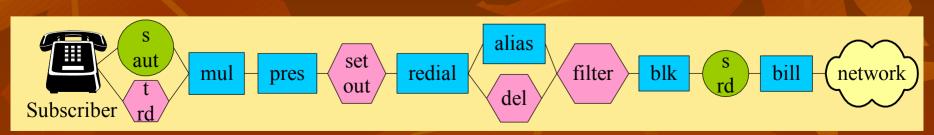

Categorizing and Prioritizing Telephony Features

Ann Zimmer and Joanne Atlee
University of Waterloo

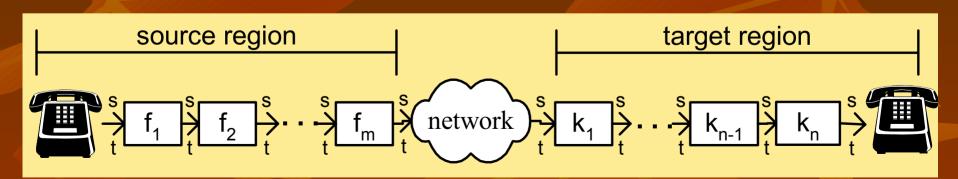
pameade@cs.uwaterloo.ca


Problem

- Call is a serial composition of feature modules
- Problem How to order features
 - Seems simple but there are a large number of features to consider
- Solution Minimize the number of feature comparisons required to add a new feature to an existing system

Preliminary Results

- A partial ordering of feature categories
- Methodology for ordering features
 - Classification of features into categories based on their functionality
 - Order categories based on common principles of "ideal" feature ordering
 - Pair-wise comparison of features within the same category



Overview

- Motivation
- Classification of Categories
- Principles for Ideal Feature Orderings
- Partial Order of Feature Categories
- Proof of Concept and Other Future Work

Terminology

- Source region: the caller's side of the call
- Target region: the callee's side of the call
- Address: the network identifier used to determine where a call should be directed and which features should be applied

Classification of Feature Categories

- Features categories determined by Functionality what is the main functionality preformed by these features when triggered.
 - Redirect call
 - present call
 - change call status
 - etc

Feature Categories

- Alias
- Billing
- Blocking
- Delegate
- Filter
- Multiplex

- Presentation
- Redial
- Set Outcome
- Source Authentication
- Source Redirect
- Target Redirect

Alias, Blocking, & Redial

- *Alias*: (Source and/or Target Region)
 - Allows the user to employ an alias to refer to another address
 - Example: Speed Dial, Personal Directory
- *Blocking*: (Source and Target Region)
 - Prevents blocked calls from being established
 - Example: Originating & Terminating Call Screening
- *Redial*: (Source and/or Target Region)
 - Place a call to a previously recorded address
 - Example: Return Call, Automatic CallBack

Overview

- Motivation
- Classification of Categories
- Principles
- Partial Order
- Proof of Concept and Other Future Work

Principles for Ideal Feature Orderings

- Principles represent desired attributes of telephony environment
 - Represents system properties on desirable control flow and data availability
- Feature categories are ordered to optimize adherence to the principles

Constraint versus Criterion

- Constraint: A requirement that must be met to satisfy system properties
- Criterion: A property that the system will try to optimize
- Constraints must be satisfied to ensure the successful resolution of interactions
- The system is designed to *optimize* adherence the Criteria

Principles

Constraints

- Abortion
- Authorization

Invoicing

Criteria

- Accessibility
- Concretization
- Logging

- Personalization
- Presentation

Abortion Principle (Constraint)

■ *Abortion*:

- Undesired calls should be aborted
- Categories that define undesired calls (blocking, filter) must abort such calls

Example:

- Features that prevent calls that incur long distance charges
- Features that block incoming or outgoing calls based on the network address

Authorization & Invoicing (Constraints)

- Authorization:
 - The end user's identity must be verified before any of his features can be accessed

- Invoicing:
 - Every call (or subcall) must be billed to some user

Concretization (Criterion)

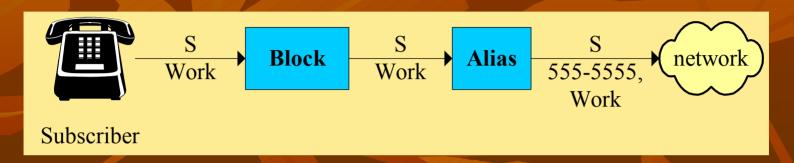
■ Personalization:

 Aliasing information should be used when presenting information to the subscriber

Example:

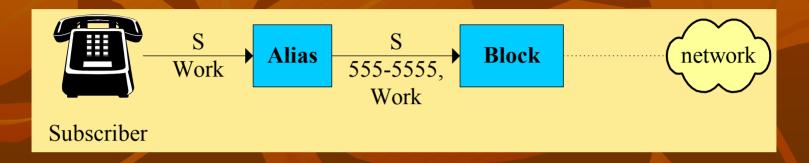
 Presentation features should display alias information to the user when presenting a call – receiving the alias "Mom" is more informative than receiving a concrete address, which could be one of many addresses associated with "Mom"

Logging & Presentation (Criteria)

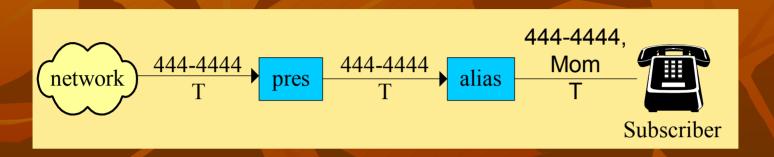

■ Logging:

 Relevant call information about all successful and unsuccessful calls should be recorded

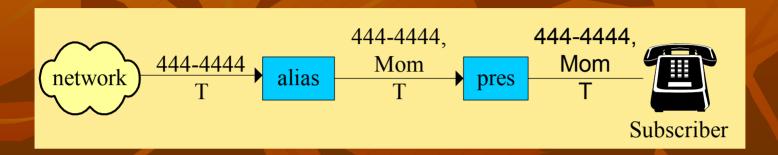
■ Presentation:


 Only information about successful calls should be presented to the subscriber

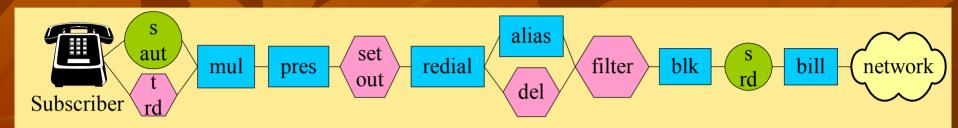
Example: Abortion Principle


- The blocking feature does not find the alias, "Work", on its blocking list and allows the call to progress
- The alias feature translates a dialed alias, "Work" into a network address, 555-555
- Violation: Abortion principle a blocked address has been connected

Example: Abortion Principle


- The alias feature translates a dialed alias, "Work" into a network address, 555-555
- The blocking feature blocks the network address, 555-5555
- No Violation: Accept Order

Example: Personalization Principle

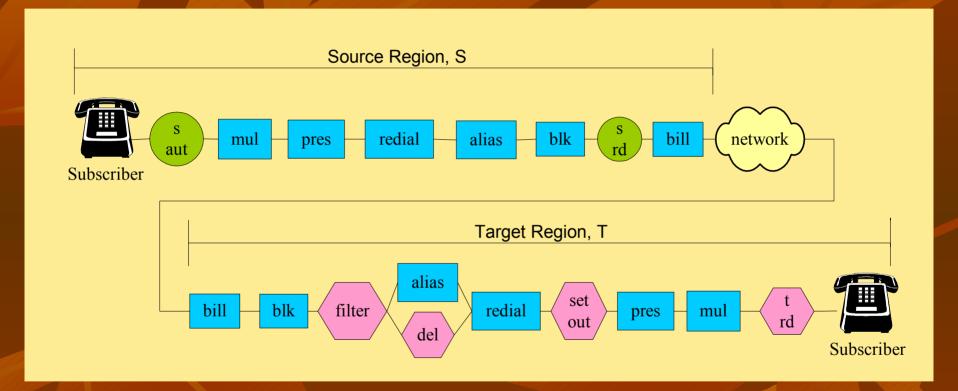

- Presentation sends a signal to display 444 4444 to the subscriber
- The alias feature translates the address, 444-444, into an alias "Mom"
- Violation: Personalization principle alias information has not been displayed

Example: Personalization Principle

- The alias feature translates the address, 444-444, into an alias "Mom"
- Presentation sends a signal to display "Mom" to the subscriber
- No Violation: Accept Order

Partial Ordering

Shapes: circles: Source Features hexagon: Target Features rectangle: Source & Target


Legend: s aut: Source Authentication pres: Presentation blk: Blocking

t rd: Target Redirect set out: Set Outcome s rd: Source Redirect

mul: Multiplex del: Delegate bill: Billing

- Partial-Ordering satisfies all Constraint Principles
- Partial-Ordering satisfies most Criteria Principles, under common call scenarios

Sample Call

■ Feature ordering is reversed in target region.

Methodology

- Methodology for ordering features
 - Classification of features into categories
 - Order categories based on principles of "ideal" feature ordering
 - Pair-wise comparison of features within the same category
- New features
 - Classify feature
 - Order feature within its category

Validation

- Analyzed over 300 features
- Extracted 35 distinct features
 - 132 inter-category comparisons
 - 55 intra-category comparisons
 - Largest category has 6 distinct features
 - Avoided 540 feature-pair comparisons
 - 595 feature pairs 55 intra-category pairs

Proof of Concept

- Using Prolog to validate and generate partialordering
 - Encoding principles and main functionality of each feature category
 - Testing for violations of principles for different combinations of feature orderings
 - Eventually output possible partial orders that do not violate the Constraint Principles
 - Determine location of new feature categories

Future Work

- Interesting categories not in paper
 - Device Interface
 - Dual features
 - Multiple Category Features
- Strategies for determining order within a category
- Continue work on proof of concept
- Expand concept to other feature-intensive domains

Questions? 27/28