh

A practical introduction to games, infinity and the

Edinburgh Concurrency Workbench

Perdita Stevens

June 29th, 2005

Outline

� The Edinburgh Concurrency Workbench

� Abstraction

� Games

� Implementation

� Conclusions

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 3

The Edinburgh Concurrency Workbench

� The Edinburgh Concurrency Workbench

� Abstraction

� Games

� Implementation

� Conclusions

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 4

The Edinburgh Concurrency Workbench

What can you do with it?

I Explore and simulate processes in (variants on) CCS

I Define and model check properties in the (full) modal
µ-calculus

I Check lots of equivalences and preorders

I etc. (50+ commands)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 5

The Edinburgh Concurrency Workbench

Example session

Command: agent Cell = a.’b.Cell;
Command: agent C0 = Cell[c/b];
Command: agent C1 = Cell[c/a,d/b];
Command: agent C2 = Cell[d/a];
Command: agent Buff3 = (C0 | C1 | C2)\{c,d};
Command: agent Spec = a.Spec’;
Command: agent Spec’ = ’b.Spec + a.Spec’’;
Command: agent Spec’’ = ’b.Spec’ + a.’b.Spec’’;
Command: eq (Buff3, Spec);
true

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 6

The Edinburgh Concurrency Workbench

Kinds of users

1. Students (widely used)

2. Research (experimental additions)

3. Industrial case studies (not so much now: performance
outclassed)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 7

The Edinburgh Concurrency Workbench

Where is more information?

I CWB’s on-line help

I CWB documentation at
http://homepages.inf.ed.ac.uk/perdita/cwb

I Papers at http://homepages.inf.ed.ac.uk/perdita/

I Me (Perdita.Stevens@ed.ac.uk)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 8

The Edinburgh Concurrency Workbench

History

I Originally developed in 1980s

I Many accretions over following years

I Major redesign in mid 1990s

I Preliminary parameterisation and early games experiments

I Left alone since 2000 until last month...

I Steady stream of downloads continues

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 9

The Edinburgh Concurrency Workbench

Good things and limitations

Good:

I Versatile program – many functions

I Reliable – no known semantic bugs

I Now reasonably modular and extensible

I Fundamental decision: work directly with PA terms

Limitations:

I Written in legacy language (SML-NJ)

I Never designed for maximising performance

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 10

The Edinburgh Concurrency Workbench

Looking forward

CWB will go open source as soon as I get round to proposing a
particular licence to the LFCS directorate.

However, I don’t wish to continue development in SML-NJ, and
migration prohibitive.

So: the value passing release, which I’ll talk about today, will
probably be the last major release of the CWB.

CWB will remain as prototyping environment.

For serious application, ideas will migrate to other tools...

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 11

The Edinburgh Concurrency Workbench

Beyond finite state processes

CWB began by concentrating on single finite-state processes.

However, Edinburgh’s research focus was infinite state processes.
So...

1. CWB did most things “on the fly” - did not begin by creating
an automaton. Often inefficient, but retained a chance of
handling infinite state processes.

2. Glenn Bruns’ Value Passing Front End...

3. Parameterisation capabilities (but not true value passing).

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 12

The Edinburgh Concurrency Workbench

Rethink: what do we really want?

Users of the Edinburgh Concurrency Workbench wanted to be able
to work with non-finite-state systems:

I value passing systems

I families of systems with unspecified numbers of components

I real-time systems?

I early and late variants of relations

I corresponding logics

I ...

We wanted a powerful, general way of understanding how to work
with such systems, which on a practical level would also save effort
in CWB development.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 13

The Edinburgh Concurrency Workbench

Value-passing CCS

a value may pass when two agents synchronise

Will use CWB syntax throughout this talk.

e.g.

a(x:int).’b(x).0|’a(3).0

- tau → ’b(VNew1 : int).0|0
where (VNew1 : int=3)

- a(VX0 : int) → ’b(VNew1 : int).0 | ’a(3).0
where (VX0 : int=VNew1 : int)

- ’a(VX0 : int) → a(x : int).’b(x : unknown).0|0
where (VX0 : int=3)

VP processes are often naturally infinite state.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 14

The Edinburgh Concurrency Workbench

Value-passing CCS

a value may pass when two agents synchronise

Will use CWB syntax throughout this talk.

e.g.

a(x:int).’b(x).0|’a(3).0

- tau → ’b(VNew1 : int).0|0
where (VNew1 : int=3)

- a(VX0 : int) → ’b(VNew1 : int).0 | ’a(3).0
where (VX0 : int=VNew1 : int)

- ’a(VX0 : int) → a(x : int).’b(x : unknown).0|0
where (VX0 : int=3)

VP processes are often naturally infinite state.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 15

The Edinburgh Concurrency Workbench

Value-passing CCS

a value may pass when two agents synchronise

Will use CWB syntax throughout this talk.

e.g.

a(x:int).’b(x).0|’a(3).0

- tau →

’b(VNew1 : int).0|0
where (VNew1 : int=3)

- a(VX0 : int) →

’b(VNew1 : int).0 | ’a(3).0
where (VX0 : int=VNew1 : int)

- ’a(VX0 : int) →

a(x : int).’b(x : unknown).0|0
where (VX0 : int=3)

VP processes are often naturally infinite state.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 16

The Edinburgh Concurrency Workbench

Value-passing CCS

a value may pass when two agents synchronise

Will use CWB syntax throughout this talk.

e.g.

a(x:int).’b(x).0|’a(3).0

- tau → ’b(VNew1 : int).0|0
where (VNew1 : int=3)

- a(VX0 : int) → ’b(VNew1 : int).0 | ’a(3).0
where (VX0 : int=VNew1 : int)

- ’a(VX0 : int) → a(x : int).’b(x : unknown).0|0
where (VX0 : int=3)

VP processes are often naturally infinite state.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 17

The Edinburgh Concurrency Workbench

Testing values

Can see synchronisation as a kind of implicit test on a value.

Also have explicit testing, e.g.

agent A = in(x:int).<if (x=0) then (’zero.0) else (’nonzero.0)>;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 18

The Edinburgh Concurrency Workbench

Remark on approach

We fundamentally think in terms of families of values, not symbols.

E.g.

a(x:int).’b(x).0|’a(3).0
- a(VX0 : int) → ’b(VNew1 : int).0 | ’a(3).0
where (VX0 : int=VNew1 : int)

is an infinite family of transitions, parameterised on VX0 and
VNew1.

(Presentation to the user, here and throughout, leaves a lot of
scope for improvement!)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 19

The Edinburgh Concurrency Workbench

Remark on approach

We fundamentally think in terms of families of values, not symbols.

E.g.

a(x:int).’b(x).0|’a(3).0
- a(VX0 : int) → ’b(VNew1 : int).0 | ’a(3).0
where (VX0 : int=VNew1 : int)

is an infinite family of transitions, parameterised on VX0 and
VNew1.

(Presentation to the user, here and throughout, leaves a lot of
scope for improvement!)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 20

The Edinburgh Concurrency Workbench

Implication for CWB

Can easily plug new process algebras into the CWB

- but sadly, this is outside the scope of that flexibility.

Where transition function returns (infinite) sets of transitions, all
CWB functions need to be set-aware.

Currently, can only use a few commands (transitions, sim,
strongeq, modelcheck,...) with value-passing processes.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 21

The Edinburgh Concurrency Workbench

Parameterised processes

Parameterised processes are closely related to VP processes.

They arise naturally in the course of computation:

’b(VNew1 : int).0|’a(3).0

That is, even to work with VP processes, we have to be able to
reason about families of related processes.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 22

Abstraction

� The Edinburgh Concurrency Workbench

� Abstraction

� Games

� Implementation

� Conclusions

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 23

Abstraction

Observation

Any interesting question (bisimulation, model-checking,...)

on any reasonable language of value passing processes (e.g.,
including integers that can be incremented and a test for zero)

is undecidable.

:-(

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 24

Abstraction

Observation

Any interesting question (bisimulation, model-checking,...)

on any reasonable language of value passing processes (e.g.,
including integers that can be incremented and a test for zero)

is undecidable.

:-(

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 25

Abstraction

Observation

Any interesting question (bisimulation, model-checking,...)

on any reasonable language of value passing processes (e.g.,
including integers that can be incremented and a test for zero)

is undecidable.

:-(

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 26

Abstraction

Observation

Any interesting question (bisimulation, model-checking,...)

on any reasonable language of value passing processes (e.g.,
including integers that can be incremented and a test for zero)

is undecidable.

:-(

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 27

Abstraction

Observation

Any interesting question (bisimulation, model-checking,...)

on any reasonable language of value passing processes (e.g.,
including integers that can be incremented and a test for zero)

is undecidable.

:-(

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 28

Abstraction

Need for abstraction

Often it’s clear that although a process is technically infinite state,
that doesn’t actually matter.

E.g., data independent processes, like

agent Buff = in(x:int).’out(x).Buff;

Or cases where it’s obvious that a finite quotient will do: e.g., an
integer is used, but only odd/even matters.

Remarkably hard to formalise this, though – partly because it’s
often questions, not processes, which are “easy”.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 29

Abstraction

Little Red Workbench and the Undecidability Wolf

Who cares about
decidability,
anyway?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 30

Abstraction

Little Red Workbench and the Undecidability Wolf

Who cares about
decidability,
anyway?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 31

Abstraction

To summarise

I we need abstractions

I often, it’s intuitively clear which abstraction

I no hope of defining languages that express only decidable
problems

I but that’s OK

So where can we get good abstractions?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 32

Abstraction

Abstraction: manual or automatic

Until recently user had to define an abstraction manually.

Lately a lot of work has been done on automatic abstraction
techniques.

CWB uses one such, generating an abstraction based on the
question being answered (not just one process).

This is one of the roles of games.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 33

Games

� The Edinburgh Concurrency Workbench

� Abstraction

� Games

� Implementation

� Conclusions

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 34

Games

Games in verification

One player (Refuter, Abelard...) tries to demonstrate that the
answer to the question is No, the other (Verifier, Eloise...) that it
is Yes.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 35

Games

Playing a game

a

b c

aa

b c

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 36

Games

Playing a game

a

b c

aa

b c

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 37

Games

Playing a game

����

a

b c

aa

b c

?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 38

Games

Playing a game

a

b c

aa

b c

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 39

Games

Playing a game

a

b c

aa

b c

?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 40

Games

Examples

Different games can be defined to capture different verification
questions. E.g.

bisimulation game:

I Refuter positions are pairs of processes

I Play alternates

I Moves: Refuter may choose any transition from either
process; Verifier must choose a matching transition.

I Winning: Either player wins if the other can’t go; Verifier wins
all infinite plays.

I Interpretation: winning strategy for Verifier is a bisimulation.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 41

Games

Examples

Different games can be defined to capture different verification
questions. E.g.

model-checking game:

I Positions: (process, formula) pairs.

I Play: Top combinator of formula determines whose turn it is -
Verifier moves from |, < >, Refuter from &, [] etc.

I Moves: depend on combinator

I Winning: Either player wins if the other can’t go; Verifier wins
if formula True is reached, Refuter if False; winner of an
infinite play is player who owns the outermost fixpoint
unwound infinitely often

I Interpretation: a winning strategy for Verifier is a tableau.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 42

Games

Advantages of games

For users:

I Possibility of playing the game interactively for debugging

For developers/theoreticians:

I Convenient way of thinking: first class object (the game) that
corresponds to the problem being addressed

I Develop generic methods for finding winning strategies

I Allows refining only as needed, on the fly

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 43

Games

Advantages of games

For users:

I Possibility of playing the game interactively for debugging

For developers/theoreticians:

I Convenient way of thinking: first class object (the game) that
corresponds to the problem being addressed

I Develop generic methods for finding winning strategies

I Allows refining only as needed, on the fly

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 44

Games

Equivalence relations on positions

Shape
− too coarse, unsound

sound + finite
− if this exists, we’ll find it

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

Shape + constraint that

− too fine, intractable
specifies values exactly

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 45

Games

Equivalence relations on positions

Shape
− too coarse, unsound

sound + finite
− if this exists, we’ll find it

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

Shape + constraint that

− too fine, intractable
specifies values exactly

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 46

Games

Equivalence relations on positions

Shape
− too coarse, unsound

sound + finite
− if this exists, we’ll find it

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

Shape + constraint that

− too fine, intractable
specifies values exactly

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 47

Games

Relating to the CWB aims

I said:

We wanted a powerful, general way of understanding how
to work with such systems, which on a practical level
would also save effort in CWB development.

We have a rather simple, general notion of abstraction of games,
and results about when a winning strategy for one game induces
one for another.

Based on this, we have an algorithm to search for winning
strategies of games, and a theorem about when it is guaranteed to
terminate.

Algorithm implemented in CWB.

Two examples: strong bisimulation, mu calculus model checking.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 48

Implementation

� The Edinburgh Concurrency Workbench

� Abstraction

� Games

� Implementation

� Conclusions

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 49

Implementation

Separation of concerns

CWB provides:

I a generic strategy-finding functor which takes a description of
a particular game as argument.

I a (primitive) language of values and constraints

Game description specifies:

I positions – appropriate notions of shape and constraint

I moves – functions for forward and backward exploration

I winning conditions – functions on shape lists saying who wins
etc.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 50

Implementation

Types and manipulation of values

For now we provide:

I int

I bool

I user-defined ML style (recursive) datatypes, e.g.
datatype IntOpt = some of int | none;

with a few pre-defined operations.

NB strategy-finding algorithm is cleanly separate. Would be nice
to plug in a more expressive language!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 51

Implementation

First bisimulation example

Command: agent C = in(x:bool).’out(x).C;
Command: agent D = in(x:bool).’out(false).D;
Command: strongeq(C,D);
false
Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 52

Implementation

First bisimulation example

Command: agent C = in(x:bool).’out(x).C;
Command: agent D = in(x:bool).’out(false).D;

Command: strongeq(C,D);
false
Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 53

Implementation

First bisimulation example

Command: agent C = in(x:bool).’out(x).C;
Command: agent D = in(x:bool).’out(false).D;
Command: strongeq(C,D);

false
Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 54

Implementation

First bisimulation example

Command: agent C = in(x:bool).’out(x).C;
Command: agent D = in(x:bool).’out(false).D;
Command: strongeq(C,D);
false

Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 55

Implementation

First bisimulation example

Command: agent C = in(x:bool).’out(x).C;
Command: agent D = in(x:bool).’out(false).D;
Command: strongeq(C,D);
false
Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 56

Implementation

First bisimulation example: strategy

Player: Refuter (Abelard)
Position: AbelardToGo (C,D)
true
Move to: EloiseToGo (’out(VNew1 : bool).C,D,in(VX0 : bool),false)
&((VX0 : bool=LNew1 : bool),(LNew1 : bool=true))

Player: Refuter (Abelard)
Position: AbelardToGo (’out(VNew1 : bool).C,’out(false).D)
(LNew1 : bool=true)
Move to: EloiseToGo (C,’out(false).D,’out(VX0 : bool),false)

(VX0 : bool=true)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 57

Implementation

First bisimulation example: playing

Command: playbisim;
Player Refuter (Abelard) has a winning strategy, so CWB will take that
side!
CWB moves to EloiseToGo (’out(VNew1 : bool).C, D,in(VX0 :
bool),false)
&((VX0 : bool=LNew1 : bool),(LNew1 : bool=true))

Your turn to move from [...]

1: AbelardToGo (’out(VNew1 : bool).C,’out(false).D)
(LNew1 : bool=true)

Pick a shape:

1

Now pick values for parameters satisfying constraint

LNew1 : bool must be true

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 58

Implementation

First bisimulation example: playing

Command: playbisim;

Player Refuter (Abelard) has a winning strategy, so CWB will take that
side!
CWB moves to EloiseToGo (’out(VNew1 : bool).C, D,in(VX0 :
bool),false)
&((VX0 : bool=LNew1 : bool),(LNew1 : bool=true))

Your turn to move from [...]

1: AbelardToGo (’out(VNew1 : bool).C,’out(false).D)
(LNew1 : bool=true)

Pick a shape:

1

Now pick values for parameters satisfying constraint

LNew1 : bool must be true

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 59

Implementation

First bisimulation example: playing

Command: playbisim;
Player Refuter (Abelard) has a winning strategy, so CWB will take that
side!

CWB moves to EloiseToGo (’out(VNew1 : bool).C, D,in(VX0 :
bool),false)
&((VX0 : bool=LNew1 : bool),(LNew1 : bool=true))

Your turn to move from [...]

1: AbelardToGo (’out(VNew1 : bool).C,’out(false).D)
(LNew1 : bool=true)

Pick a shape:

1

Now pick values for parameters satisfying constraint

LNew1 : bool must be true

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 60

Implementation

First bisimulation example: playing

Command: playbisim;
Player Refuter (Abelard) has a winning strategy, so CWB will take that
side!
CWB moves to EloiseToGo (’out(VNew1 : bool).C, D,in(VX0 :
bool),false)
&((VX0 : bool=LNew1 : bool),(LNew1 : bool=true))

Your turn to move from [...]

1: AbelardToGo (’out(VNew1 : bool).C,’out(false).D)
(LNew1 : bool=true)

Pick a shape:

1

Now pick values for parameters satisfying constraint

LNew1 : bool must be true

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 61

Implementation

First bisimulation example: playing

Command: playbisim;
Player Refuter (Abelard) has a winning strategy, so CWB will take that
side!
CWB moves to EloiseToGo (’out(VNew1 : bool).C, D,in(VX0 :
bool),false)
&((VX0 : bool=LNew1 : bool),(LNew1 : bool=true))

Your turn to move from [...]

1: AbelardToGo (’out(VNew1 : bool).C,’out(false).D)
(LNew1 : bool=true)

Pick a shape:

1

Now pick values for parameters satisfying constraint

LNew1 : bool must be true

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 62

Implementation

First bisimulation example: playing

Command: playbisim;
Player Refuter (Abelard) has a winning strategy, so CWB will take that
side!
CWB moves to EloiseToGo (’out(VNew1 : bool).C, D,in(VX0 :
bool),false)
&((VX0 : bool=LNew1 : bool),(LNew1 : bool=true))

Your turn to move from [...]

1: AbelardToGo (’out(VNew1 : bool).C,’out(false).D)
(LNew1 : bool=true)

Pick a shape:

1

Now pick values for parameters satisfying constraint

LNew1 : bool must be true

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 63

CWB moves to EloiseToGo (C,’out(false).D,’out(VX0 : bool),false)
(VX0 : bool=true)

Your turn to move from [...]

But you have no legal moves from here, so YOU LOSE!

Implementation

Comment on parameters vs specific values

Printout of strategy must involve parameters (e.g. show how to
move from any position in infinite set, not just from one of them).

But when we play, we have choices.

Do players have to pick specific values (e.g. “input 23”)?

or may they show off by picking constrained sets (e.g. “input
anything except 17”?)

For now, user must always pick specific value, but CWB will only
make the choices that matter. Maybe should offer both options?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 65

Implementation

Comment on parameters vs specific values

Printout of strategy must involve parameters (e.g. show how to
move from any position in infinite set, not just from one of them).

But when we play, we have choices.

Do players have to pick specific values (e.g. “input 23”)?

or may they show off by picking constrained sets (e.g. “input
anything except 17”?)

For now, user must always pick specific value, but CWB will only
make the choices that matter. Maybe should offer both options?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 66

Implementation

Comment on parameters vs specific values

Printout of strategy must involve parameters (e.g. show how to
move from any position in infinite set, not just from one of them).

But when we play, we have choices.

Do players have to pick specific values (e.g. “input 23”)?

or may they show off by picking constrained sets (e.g. “input
anything except 17”?)

For now, user must always pick specific value, but CWB will only
make the choices that matter. Maybe should offer both options?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 67

Implementation

Second bisimulation example

Command: agent A = in(x:int).’out(x).A;
Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: strongeq(A,B);
false

Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 68

Implementation

Second bisimulation example

Command: agent A = in(x:int).’out(x).A;
Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: strongeq(A,B);

false

Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 69

Implementation

Second bisimulation example

Command: agent A = in(x:int).’out(x).A;
Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: strongeq(A,B);
false

Command: strategybisim;

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 70

Implementation

Second bisimulation example: strategy

Player: Refuter (Abelard)
Position: AbelardToGo (A,B)
true
Move to: EloiseToGo (’out(VNew1 : int).A,B,in(VX0 : int),false)
&(∼((VX0 : int=17)),(VX0 : int=LNew1 : int))

Player: Refuter (Abelard)
Position: AbelardToGo (’out(VNew1 : int).A,’out(VNew1 :
int).B+’out(17).B)
&(∼((LNew1 : int=17)),(RNew1 : int=LNew1 : int))
Move to: EloiseToGo (’out(VNew1 : int).A,B,’out(VX0 : int),true)
&(∼((VX0 : int=LNew1 : int)),(VX0 : int=17))

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 71

Implementation

Modelchecking example

Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: modelcheck (B,[in(3)]min(X0.[-]X0 | <’out(17)>T));

true
Command: playmc;

Player Verifier (Eloise) has a winning strategy, so CWB will take that

side!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 72

Implementation

Modelchecking example

Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: modelcheck (B,[in(3)]min(X0.[-]X0 | <’out(17)>T));

true
Command: playmc;

Player Verifier (Eloise) has a winning strategy, so CWB will take that

side!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 73

Implementation

Modelchecking example

Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: modelcheck (B,[in(3)]min(X0.[-]X0 | <’out(17)>T));

true

Command: playmc;

Player Verifier (Eloise) has a winning strategy, so CWB will take that

side!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 74

Implementation

Modelchecking example

Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: modelcheck (B,[in(3)]min(X0.[-]X0 | <’out(17)>T));

true
Command: playmc;

Player Verifier (Eloise) has a winning strategy, so CWB will take that

side!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 75

Implementation

Modelchecking example

Command: agent B = in(y:int).(’out(y).B + ’out(17).B);
Command: modelcheck (B,[in(3)]min(X0.[-]X0 | <’out(17)>T));

true
Command: playmc;

Player Verifier (Eloise) has a winning strategy, so CWB will take that

side!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 76

Implementation

Modelchecking example

Your turn to move from (B,[in(3)]min(X0.[-]X0 | <’out(17)>T))
true

[but again you only have one choice, so moving swiftly on...]

CWB moves to (’out(VNew1 : int).B+’out(17).B,[-]X0 | <’out(17)>T)
(VNew1 : int=3)

CWB moves to (’out(VNew1 : int).B+’out(17).B,<’out(17)>T)
(VNew1 : int=3)

CWB moves to (B,T)
true

Your turn to move from (B,T)
true

But you have no legal moves from here, so YOU LOSE!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 77

Implementation

Modelchecking example

Your turn to move from (B,[in(3)]min(X0.[-]X0 | <’out(17)>T))
true

[but again you only have one choice, so moving swiftly on...]

CWB moves to (’out(VNew1 : int).B+’out(17).B,[-]X0 | <’out(17)>T)
(VNew1 : int=3)

CWB moves to (’out(VNew1 : int).B+’out(17).B,<’out(17)>T)
(VNew1 : int=3)

CWB moves to (B,T)
true

Your turn to move from (B,T)
true

But you have no legal moves from here, so YOU LOSE!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 78

Implementation

Modelchecking example

Your turn to move from (B,[in(3)]min(X0.[-]X0 | <’out(17)>T))
true

[but again you only have one choice, so moving swiftly on...]

CWB moves to (’out(VNew1 : int).B+’out(17).B,[-]X0 | <’out(17)>T)
(VNew1 : int=3)

CWB moves to (’out(VNew1 : int).B+’out(17).B,<’out(17)>T)
(VNew1 : int=3)

CWB moves to (B,T)
true

Your turn to move from (B,T)
true

But you have no legal moves from here, so YOU LOSE!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 79

Implementation

Modelchecking example

Your turn to move from (B,[in(3)]min(X0.[-]X0 | <’out(17)>T))
true

[but again you only have one choice, so moving swiftly on...]

CWB moves to (’out(VNew1 : int).B+’out(17).B,[-]X0 | <’out(17)>T)
(VNew1 : int=3)

CWB moves to (’out(VNew1 : int).B+’out(17).B,<’out(17)>T)
(VNew1 : int=3)

CWB moves to (B,T)
true

Your turn to move from (B,T)
true

But you have no legal moves from here, so YOU LOSE!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 80

Implementation

Modelchecking example

Your turn to move from (B,[in(3)]min(X0.[-]X0 | <’out(17)>T))
true

[but again you only have one choice, so moving swiftly on...]

CWB moves to (’out(VNew1 : int).B+’out(17).B,[-]X0 | <’out(17)>T)
(VNew1 : int=3)

CWB moves to (’out(VNew1 : int).B+’out(17).B,<’out(17)>T)
(VNew1 : int=3)

CWB moves to (B,T)
true

Your turn to move from (B,T)
true

But you have no legal moves from here, so YOU LOSE!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 81

Implementation

Modelchecking example

Your turn to move from (B,[in(3)]min(X0.[-]X0 | <’out(17)>T))
true

[but again you only have one choice, so moving swiftly on...]

CWB moves to (’out(VNew1 : int).B+’out(17).B,[-]X0 | <’out(17)>T)
(VNew1 : int=3)

CWB moves to (’out(VNew1 : int).B+’out(17).B,<’out(17)>T)
(VNew1 : int=3)

CWB moves to (B,T)
true

Your turn to move from (B,T)
true

But you have no legal moves from here, so YOU LOSE!

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 82

Implementation

Comment on infinite plays

Both the bisimulation and the modelchecking games may have
infinite plays.

The strategy-finding algorithm of course uses careful inspection of
repeats to terminate.

What should the playing function do?

Decision: we simply let play continue indefinitely.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 83

Implementation

Lessons from the implementation

I Syntax is hard :-([Yacc?!]

I It really pays to think values and sets of values, not symbols

I Much as I hate ML :-), it’s pretty good for this kind of thing.

I It’s ridiculous not to be using a constraint/SAT package...

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 84

Implementation

Lessons from the implementation

I Syntax is hard :-([Yacc?!]

I It really pays to think values and sets of values, not symbols

I Much as I hate ML :-), it’s pretty good for this kind of thing.

I It’s ridiculous not to be using a constraint/SAT package...

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 85

Implementation

Lessons from the implementation

I Syntax is hard :-([Yacc?!]

I It really pays to think values and sets of values, not symbols

I Much as I hate ML :-), it’s pretty good for this kind of thing.

I It’s ridiculous not to be using a constraint/SAT package...

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 86

Implementation

Lessons from the implementation

I Syntax is hard :-([Yacc?!]

I It really pays to think values and sets of values, not symbols

I Much as I hate ML :-), it’s pretty good for this kind of thing.

I It’s ridiculous not to be using a constraint/SAT package...

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 87

Implementation

Lessons from the implementation

I Syntax is hard :-([Yacc?!]

I It really pays to think values and sets of values, not symbols

I Much as I hate ML :-), it’s pretty good for this kind of thing.

I It’s ridiculous not to be using a constraint/SAT package...

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 88

Conclusions

� The Edinburgh Concurrency Workbench

� Abstraction

� Games

� Implementation

� Conclusions

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 89

Conclusions

Where next?

Two possible directions:

1. See whether (or not) the abstract game approach can be
made to stand up against state-of-the-art automatic
abstraction techniques.

2. Combine verification-style games with ideas about
incrementally defined games for software design (the talk I
didn’t give...!)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 90

Conclusions

Where next?

Two possible directions:

1. See whether (or not) the abstract game approach can be
made to stand up against state-of-the-art automatic
abstraction techniques.

2. Combine verification-style games with ideas about
incrementally defined games for software design (the talk I
didn’t give...!)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 91

Conclusions

Where next?

Two possible directions:

1. See whether (or not) the abstract game approach can be
made to stand up against state-of-the-art automatic
abstraction techniques.

2. Combine verification-style games with ideas about
incrementally defined games for software design (the talk I
didn’t give...!)

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 92

Conclusions

The talk I didn’t give (1)

My student Jennifer Tenzer is about to submit a PhD thesis on
exploration games for software design with UML.

Basic idea:

1. start with a partial UML model of a system, and an
incomplete, informal idea of its specification.

2. directly define a game based on the model and the
specification:
• moves are based on system’s behaviour and “reasonable”

environmental challenges
• Refuter wins if the system misbehaves

3. allow user to modify the game’s rules, refining the system
model and the specification

Currently, tool’s main role is as referee: only primitive attempt to
find winning strategy.

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 93

Conclusions

The talk I didn’t give (2)

Long term aim is to abolish the exploration/verification gap.

VERIFICATION

DESIGN
EXPLORATION

effort

benefit

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 94

Conclusions

Connections with feature interaction

Pessimistically, maybe just an illustration of why FI is hard.

Focus of this work is to make easy things easy.

Maybe feature interaction is all about inherently hard things?

Would be very interested in collaborations to try to prove
otherwise, though...

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 95

Conclusions

More info

http://homepages.inf.ed.ac.uk/perdita

Questions? Comments? Offers of software?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 96

Conclusions

More info

http://homepages.inf.ed.ac.uk/perdita

Questions? Comments? Offers of software?

Perdita Stevens: A practical introduction to games, infinity and the Edinburgh Concurrency Workbench, 97

	The Edinburgh Concurrency Workbench
	Abstraction
	Games
	Implementation
	Conclusions

