
Autonomous and self controlling smart objects for the future internet

Marco E. Pérez Hernández, Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester, UK
Email: {meph1,srm13}@le.ac.uk

Abstract—Development of IoT applications relies heavily
on middleware architectures. Multiple solutions have been
proposed using service and agent paradigms, that consequently
imposes an specific application development model. We observe
a trend towards a data-feeder approach in which smart objects
are simple data gatherers and senders. This approach reduce
the autonomy of smart objects and brings privacy concerns
about the data and service manipulation by remote applications
and services. We propose a new approach for middleware
and application development for smart objects based on web
agents and services. Specifically, we integrate services as part
of activities included in roles of a web agent allowing us to keep
control of the service and data generated on-object, in contrast
to delegating to remote applications or services. In addition,
our P2P-inspired method for service discovery gives autonomy
to smart objects since a central directory is not required to
interact with others. We completed an initial implementation
of our architecture and demonstrate its feasibility in a case
study in the smart home domain.

Keywords-IoT Middleware; Web Agents; P2P ; Service Dis-
covery;

I. INTRODUCTION

Since the early stages of the IoT paradigm, middleware
has been identified as key enabler. It aims to facilitate the
development of IoT applications and provide useful abstrac-
tions to IoT developers. As it is natural, IoT middleware
is being built on top of successful existing approaches,
technologies and concepts.

Two fundamental approaches in IoT Development are Ser-
vice orientation and the Agent Paradigm. Service orientation
has enabled the creation of IoT applications assembling data
gathered from the physical environment while leveraging the
almost unrestricted cloud computing power. In the same way,
agents have also been a useful paradigm to endow autonomy
and near-human features —e.g. reasoning, sensing, etc.—
to IoT applications. Robust agent platforms have grown
in controlled environments imposing particular models of
integration with open environments such as the Internet.
Consequently several Agent-based IoT middleware solutions
have inherited the same approaches.

In regards to proposed IoT middleware, a common ap-
proach we observe is that they are useful in developing
applications when the data control and “smartness” of the
smart object resides outside it. This of course, ensures
intensive use of powerful infrastructures but compromises
on the ideal IoT requirements for privacy and autonomy.

We think that another approach is possible. We seek for
a balanced development of IoT applications, driven by a
middleware that allows to use Smart Object (SO) capabilities
to keep control of data and services offered, while exploiting
remote services under the direction of the SO.

To achieve this, we see the need of using an open
approach for agent and service integration for the design
of IoT middleware architectures. It should allow transparent
use of services and the Internet infrastructure while taking
advantage of abstractions provided by the agent paradigm.
It implies also the definition of new approaches for search
and selection of the IoT and SO services.

The main contributions of this paper are: (1) a new
approach to the use of web agents and services to develop
IoT SO Applications. (2) A new approach to middleware
architecture oriented to keep the control of the data generated
and the services offered in the SO. (3) A new method for
IoT service search and selection based in the Gnutella P2P
protocol and using a map-reduce ranking-based selection.

The remaining is organized as follows: Firstly, we provide
some background to understand our contributions. Secondly,
we introduce our IoT middleware architecture and its com-
ponents. Then, we explain the novel method for search and
selection of services in the SO context. Later, we give details
about our implementation. Next, we describe the case study
which lead our initial implementation effort. We present
then some of the related work, and finally we offer relevant
conclusions based on our findings.

II. BACKGROUND

A. Beyond Data Feeders

The Smart Objects are central entities of the IoT [1]. They
are able to overcome the digital and physical frontiers by
not only gathering data from their surroundings but also
altering the existing situations and working together and
autonomously with other Smart Objects.

Despite potential capabilities of Smart Objects, popular
IoT middleware and Platforms still present smart things
as mere data feeders. They systematically send raw data
to powerful nodes, which are in charge of running the
logic and use the data in multiple applications or services.
These objects usually enclose platform-specific and basic
functionality for interacting with the attached devices which
is offered to third parties via pre-programmed interfaces.



Figure 1. Approaches to Agent/Service Integration: a)Enclosed agent interface approach b) Wrapped agent service c) Open integration

One problem of this approach is the displacement of
the data control away from the Smart Object. This raises
concerns about privacy, since the practices for handling the
data and the final receiver are unknown to the Smart Object
(and its owner). Besides, the coupling of the Smart Object
to a specific application or remote platform, constraint the
true potential of connecting to others autonomously.

The lack of resources in the SO push design decisions
towards a data-feeder model. Under the idea of leveraging
in cloud resources and services, things become “silly” nodes.
However, hardware platforms for SO are increasing re-
sources everyday, and now there are devices with processing
power even better than some multi-purpose computers. This
makes possible, an “intelligent leverage” in which core and
minimal processes are held in the SO, while the use of cloud
resources is lead by the SO Accordingly, IoT middleware can
drive adaptation of SO processes to its resources and seek for
a proper formula for cloud leveraging. For this, endowing
SO with agent characteristics is a suitable technique that
should coexist with service-orientation.

B. Agent and Services Integration

Service-Orientation and Agent Paradigms have proven to
be powerful and useful abstractions in multiple contexts. In
the IoT middleware arena there has been a variety of works
using these models in the solution of existing challenges in
the field. Detailed reviews of existing solutions can be found
in [2] and [3], and we consider pertinent work in section VII.

The use of these popular paradigms is characterized by
an imaginary frontier between one world and the other. Web
services, the key element in Service-oriented middleware
are usually seen as external to the agent environments. As
a result, integration efforts have been oriented to enable
the use of deployed services through interfaces provided
by the agent platform, as shown in figure 1 (a). We call it
the enclosed agent interface approach. Alternatively, agent
platforms, MAS —Multi Agent Systems— or agent pro-
cesses are wrapped as services that can be composed or
orchestrated into more complex applications, as shown in
figure 1(b). We call this the wrapped agent service approach.
Since agent environments are usually provided by heavy
platforms, a problem here is that SOs require a more
powerful node for hosting the agent platform facilities.

A more service-oriented approach, yet less exploited, is to
expose the agents as a collection of services and so they use
the Internet as the agent environment, as shown in figure 1
(c). We call this open integration approach. Services define
the behavior of the agent, they allow to benefit from the
resources and infrastructure already existing on the Internet.
It gives agents more independence to consume services since
they are no centrally controlled by an isolated platform.

C. Challenges for Smart Object Middleware

We consider the open integration, the most suitable when
designing middleware for Smart Objects. The closer inte-
gration between agent and service oriented paradigms and
technologies boosts the autonomy of the SO and enable easy
access to Internet resources while keeping control of data
generated. However, there is a lack of solutions following
this approach. Possibly, due to the fact that most popular and
robust agent platforms drive naturally towards an enclosed
agent interface approach and there being also a lack of
robust web agent platforms.

Given the advantages of the mentioned approach, our first
challenge is to define a new approach to an IoT middleware
architecture, based on web agents using the Internet as
environment and platform. IoT middleware requirements
have been widely identified in previous works such as [4]
and [3]. With the approach chosen, multiple requirements are
covered transparently by the agent and service paradigms,
however there are also multiple derived challenges. In this
paper, we particularly concentrate on providing Smart Object
application development based on web-agents and services
and a method for discovery and location of SO services,
using P2P protocols and agents over the Internet.

III. PROPOSED APPROACH

A. Middleware Architecture

The main drivers of the architecture are to exploit on-
object capabilities while keeping control on the object and
maintaining autonomy. Therefore, middleware provides min-
imal agent facilities on-object and gives access to delegable
facilities consumed from cloud services or also hosted in the
SO, according to available local resources. This is possible,
due to a flexible and lightweight layer of agent facilities.



For autonomy, our solution keeps control of the use of cloud
services, relying on a SO Controller for that purpose.

A multi-layered view of the proposed architecture is
shown in Figure 2. Components in yellow are required to
be in the SO, while components in blue are delegable to
cloud services. The components are described below:

1) Communication Facilities: This is a basic component
required and present in most agent-based middleware
solutions. It is based on application protocols over IP and
UDP. It incorporates mostly, web protocols as they are
the mean for service consumption. More capable devices
could run on HTTP while others on protocols such as
COAP. Agent/Agent communication and Agent/Service
communication is performed using these facilities.

2) Service Assembler: This is a new component
introduced in our architecture. It is responsible for allocating
the services required by the Smart Object and assembling
them, according to the SO Controller and the role activities.
The SO Controller drives the use of architectural modules
such as the Reasoning Engine and the Knowledge base;
while each defined role, indicates to Service Assembler th
way of assemble the SO-specific services. This component
is the basis for allowing adaptation, since it allows for
different configurations of on-object and cloud services,
according to SO resources.
The Service Assembler includes methods to search,
select and use the needed services. It also updates the
SO address repository and searches for services, available
in other SOs, following the method introduced in section IV.

3) Lightweight Agent Platform: It offers the minimum
agent facilities, enabling use and adaptation of additional
elements in the upper layers according to real needs and
host resources. According to the Smart Object infrastructure,
agent facilities are delagable, except for:

• Basic agent abstractions such as agent, activities, goals
and roles

• Services for management of the agent life cycle
• An agent communication protocol

The agent communication protocol relies on the supported
communication facilities avoiding overloading, e.g. by
requiring separate infrastructures for communication with
other agents and for communication with the “external
world”. It also allows transparent communication of the
agents, regardless of their location, and uses the existing
network addressing schemes. Unlike FIPA-compliant
platforms, a centralized Directory Facilitator is not required
at this level, since the Service Assembler identifies agent,
services and addresses to contact. We rely on an existing
web-agent platform to provide most of this functionality.

4) Device Management Facilities: This is again a
common component required and proposed in other
Smart Object middleware. In our proposal, it provides
interfaces for configuration and use of the attached
sensors and actuators. Methods for adding, removing,
restarting, reading, activating and deactivating these devices
are invoked by the SO Controller. These interfaces are
standard, hiding specific functions provided by Hardware
manufacturers. This component call Operating System
commands to adjust sensor and actuators according to
Controller instructions.

5) Smart Object Controller: It is the main component,
responsible for keeping the SO up and running according
to goals specified and stored in the knowledge base. It uses
the Agent Facilities to send and receive messages to/from
other SO components and to/from local or remote agents.
It performs the cycle depicted in Algorithm 1 which is an
adaptation of the abstract agent loop proposed in [5].

Algorithm 1 High-level SO Controller Loop
while pendingGoals do

if setUpRequired then
checkDeviceChanges(devices);
checkCapabilityChanges(localCapabilities);
updateKnowledgeBase();
performKBMaintenance();

end if
observe(propertiesOfInterest);
updateKnowledgeBase();
activities = reason(roles, observations);
for all activityinactivities do

serviceContract =
searchServiceHosts(actionToExecute);

callService(serviceContract, serviceArgs);
end for

end while

6) Reasoning Engine: It enables the SO to develop
beyond a purely reactive behavior. It performs the decision-
making process, choosing activities and services to use,
selecting the providers and scheduling its execution.
Although there might be multiple implementations, in a
basic approach, this component receives from the controller
the set of rules defined for the roles. Then it evaluates these
rules according to pre-existing and performed observations
and finally it obtains the set of activities to invoke.
Since reasoning processes are processing-intensive, this
component works mainly as a proxy delegating the most of
the decision-making process to cloud services.

7) Capability Loader: It is responsible for on-demand
loading of the instances required to run the services
demanded either by the local controller or by other



Figure 2. Multi-layer view of a Smart Object middleware architecture

SOs. We define execution instances which contain the
information relevant to dynamically —at runtime—
instantiate or reuse the stateless objects having service
implementation. The instantiation process is performed with
three elements stored in the KB: the service contracts, the
service parameters data and the location of the capability
enclosing the service. The service contract and the known
locations are defined as part of the capability definition.
SOs store known capabilities they can use either locally or
remotely. For each one, one or many URIs can be specified.
Capabilities are stored in the KB when the controller is
set up. The specific data to use when invoking the service
comes from the data gathered from the SO or it could be
pre-defined by the SO Developer. In either case it is linked
to actions compounding the activities associated to each role.

8) Knowledge Base (KB): A distributed repository, based
on semi-structured data storages, that keeps the domain
model including, goals, roles, activities, known service con-
tracts, devices and properties of interest, among others. In
order to take advantage of existing standards and devel-
opments, the initial data model is inspired by the agents
domain model [5] and OGC’s Sensor Things data model
[6]. This repository also stores the data resulting from SO
observations and those received from third-objects.

A design decision was to follow a document-oriented
approach, that is considered suitable for a number of reasons:
Primarily because of the heterogeneous nature of the SO and
the data generated it makes no sense to force a single fixed
model; this approach allows for flexibility of the structure
even at runtime. Secondly, the amount of data generated
by the SO imposes strong scalability requirements that are
covered by these storage solutions.

One of the advantage of our approach is to have control
over generated data and services offered. It is critical for
generating trust in the SO applications that will consequently

Figure 3. Main concepts and relations for SO programming

boost the propagation of the IoT paradigm. We ensure
control through determination of access policies for the KB,
mainly applied on the data generated for the properties-of-
interest and the offered services. We define three levels of
access: private —only available for the SO—, public —
available for any object or application— and specific —
allows to define a set of authorized URL.

9) KB and Storage Management: It provides access to
the KB to the rest of the components. It encloses CRUD
methods altering the contents and the structure of the KB.
According to a pre-defined configuration based on the SO
resources, it ensures a periodic replication and cleanup of
the KB. This is the only component to access the KB, when
required by the Controller.

B. Programming model

The middleware supports the developer in programming
the SO, by enabling the definition of goals, roles, activities
and rules following a semi-declarative model. Where defini-
tion of roles, activities and actions is declarative, although
internal service programming do follow the control flow.

Figure 3 shows the main concepts and relations of the
model. Each SO can have one or multiple roles. Each role
includes a set of conditions and activities to execute when
the conditions are met. Each activity has at least one action,
which is associated to one service and the corresponding
parameters to use in its execution. Every SO has a set of
know capabilities, which are composed by a set of services.
So, the service is the link between the capability and the
action. Multiple agents and services can be added on top of
the architecture, according to the SO resources.

IV. SEARCH, SELECTION AND USE OF SO SERVICES

Activities are categorized according to the actions in-
cluded. Similarly, services use the same category model; e.g.
an “air-related” category, is shared by activities and services
related to ’sense chemical properties’ or ’measure pollution
level’. When the SO Controller needs a particular service
it invokes the Service Assembler, which aims to locate the
most suitable service for the SO, based on the known service
providers defined in the KB and the role activities.

A. Selection based in Map-Reduce

In a IoT scenario, multiple Smart Objects can provide
common capabilities. Additionally, the service location is



Figure 4. SO Knowledge base fragment

stored in distributed repositories —SO Knowledge bases—
that have to be analyzed in order to obtain the demanded
service. Performing an efficient search and selection over
huge data sets becomes a key aspect. The MapReduce
programming model [7], is a simple but efficient way to
search in data repositories with these characteristics. It
requires the definition of the map and reduce functions, that
we approached as described below:

1) Map phase The search is based in the Service Con-
tract stored in the KB; an example is shown in Figure
5. When the SO is executing an activity, it searches for
services to carry out activity’s actions. If the service
is known, it performs a simple search with the service
contract as filter. However, more extensive models,
for example including soft and hard requirements on
non-functional properties as proposed in [8], are also
possible. The map function should emit one interme-
diate value for all the hosts (URI) where the demanded
service contract is present —according to KB.

2) Reduce phase Since there could be multiple imple-
mentations of a single service, the selection of the
right services is based on further action attributes;
e.g. the last date the service was successfully used,
or a combination of QoS parameters. The proposed
solution does not enforce a particular selection criteria,
on the contrary it is up to the SO Developer to define
it. The reduce function, simply ranks the results of the
map function using the selected criteria and returns the
location of the demanded service.

Figure 5. JSON Service Contract example

B. P2P inspired service discovery

If the service is unknown by the SO, the strategy is to
find providers to ask for the demanded service. Initially,
providers are searched for using the category and working
under the assumption that providers, having capabilities in
a category, are more likely to know other hosts in the same
category. The category matching can be syntactic, however,
the reasoning engine could be extended to a semantic
mapping based on parametrized rules. If there are no hosts
under the same category, arbitrary known hosts are taken.

We use some of the primitives from the Gnutella protocols
[9], such as query and query-hint, for conducting the search.
It allowed us to define a fully decentralized model not
requiring super nodes. A query method performs the search
described in section IV-A, locally and then asking other SOs.

Having the addresses (URI) of the identified providers, the
controller makes a query call to the identified SO through the
agent protocol and communication facilities. When service
is found, the SO replies to the query call with the address
of the provider. At the end, the requester’s KB is updated
to include the new provider for the service.

When replying to query calls, the SO also checks the ac-
cess policy configured for the known services. If services are
public, they can be included in every query-hint, otherwise
they are only included if the requester object has the access
granted by the provider of the service (it could be granted
through a subscription process). Service providers are the
only ones entitled to modify these restrictions.

V. IMPLEMENTATION

A prototype has been developed following an incremental
and iterative approach.We concluded an initial release lead
by the case study explained in section VI. It was focused
on the core functionality of the architecture modules marked
with a star (*) in the Figure 2. These modules were identified
as mandatory for the case study. The implementation is
based on the Java Platform, the EVE Agent Platform and
CouchDB as distributed repository.



EVE [10], is a web-based agent platform that works on top
of the Jetty Web Server. Jetty is a “small, fast, embeddable
web server and servlet container” [11]. EVE promotes a
model in which agents reside in an open environment,
it does not rely in a central directory facilitator unlike
most FIPA implementations. The framework is also lighter
than other platforms since it offers only an essential agent
model focused on communication, task-scheduling and agent
memory management. These are captive features since it
gives us flexibility to enhance the platform using our own
agent/service search and selection method.

We extended the EVE platform by introducing a base
agent with pre-defined features and actions common to all
agents (e.g. loading the KB reference). We also included
the implementation of the agent domain model with the
elements mentioned in section III-A3.

CouchDB implements a document oriented repository
using JSON documents. It allows for the definition of map-
reduce functions in javascript and offer a REST interface for
operations over the structure and the contents. Although the
EVE platform offers a simple key/value storage interface
to CouchDB, it is restricted. So we had to implement a
custom client to enable more flexibility of the model for
storing the status of the SO. The initial design of the agent’s
KB is presented in Figure 4. The documents in the design
folder contain the map-reduce views, lists and onupdate
triggers, that allow us to get the KB data in a desired format,
regardless of a particular structure.

For the inter-smart object communication, we rely on EVE
capabilities. It wraps agent messages as JSON-RPCs over the
offered transports. We worked with HTTP since it seemed
to be the most robust choice1. The Service Assembler deals
with service-oriented communication. It allows the use of
cloud services by the SO components (e.g. KB, reasoning,
etc.) and the role activities. We assume cloud services offer
a REST interface and we implement a client supporting the
main HTTP primitives. Both, agent communication platform
and Service Assembler use the same HTTP transport.

VI. EVALUATION

We describe now the case study, that led our initial
implementation. It is based in a smart home scenario, where
a Smart Air Freshener (SAF) cooperates with a Cleaning
Cupboard (SCC) and with the Smart Home Controller
(SHC). Goals for every participant are present in Table
I. For this case, we focused on the SAF’s behavior and
goals. Mdidleware allows to enhance what SAF can do
—considering its hardware or knowledge restrictions— by
locating and enabling the use of others’ capabilities available
as services. For SAF we use a Raspberry Pi 1 Model B, and
for SCC a Model B+, for SHC a Laptop with a Core i5.

1Our proposal does not fundamentally depend on HTTP, so if desired
other transport protocols could be employed.

Figure 6. Case Study: SAF’s roles and interactions

Roles Goal
Observable

Condition Relevant Actions
Properties

SAF

airFreshener keep air fresh
surroundingMovement = true

spray
depositLevel

> 0 ml

suppliesManager keep freshener deposit full

≤ 1 ml checkHomeAvailability

knownSuppliesAvailability
> 0 units notifyBySMS

= 0 units
lookUpNearbyStores

notifyBySMS

SCC cleaningSuppliesManager
keep control of inventory of incomingRFID 6= null addProductToInventory
cleaning products in home outgoingRFID 6= null removeProductFromInventory

SHC homeManager
Notify about status of home airFreshenerStatus = failed notifyBySMS

objects cleaningCupboardStatus = failed notifyByEmail

Table I
CASE STUDY: PARTICIPANTS AND ROLES

1) Smart Object Programming: We installed the first
build of the middleware implementation. Middleware en-
sures that every object runs a web agent with an URL (i.e.
IP + port + webcontext + agentId). SAF was programmed
with two roles: airFreshener and suppliesManager, defined
as JSON documents in SAF’s KB. A sequence diagram
of SAF’s agent interactions per each role is shown in
Figure 6. The first role ensures that fragrance is sprayed
when surrounding movement is detected. The second role,
observes the fragrance deposit to, proactively, ask for a
refill when the specified threshold is reached. To achieve the
goals, SAF discovers and uses services in SCC and SHC.
Movement was simulated randomly and for the deposit level
observation, we assumed 1 spray spent approximately 0.1
ml of fragrance, and a refill is 250 ml. So, an environment
property in the KB was updated with every spray.



2) Service Search, Selection and Use: The three partic-
ipants are part of an overlay network and have different
knowledge about others’ services as shown in Table II.
When SAF joins the network, it just knows its private
services and the pre-defined service notifyByEmail provided
by SHC. SAF does not consume this service but uses it
to find the other services it requires as shown in Figure
6. The scenario starts with SAF spraying until reaching
the deposit threshold when the suppliesManager role is
triggered. Then, the agent sends a query request to SHC
asking for the checkHomeAvailability service. SHC receives
the query request and looks for the services locally in
its Knowledge Base. Service contracts initially included
in the KB of every participant are also showed in Table
II. So, SHC initially knows notifyByEmail, notifyBySMS
and various checkHomeAvailability provided by SCC and
by another out-of-home object. Some of these services are
unavailable to SAF’s. SHC keeps control of services to share
with SAF and replies with the execution details of the best
ranked checkHomeAvailability service. In this case, ranking
is based in the location provided by SAF, it also consider
access rights according to SHC’s policy. It means, that
private services are excluded from the recommendations.

SAF stores the execution details of the received service in
its KB and call directly the provider. Service are consumed
asynchronously and when a service provider is unknown or
unavailable, there is a pre-configured number of attempts.
If provider is available, SAF calls the SHC’s notifyBySMS
service, so the house keeper is notified to replace SAF’s
refill. After it, SAF goes back to the airFreshener role until
the refill is fully consumed. Then, it asks again to SHC,
but this time it replies with 0 available refills. At this point,
SAF decides how to deal with this situation, based on the
suppliesManager role rules. It now searches for the service
lookUpSupplyInMarket, sending a query message to known
providers. When SHC receives the query and after checking
that it has nothing to reply to SAF, it forwards the query
to SCC. SCC then reply back to SHC and this to SAF.
Note that SAF sends also the query directly to SCC since it
already knows it. However, when registering a new service
provider in the KB, it first check that it is not already there.
Knowing providers for the services used in the role activities,
SAF searches for new providers only if known ones are
unavailable. The services discovered by each participant are
also included in the Table II.

The implemented middleware allowed us to program the
SO in a high-level declarative way. Once capabilities are
implemented, these can be easy shared by other objects and
included as actions in multiple role definitions. Both actu-
ating and sensing capabilities could be exposed as services,
while the access policies provide an intuitive and simple way
of control what to share with others. Regarding the service
search method, the map-reduce query performs well when
there are various services available, however our method had

SAF SHC SCC

K
B

’s
In

iti
al

St
ag

e

D
is

co
ve

re
d

Se
rv

ic
e

K
B

’s
In

iti
al

St
ag

e

D
is

co
ve

re
d

Se
rv

ic
e

K
B

’s
In

iti
al

St
ag

e

Service Arguments Provider Access Policy
spray None SAF private X

updateDepositLevel newLevel SAF private X
notifyByEmail to, subject, message SHC specific (home) X X
notifyBySMS to, message SHC specific (home) X X

lookUpNearbyStores model, location SCC public X X X
checkHomeAvailability model, location SCC specific (home) X X
checkHomeAvailability model, location External Object public X
checkHomeAvailability model, location External Object specific (no SAF) X
checkHomeAvailability model, location SHC private X

Table II
CASE STUDY: S.O. AGENT’S KNOWLEDGE BASE STAGES

to be adapted to deal with cases when just few service are
found. JSON-RPC over HTTP worked effectively, however
other choices will be explored since the message could
become heavy for complex service contract searching.

VII. RELATED WORK

Various approaches to IoT middleware have adopted agent
and service-oriented paradigms. The work in [12] presents
a vision of the IoT middleware where agents manage IoT
resources. It elaborates on the concepts of repository of roles
and reusable behaviors to allow flexibility and adaptation in
runtime. The agents reside in a semi-closed and controlled
platform, although interoperability between platforms is
offered. It also proposes the use of P2P approaches, but
as complement to central directory facilities, in which agent
communication depends on.

[13], [14] and [15] present a CSO Architecture based on
the popular JADE-Platform and a Discovery Service pro-
viding a REST interface for integration with the agent mid-
dleware. The proposed architecture follows a master/slave
model with a powerful node hosting the agent platform.
It is based on events and tasks, while it offers flexibility
by the use of adapters for communication, device and KB
management. Agent communication relies in ACL and the
central JADE Directory Facilitator.

In [16], the authors present an Agent Service Platform,
mainly addressing the management of heterogeneity in de-
vices. Resource-constrained devices based on Arduino, dele-
gate control to agents placed outside them, but able to com-
municate with other agents and devices through a message
bus. Runtime adaptation is possible using Portable-Service
abstractions and dependency-injection patterns. Agents in
this proposal are located away from the object they represent
and depend on an external agent manager.

Another lightweight approach is presented in [17]. They
aim to distribute the processing of data among distributed
IoT devices. A resource directory is the basis for localization
of services and communication relies on HTTP and COAP.
The rely in a gateway to interact with “external” services.

Additional middleware solutions for Smart Environments
and Smart Objects are surveyed and compared in [3].



The works reviewed in this section present the control of
the SO and its data, as a task which is fully or partially
carried out away from the SO, in contrast to our approach.
Regarding the SO autonomy, it is is constrained by the
dependency on either a (central) directory or a message bus.
In addition, for agent-service integration the most popular
approach is the enclosed agent interface one, while the open
integration is not clearly used.

VIII. CONCLUSIONS AND FUTURE WORK

Multiple approaches have been used to agent/service in-
tegration for development of IoT middleware. We identified
three basic approaches: (1) enclosed agent interface, (2)
wrapped agent service and (3) open integration. We consider
the latter one the most suitable for a SO middleware in order
to boost autonomy and keeping control of data and services.

We presented a novel approach for IoT middleware ar-
chitecture, following an open integration approach. Our
architecture is based in lightweight agent facilities and
services. It allows to perform essential processes in the SO,
while using external services for process-intensive activities
such as reasoning. This approach allows us to exploit SO
resources and delegate work to third-party providers when
required. We establish policies for gathered data and services
in order to keep control with the SO.

The challenge of using an open integration approach
implied the use of non-traditional directory facilities trying
to leverage the existing Internet infrastructure. We proposed
a method for service search, selection and use based on
map-reduce functions and inspired by Gnutella protocols for
discovery of service providers.

We demonstrated the feasibility of our approach by imple-
menting a middleware and IoT application using it, solving a
problem in the Smart Home domain. A Smart Air Freshener,
was programmed with high-level roles and activities, can
rely on other SO’s capabilities to achieve its own goals. It
does not need a central directory to find other SOs.

We are extending the initial implementation of our archi-
tecture with the aim of establishing a testbed, that allow
us to improve our design. We will also add to the case
study seeking to implement other participant SO and expose
SO’s capabilities with other purposes. e.g. SAF movement
detection can be used by the SHC for alarm triggering.

REFERENCES

[1] G. Kortuem, F. Kawsar, D. Fitton, and V. Sundramoorthy,
“Smart objects as building blocks for the internet of things,”
Internet Computing, IEEE, vol. 14, no. 1, pp. 44–51, 2010.

[2] F. C. Delicato, P. F. Pires, and T. Batista, Middleware Solu-
tions for the Internet of Things. Springer, 2013.

[3] G. Fortino, A. Guerrieri, W. Russo, and C. Savaglio, “Middle-
wares for smart objects and smart environments: overview and
comparison,” in Internet of Things Based on Smart Objects.
Springer, 2014, pp. 1–27.

[4] S. Bandyopadhyay, M. Sengupta, S. Maiti, and S. Dutta,
“Role of middleware for internet of things: A study,” Inter-
national Journal of Computer Science & Engineering Survey,
vol. 2, no. 3, pp. 94–105, Aug. 2011. [Online]. Available:
http://www.airccse.org/journal/ijcses/papers/0811cses07.pdf

[5] L. Sterling and K. Taveter, The Art of Agent-Oriented Mod-
eling. The MIT Press, 2009, vol. 47, no. 06.

[6] OGC, “SensorThings Data Model.” [Online]. Available:
http://ogc-iot.github.io/ogc-iot-api/datamodel.html

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[8] S. Reiff-Marganiec, H. Q. Yu, and M. Tilly, “Service selec-
tion based on non-functional properties,” in Service-Oriented
Computing-ICSOC 2007 Workshops. Springer, 2009, pp.
128–138.

[9] I. Ivkovic, “Improving gnutella protocol: Protocol analysis
and research proposals,” Prize-Winning Paper for LimeWire
Gnutella Research Contest, 2001.

[10] J. D. Jong, L. Stellingwerff, and G. E. Pazienza, “Eve:
A Novel Open-Source Web-Based Agent Platform,” 2013
IEEE International Conference on Systems, Man, and
Cybernetics, pp. 1537–1541, Oct. 2013. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm? arnum-
ber=6722018

[11] “Jetty - Servlet Engine and Http Server.” [Online]. Available:
http://www.eclipse.org/jetty/

[12] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and
V. Terziyan, “Smart Semantic Middleware for the Internet of
Things,” in Fifth International Conference on Informatics in
Control, Automation and Robotics,, 2008, pp. 169–178.

[13] G. Fortino, A. Guerrieri, and W. Russo, “Agent-oriented smart
objects development,” in Computer Supported Cooperative
Work in Design (CSCWD), 2012 IEEE 16th International
Conference on. IEEE, 2012, pp. 907–912.

[14] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, and W. Russo,
“An agent-based middleware for cooperating smart objects,”
in Highlights on Practical Applications of Agents and Multi-
Agent Systems. Springer, 2013, pp. 387–398.

[15] G. Fortino, M. Lackovic, W. Russo, and P. Trunfio, “A
discovery service for smart objects over an agent-based
middleware,” in Internet and Distributed Computing Systems.
Springer, 2013, pp. 281–293.

[16] E. Jung, I. Cho, and S. M. Kang, “iotSilo: The
Agent Service Platform Supporting Dynamic Behavior
Assembly for Resolving the Heterogeneity of IoT,”
International Journal of Distributed Sensor Networks,
vol. 2014, pp. 1–11, 2014. [Online]. Available:
http://www.hindawi.com/journals/ijdsn/2014/608972/

[17] T. Leppnen and J. Riekki, “A lightweight agent-based archi-
tecture for the Internet of Things.”


