
Performance Evaluation in a Cloud with the Provisioning of Different Resources
Configurations

Bruno G. Batista, Júlio C. Estrella, Marcos J. Santana, Regina H. C. Santana
Institute of Mathematics and Computer Science

University of São Paulo - USP
São Carlos, Brazil

batista, jcezar, mjs, rcs@icmc.usp.br

Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
Leicester, United Kingdom

srm13@le.ac.uk

Abstract—Cloud computing is a computing style where re-
source providers can offer on-demand services in a transparent
way and clients usually pay as they go. It introduces a new level
of flexibility and scalability for IT users addressing challenges
such as the rapid change in IT and the need to reduce
cost and time of infrastructure management. However, to be
able to offer QoS guarantees without limiting the number
of accepted requests, providers must be able to dynamically
adjust the available resources to serve requests. This dynamic
resource management is not a trivial task, bringing its own
challenges related to workload and performance modelling,
and deployment and monitoring of applications on virtualised
IT resources. An efficient mapping between resources and
applications ensures workload balancing and good resource
utilization and allows to meet the QoS levels required by clients.
This paper presents a performance evaluation that considers
different resource configurations in a cloud environment to
define which dimension of resource scaling has real impact on
client applications.

Keywords-Cloud Computing; Resources Provisioning; Qual-
ity of Service; Performance Evaluation.

I. INTRODUCTION

In recent years, one of the most discussed topics in Infor-
mation Technology has been cloud computing. According
to NIST (National Institute of Standards and Technology),
“Cloud computing is a model that allows ubiquity, con-
venience and on-demand access to a set of configurable
shared resources and can be quickly delivered with minimal
management effort on the clients part” [10].

Cloud computing allows to dynamically adapt the capacity
of a company to meet clients’ service requests without
investing in infrastructure such as hardware and software
licenses as well as maintenance staff training. However,
clients expect that the computational system that composes
a cloud operates properly, with no interruption in its ser-
vice or loss of data/messages. Therefore, service providers
should ensure Quality of Service aspects (QoS) to gain the
confidence and satisfaction of their clients.

The term quality of service refers to the effect caused
by the service performance characteristics, determining the
degree of client satisfaction, i.e. the set of system character-
istics necessary to achieve certain functionality [4]. It can

also be described as a set of parameters that characterize
the quality of a particular data flow, such as bandwidth or
priority assigned to a specific client. These parameters are
attributes of a system that can be measured quantitatively
by metrics and used in the definition of QoS levels [3].
However, ensuring QoS in a cloud environment is not a
trivial task, because there are different types of clients with
varied service requirements [15] in addition to the usual
issues arising with distributed systems.

Considering the great scalability in a cloud environment
and the fact that service demand can change instantly,
automatic resource allocation to meet this demand becomes
an interesting topic both in academia and in industry. Correct
provisioning allows for better use of available computational
resources and, consequently, of all infrastructure that com-
poses the cloud, because the mapping between the workload
and the resource becomes more efficient. Furthermore, it
helps in fulfilling the QoS levels demanded by the clients
and provides a greater dynamism to the system.

Providing more computational resources to a client, for
example, is highly workable and easily achieved in a cloud
environment. However, it has great impact on the final cost
that is paid by the client and requires efficient mechanisms
by providers.

It is desirable that resource allocation in a cloud envi-
ronment can be performed automatically and dynamically,
based on client high-level needs and on a fair price. For this
to occur, firstly it is important to analyse and understand the
computational resources and the quantity of these resources
that should be allocated to a client in a cloud. To address this,
this paper presents results considering different configura-
tions of virtual machines (VMs) running different workloads.
With the results, the influence of different configurations
of number of VMs and VCPUs, disk size, network type
and memory (RAM) quantity on the system performance
can be quantified. Furthermore, it is possible to analyze if
an environment composed by i VM with j virtual cores
(VCPUs) is more efficient than an environment composed
by j VMs and i VCPU, for instance.

The remainder of the paper is organised as follows:

section II presents the background for physical and virtual
resources provisioning; section III shows the experimental
design and the performance evaluation; section IV describes
some related works; and section V summarizes the main
results, contributions and future work.

II. RESOURCE PROVISIONING

Cloud computing is a model for on-demand service pro-
visioning based on already established techniques such as
virtualization, distributed, utility and autonomic computing.
It aims to reduce the overhead of ownership of information
technology to the final client and allows great flexibility
and scalability as well as cost reduction in the acquisition,
management and maintenance of all infrastructure owned
by a company [12] [13]. However, in order for clients
and providers to enjoy these benefits, an efficient resource
provisioning mechanism is required.

In a cloud environment, assuming efficient resource pro-
visioning, applications can operate more efficiently, with
reduced financial and environmental costs, reduced under-
utilization of resources, and better performance at times of
peak load. However, the process of resource provisioning in
clouds is a complex undertaking. It requires the application
provider to compute the best software and hardware con-
figuration to ensure that QoS targets of application services
are achieved, while maximizing the overall system efficiency
and utilization. Moreover, there are significant problems that
exist with regard to efficient provisioning and delivery of
applications using cloud-based IT resources, such as work-
load modeling, virtualization, performance modeling, and
deployment and monitoring of applications on virtualized
IT resources [1].

The way in which the hypervisor associates the physical
and virtual resources is another important factor that should
be considered, because it is the base for efficient resource
provisioning. However, this association varies according
with the hypervisor used.

The Xen hypervisor, for instance, uses three scheduling
algorithms: BVT (Borrowed Virtual Time), SEDF (Simple
Earliest Deadline First) and Credit Scheduler [2]. The Credit
Scheduler is Xen’s default scheduling algorithm. BVT and
SEDF algorithms are still available, but it is indicated that
they will be removed from Xen in the next versions.

In the Credit Scheduler algorithm, each physical core
(CPU) is responsible for a queue composed of virtual cores
(VCPUs). In this way, there is an association between
physical and virtual cores, where the number of VCPUs
exceeds the available CPUs.

For the presented work we used the Xen hypervisor
because it is one of the most important available hypervisors
in the literature. Experiments were performed using the
Credit Scheduler algorithm. The experiment design and
results analysis are detailed in the next sections.

Table I: Environment specification

Machine Physical Virtual

Processor Core 2 Quad 2.4GHz Core 2 Quad 2.4GHz

Cores 4 Varies

Memory RAM 8GB Varies

Disk 160GB Varies

Network - Varies

Operational System Ubuntu Server 11.10 Ubuntu Server 10.04

Hypervisor Xen 4.1 -

Table II: Factors and levels

Factors Levels
Disk size 8GB and 16GB

Network type Megabit and Gigabit

Memory RAM quantity 512MB and 1024MB

VMs number 1, 2 and 4

VCPUs number 1, 2, 4 and 8

III. EXPERIMENTS DESIGN

The experiments shown in this section aim to analyze
which computational resources should be provided to im-
prove the performance in a cloud and furthermore the
proportion in which they should be increased. For this the
Apache benchmark1 was used. This benchmark uses the
quantity of served requests per second as response variable.
All experiments were run 10 times2 and the results show the
average of served requests with 95% of confidence.

In the experiments we used a physical machine based on
an Intel Core 2 Quad processor to host the virtual machines
that execute the workload. The environment configurations
are shown in Table I. In the results presented in this
section, five factors with different quantities of levels were
considered (Table II). These factors and levels were used to
compose the different scenarios. Each level was increased
by 100% compared with the inferior level.

A. Results Analysis

Figure 1 is composed of four graphs that show the average
quantity of served requests per second per one VM during
the experiments execution time. The graphs show different
combinations of levels that compose the factors defined
in the experiment design. However, even with different
configurations, the experiments’ behaviours were practically
the same.

According with the graphs, as new VMs were added
to the system, the competition for computational resources
becomes greater, consequently reducing the average quantity

1http://openbenchmarking.org/test/pts/apache
2Through 10 repetitions it was noted that the results did not show large

variations. Therefore, it was concluded that 10 was a reasonable amount
for the number of repetitions.

1VM 2VMs 4VMs

1VCPU 2455,84 2336,12 3361,00

2VCPUs 4282,73 4125,68 2579,14

4VCPUs 6275,61 4382,94 2382,36

8VCPUs 4994,95 2818,08 1871,14

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per VM - 512MB RAM - Gigabit

1VM 2VMs 4VMs

1VCPU 2494,88 2364,38 3364,29

2VCPUs 4278,31 4119,33 2589,59

4VCPUs 6278,31 4367,05 2338,06

8VCPUs 4997,90 2871,69 1815,16

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per Second - 1GB RAM - Gigabit

1VM 2VMs 4VMs

1VCPU 2466,78 2387,10 3344,86

2VCPUs 4301,54 4113,72 2590,45

4VCPUs 6251,65 4379,06 2341,50

8VCPUs 4979,70 2815,43 1790,74

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per VM - 1GB RAM - Megabit

1VM 2VMs 4VMs

1VCPU 2479,94 2339,78 3346,22

2VCPUs 4282,50 4126,10 2582,76

4VCPUs 6299,22 4401,74 2339,15

8VCPUs 4906,33 2785,34 1825,29

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per VM - 512MB RAM - Megabit

Figure 1: Average of served requests by each VM in an environment with 8GB disk

of served requests per VM. This behaviour was noticed in the
comparison between the experiments with 4 VCPUs and 1,
2 and 4 VMs (green columns/ third column of each group).
For these experiments, an increase of 100% in the VMs
number generated a reduction of, approximately, 30% (1 to
2 VMs) and 46% (2 to 4 VMs) in the quantity of served
requests of all graphs. No CPU had been idle since the start
of the experiments execution.

On the other hand, the experiments with 1 VM and
1 VCPU had results similar to the experiments with 2
VMs and 1 VCPU. This happened because some resources
were idle during the experiments execution. This idleness
occurred because the number of virtual cores in the VMs
was less than the number of available physical cores. The
same behaviour occurred in the experiments with 1 and 2
VMs and both with 2 VCPUs. However, in the experiment
with 1 VM and 2 VCPUs, there was a total of 2 VCPUs to
be run in 4 physical cores. In the other case, 2 VMs with 2

VCPUs, there was a total of 4 VCPUs to be executed in 4
physical cores. In this case, each CPU received one VCPU to
run and all VCPUs were executing in parallel. Therefore, the
results were similar, as we consider the average quantity of
served requests per second per each VM. Figure 3 illustrates
the described behaviour.

Continuing in Figure 1, in the experiments with 4 VMs,
the higher the number of VCPUs, the lower the quantity
of served requests per second. For this experiments set, the
number of physical cores 3 was a limiting factor, because,
with the number of VCPUs increasing, the competition for
these resources increases and, for this reason, there is a
reduction in the quantity of served requests. However, in
the experiments with 1 and 2 VMs, the competition for
physical resources is lower, resulting in a higher quantity
of served requests. For 1 VM, the increase of 1 to 2 VCPUs
and, later, from 2 to 4 VCPUs in the number of VCPUs

3Intel Core 2 Quad processor was used in the experiments.

1VM 2VMs 4VMs

1VCPU 2404,72 2267,83 3340,75

2VCPUs 4261,81 4128,03 2593,90

4VCPUs 6305,67 4346,24 2331,25

8VCPUs 5239,21 2769,93 1654,92

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per VM - 512MB RAM - Megabit

1VM 2VMs 4VMs

1VCPU 2456,19 2320,48 3370,15

2VCPUs 4240,95 4149,44 2606,70

4VCPUs 6335,78 4414,73 2323,80

8VCPUs 5223,58 2741,30 1659,74

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per VM - 1GB RAM - Megabit

1VM 2VMs 4VMs

1VCPU 2500,82 2275,10 3357,21

2VCPUs 4258,95 4152,07 2617,14

4VCPUs 6281,04 4398,30 2327,44

8VCPUs 5296,04 2754,54 1660,00

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per VM - 512MB RAM - Gigabit

1VM 2VMs 4VMs

1VCPU 2440,67 2309,34 3329,65

2VCPUs 4241,91 4136,04 2596,23

4VCPUs 6346,15 4371,03 2360,59

8VCPUs 5268,56 2769,61 1664,53

0

1000

2000

3000

4000

5000

6000

7000

R
e

q
u

e
st

s
p

e
r

se
co

n
d

Requests per Second - 1GB RAM - Gigabit

Figure 2: Average of served requests by each VM in an environment with 16GB disk

4 Physical Cores (CPUs)

1VM – 1 VCPU 1VM – 1 VCPU

Idle

4 Physical Cores (CPUs)

1VM – 2 VCPUs 1VM – 2 VCPUs

Figure 3: Processor use

increases the response variable by, approximately, 73% and
46%, respectively. For 2 VMs, the same increase in the
number of VCPUs results in an increase of, approximately,
75% and 6%, respectively.

The behaviour described in Figure 1 is applied to Figure
2 where the disk size was changed from 8 to 16 GB.
In this way, considering both Figure 1 and 2, the change
in the memory RAM quantity (from 512MB to 1GB),
network (from Megabit to Gigabit) and disk size (from 8 to
16GB) does not generate big changes in the results, i.e., the

system performance behaviour remains the same. Therefore,
considering the experiment design and the workload used,
there were no statistical differences in the results with the
combination and change of these factors. This assertion is
proven in the next section by the factors influence analysis.

B. Factors Influence

In this paper the full factorial model was used to measure
the influence of each factor and the respective levels on
response variable. A full factorial design for N factors and
k levels requires Nk experiments [7]. In this way, analyses
considering the factors Disk size, Network type, Memory
(RAM) quantity, VMs number and VCPUs number were
performed. Because the VCPUs number factor has 4 levels,
an analysis combining the levels in 2 – 2 to determine
the influence of each factor in the response variable was
performed. The VMs number factor (with 3 levels), the
extreme levels were considered, i.e., 1 and 4 VMs.

Disk 0,32% Network
0,16%

Memory
0,10%

VMs
Number
16,76%

VCPUs
22,39% VMs and

VCPUs
53,75%

Others
6,52%

Disk 0,02% Network
0,12%

Memory
0,10%

VMs
Number
27,62%

VCPUs
25,34%

VMs and
VCPUs
43,34%

Others
3,46%

Disk 0,23% Network 0,92% Memory 0,31%

VMs Number
27,15%

VCPUs
11,83%

VMs and VCPUs
46,43%

Others
13,13%

Disk Network Memory VMs Number VCPUs VMs and VCPUs Others

Factors Levels

Disk 8 and 16GB

Network Gigabit and Megabit

Memory 512MB and 1GB

VMs number 1 and 4

VCPUs number 1 and 4

Factors Levels

Disk 8 and 16GB

Network Gigabit and Megabit

Memory 512MB and 1GB

VMs number 1 and 4

VCPUs number 1 and 2

Factors Levels

Disk 8 and 16GB

Network Gigabit and Megabit

Memory 512MB and 1GB

VMs number 1 and 4

VCPUs number 1 and 8

Figure 4: Factors influence

In all graphs in Figure 44, the number of VMs and
VCPUs factors combination was the greatest influence in
the results with 53.75%, 43.34% and 46.43%. As previously
mentioned, as new VMs and VCPUs are added to the
system, competition for physical resources becomes greater,
impacting on the response variable.

Note that only in the first graph, the number of VCPUs
was the second factor with most influence (22.39%), fol-
lowed by number of VMs (16.76%). Through the combi-
nations shown in this graph, moments where the VCPUs
number was lower, equal and greater than the number of
VMs are registered. For this reason, the respective influence
percentages were obtained.

In the second graph, although the number of VMs influ-
ence (27.32%) was larger than the number of VCPUs influ-
ence (25.34%), the combination between these factors had
a reduction in the influence percentage of, approximately,
19% compared to the first graph. This percentage was added
to the VMs and VCPUs number influence, providing an
increase of, approximately, 65% and 13%, respectively. In
the third graph, the third most influential factor, i.e., number
of VCPUs (11.83%), had a reduction of, approximately, 53%

4All the values were obtained using [7].

in influence percentage compared with the second graph.
In this way, though the combination shown in the second

graph, the idleness of processing resources during the exper-
iments was lower than the first graph, while the competition
by processing resources also was lower than the third graph.
Therefore, given the experiments design and the workload
used in the system, the combination of the factors and their
levels shown in the second graph provided the most efficient
use of available resources.

Finally, the influences exerted by the factors Disk size,
Network type and Memory RAM quantity were minimal as
mentioned in the previous section, less than 1% each one.
Therefore, based in the shown analyses, new experiments
were performed considering a strictly CPU-bound load. The
next section shows the results analysis.

C. CPU-Bound Analysis

The last sections showed that the VMs and VCPUs
number were the factors with more influence on the response
variable considering a System-bound workload. Based on
these results, additional experiments were performed using
a strictly CPU-Bound workload. The goal is to verify if
the same behaviour is maintained with different kinds of

workload. For this the Smallpt benchmark5 was used. This
benchmark renders an image using a Monte Carlo algorithm
and shows the execution time (seconds) as response variable.
The hardware configuration was as before. The environment
specification is shown in Table III.

Table III: Environment specification in CPU-Bound analysis

Factors Levels
Disk size 8GB

Network type Gigabit

Memory RAM quantity 512MB

VMs number 1, 2, 4 and 8

VCPUs number 1, 2, 4 and 8

In Figure 5, as new VMs were added in the system,
the competition for computational resources became greater,
increasing, consequently, the workload execution time. This
behaviour is noted in the experiments with 4 VCPUs, where
the increase of 100% in the VMs number (from 1 to 2, 2 to
4 and 4 to 8) provided an increase of, approximately, 95%,
105% and 100% in the response variable, respectively.

An interesting analysis consists in the comparison among
the columns that compose the diagonals. Although all ex-
periments that compose the main diagonal in Figure 5 had
a total of 8 VCPUs, the experiments with a smaller VM
number had better results. In other words, the experiment
with 1 VM and 8 VCPUs obtained a better execution
time than the experiment with 2 VMs and 4 VCPUs. This
difference was of, approximately, 49%. Considering the
comparison between 1 VM with 8 VCPUs and 4 VMs
with 2 VCPUs, the first case obtained a lesser result than
the second case, approximately, 78%. For the diagonal
extremities, i.e., experiments with 1 VM with 8 VCPUs and
8 VMs with 1 VCPU, the difference in the execution time
was, approximately, 92% based on the change from 8 to 1
VM. In this way, considering an environment with the same
total number of VCPUs, the combination of 1 VM with 8
VCPUs had better performance than the combination with
8 VMs and 1 VCPU. The same behaviour occurred with
environments with 2 VMs with 4 VCPUs and 4 VMs with
2 VCPUs, where the change from 4 to 2 VMs provided a
reduction in the response variable in, approximately, 57%.

Furthermore, it is noteworthy that the experiment with 1
VM with 1 VCPU had similar result to the experiment with 2
VMs with 1 VCPU. This is justified by the occurrence of idle
physical resources in these scenarios during the experiments
execution. This behaviour was discussed in the experiments
analysis described in Figures 1 and 2. The same behaviour
occurred in the experiment with 2 VMs with 1 VCPU that
had similar result to the experiment with 2 VMs with 2
VCPUs. This behaviour can be exemplified by Figure 3.

5http://openbenchmarking.org/test/pts/smallpt

1VM

2VMs

4VMs
8VMs

0

1000

2000

3000

4000

1VCPU
2VCPUs

4VCPUs
8VCPUs

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

1VCPU 2VCPUs 4VCPUs 8VCPUs

1VM 1040,20 586,00 260,10 260,20

2VMs 1039,15 585,50 508,20 512,40

4VMs 1556,40 1170,03 1040,18 1171,45

8VMs 3217,45 2342,53 2082,56 2344,74
Figure 5: Execution time in seconds

Finally, the VCPUs number increase provided a reduction
in the system execution time. However, this affirmation was
valid until the VCPUs number reached the physical cores
number. From this point, the increase in the VCPUs num-
ber provided a greater competition for physical resources,
harming the system performance. Analysing the experiments
with 8 VMs (purple columns), the increase of 100% in the
VCPUs number, from 1 to 2 and 2 to 4, provided a reduction
in the execution time of, approximately, 27% and 11%,
respectively. From this point, the VCPUs number increase,
from 4 to 8, increased the execution time in, approximately,
13%.

1040,20

586,00

260,10 260,20

512,40

1171,45

2344,74

0

500

1000

1500

2000

2500

1 2 4 8 16 32 64

Ex
e

cu
ti

o
n

 t
im

e
 (

s)

VCPUs Quantity

Figure 6: Execution time vs. VCPUs quantity

Figure 6 shows a comparison considering the VCPUs
number increase. Through this analysis, is possible to prove
the described behaviour, where the increase in VCPUs num-
ber, from 8 to 16, 16 to 32 and 32 to 64, provided an increase
of, approximately, 97%, 129% and 100%, respectively, in the
response variable.

IV. RELATED WORK

We consider two different types of related work: papers
available in the academic literature and business scenarios

applied by companies like Amazon.
There are several papers in the academic literature with

the aim of analysing and proposing efficient mechanisms
for resource self-management in a cloud environment. In
[5], for instance, the authors present a study about resource
allocation among multiple HPC (High Performance Comput-
ing) systems like cluster, grid and cloud. Sharkh et al. [14]
discuss various internal and external factors that should be
considered in the resource allocation process. Manvi and
Shyam [9] conduct a more embracing study that considers
resource management techniques as provisioning, allocation,
mapping and adaptation in an Infrastructure as a Service
(IaaS). In [16], various resource allocation strategies and
their challenges are discussed.

The model proposed in [8] consists of an adaptive model
for allocation and provisioning of resources based on anal-
ysis of historical factors. A statistical method is applied
to choose the most influential characteristics to improve
the application performance and determine where a VM is
allocated and which instance type is more suitable for the
specific application.

In [17], the authors propose resource allocation algorithms
for SaaS providers allowing to reduce infrastructure cost.
They modelled a simulated environment where VMs are
assigned following a pre-defined mapping strategy. How-
ever, the environment does not change the VMs capacity
dynamically. It tries to maximize the profit minimizing the
cost by reusing the created VMs and applying the multi-
tenancy approach, which can induce an SLA (Service Level
Agreement) violation.

In [1] the authors propose an adaptive approach with focus
on automation of tasks management and resources scala-
bility to ensure the contracted QoS. For this, an analytical
performance model and workload information is used which
enables a better resources allocation avoiding undesired per-
formance, measured in response time and rejected requests.
The analytical performance model defines which resource
configurations are better suited for a specific workload and
when resources should be increased or reduced [11].

In the analysed papers the authors present autonomous
mechanisms of resource provisioning where VM configura-
tions are fixed. VMs are split in different classes according
with their capabilities and the number of VMs is increased
or reduced during the resource provisioning. In this way,
there is no dynamicity in the resource configurations that
compose the VMs during the workload execution. Consid-
ering that SLAs can be renegotiated, an environment with
fixed configurations cannot be the most efficient.

Considering the business scenarios, there are cases where
a client pays a specific price for a service that is not fair. He
controls the virtual resources and not the physical resources.
For this reason, he can pay a price for a dedicated resource
quantity, for instance, and the quantity allocated by the
provider can be less than that requested or it can be shared

with other clients. Also, the provider can offer an increase
in the resource quantity at a specific price and this increase
can be illusory, because sometimes the resources quantity
increase does not provide a better system performance.

Various services as Amazon EC26 and Windows Azure7

work with a billing system where virtual machines are
classified according with their configurations of memory,
virtual cores, network type and disk size, for instance, and
the price is defined according with the class. In these cases,
there is no plausible explanation for the resources increase
from a class to another. Furthermore, they leave the clients
responsible for precisely estimating the amount of needed
resources [6].

Moreover, providers such as Compiere ERP8 provide an
individual VM for each client to maintain service level
requirements in terms of response time and capacity. How-
ever, this can cause overload and/or idleness of hardware
resources which results in high infrastructure cost, since
clients may not have the contracted QoS level.

The study presented in this paper showed an analysis that
considers the impact on the system performance with the
increase in the VMs capabilities and the influence of each
resource on the response variable. This analysis is important,
because is possible to quantify the resources that compose a
VM instead for it to be configured with random quantities. In
this way, clients can contract the ideal quantity of resources
to run their applications and, consequently, save money.
On the other hand, providers can achieve a better use of
the available resources and more reliably ensure the QoS
contracted by clients.

V. CONCLUSION AND FUTURE WORK

In this paper we presented some experiments with the goal
of identifying the computational resources and quantity of
resources that should be allocated to a specific client in a
cloud in order to gain most appropriate resource utilisation
and performance gains. The correct automatic resource al-
location allows a greater load balancing and a better use of
the available resources, besides to help in the enforcement of
the QoS levels requested by clients. Therefore, is important
know which computational resources should be allocated
and the quantity because this provisioning directly influences
the final cost of service. In this way, experiments were per-
formed considering various virtual machines configurations
with different workloads.

In the results, for the workload used, changes in the
memory quantity, disk size and network type did not pro-
vide significant impact on the response variable. In this
way, some providers can be offering more computational
resources, combined with an increase in the cost, promising
a performance increase that is not real. On the other hand, it

6http://aws.amazon.com/ec2/
7http://www.windowsazure.com/en-us/pricing/details/virtual-machines/
8http://www.compiere.com/

was more efficient to increase the number of VCPUs instead
of the number of VMs. However, as shown in Figure 6,
this increase rate should consider the number of available
physical cores. In an environment where the number of
VCPUs exceeded the physical CPU cores, the environment
performance was harmed, since the competition for physical
resources was greater.

Furthermore, Figure 5 showed that, an environment with
1 VM with 4 VCPUs was more efficient than one with
4 VMs and 1 VCPU. It happened because the memory
access and messaging between cores are faster in a multicore
environment than an environment with multiples VMs, while
the delay in the VCPUs context switching is smaller.

The next steps consist in the proposal of an autonomic
mechanism to control the elasticity in a cloud environment.
This mechanism should consider different workloads com-
posed by different security levels. Techniques and method-
ologies available in the literature that aim to ensure the
integrity, availability and confidentiality of data will be used
to compose the different security levels. In this way, it will
be possible to verify the impact of the security policies on
the system performance and, from the presented analysis,
automatically define the additional resource quantity that
is necessary to cope with the overload caused by the
security policies. Therefore, the possibility of maintaining
the system performance with the security attributes from the
allocation of more computational resources to the VMs will
be analysed Finally, a new business model that reflects the
impact of these additional computational resources will be
proposed.

ACKNOWLEDGEMENT

The authors would like to acknowledge the financial
support provided by CNPq, CAPES and FAPESP for the
projects under development at the Distributed System and
Concurrent Program, group of the Computer Systems De-
partment at ICMC-USP. This study was conducted while
Bruno G. Batista was on a research exchange at the Uni-
versity of Leicester, generously supported by the Brazilian
Science without Borders program.

REFERENCES

[1] Rodrigo N Calheiros, Rajiv Ranjan, and Rajkumar Buyya.
Virtual machine provisioning based on analytical performance
and qos in cloud computing environments. pages 295–304,
2011.

[2] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat.
Comparison of the three cpu schedulers in xen. SIGMETRICS
Performance Evaluation Review, 35(2):42–51, 2007.

[3] Julio Cezar Estrella, Regina HC Santana, and Marcos J San-
tana. Wsarch: An architecture for web services provisioning
with qos support performance challenges. 2011.

[4] Paul Ferguson and Geoff Huston. Quality of service: deliv-
ering QoS on the Internet and in corporate networks. Wiley
New York, NY, 1998.

[5] Hameed Hussain, Saif Ur Rehman Malik, Abdul Hameed,
Samee Ullah Khan, Gage Bickler, Nasro Min-Allah, Muham-
mad Bilal Qureshi, Limin Zhang, Wang Yongji, Nasir Ghani,
et al. A survey on resource allocation in high performance dis-
tributed computing systems. Parallel Computing, 39(11):709–
736, 2013.

[6] Tram Truong Huu and Johan Montagnat. Virtual resources
allocation for workflow-based applications distribution on a
cloud infrastructure. In Cluster, Cloud and Grid Computing
(CCGrid), 2010 10th IEEE/ACM International Conference
on, pages 612–617. IEEE, 2010.

[7] Raj Jain. The art of computer systems performance analysis,
volume 182. John Wiley & Sons Chichester, 1991.

[8] Seoyoung Kim, Jik-Soo Kim, Soonwook Hwang, and Yoon-
hee Kim. An allocation and provisioning model of science
cloud for high throughput computing applications. In Pro-
ceedings of the 2013 ACM Cloud and Autonomic Computing
Conference, page 27. ACM, 2013.

[9] Sunilkumar S Manvi and Gopal Krishna Shyam. Resource
management for infrastructure as a service (iaas) in cloud
computing: A survey. Journal of Network and Computer
Applications, 2013.

[10] Peter Mell and Timothy Grance. The nist definition of cloud
computing (draft). NIST special publication, 800(145):7,
2011.

[11] Daniel A Menascâe, Virgilio AF Almeida, Lawrence Wilson
Dowdy, and Larry Dowdy. Performance by design: computer
capacity planning by example. Prentice Hall Professional,
2004.

[12] George Reese. Cloud application architectures: building
applications and infrastructure in the cloud. O’Reilly, 2009.

[13] John W Rittinghouse and James F Ransome. Cloud comput-
ing: implementation, management, and security. CRC press,
2009.

[14] Mohamed Abu Sharkh, Manar Jammal, Abdallah Shami, and
Abdelkader Ouda. Resource allocation in a network-based
cloud computing environment: design challenges. Communi-
cations Magazine, IEEE, 51(11):46–52, 2013.

[15] Srinivas Vegesna. IP quality of service. Cisco Press, 2001.

[16] V Vinothina, Dr R Sridaran, and Dr PadmavathiGanapathi. A
survey on resource allocation strategies in cloud computing.
International Journal of Advanced Computer Science and
Applications, 3(6), 2012.

[17] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. Sla-
based resource allocation for software as a service provider
(saas) in cloud computing environments. In Cluster, Cloud
and Grid Computing (CCGrid), 2011 11th IEEE/ACM Inter-
national Symposium on, pages 195–204. IEEE, 2011.

