
Observing Access Control Policies Using Scrabble

Games

Suzana Ahmad
Faculty of Computer and Mathematical Sciences,

UiTM Shah Alam

Selangor Malaysia.

suzana@tmsk.uitm.edu.my

Siti Zaleha Zainal Abidin
Faculty of Computer and Mathematical Sciences,

UiTM Shah Alam

Selangor Malaysia.

zaleha@tmsk.uitm.edu.my

Nasiroh Omar

Faculty of Computer and Mathematical Sciences

UiTM Shah Alam

Selangor Malaysia

nasiroh@tmsk.uitm.edu.my

Stephan Reiff-Marganiec
Department of Computer Science,

University of Leicester

United Kingdom

srm13@leicester.ac.uk

Abstract—Access control is concerned with the policies that

manage data sharing activities. It is an important aspect of e-

service in many application domains such as education, health

and business. However, there is limited support in most

programming languages and programming environments for

implementing access control policies. High-level features, such as

access control management policies are usually hard coded by

skilled programmers, who are often scarce in many applications

such as e-services. In this paper, we present an abstraction of

access control management policies in the form of extended

scrabble in its rules. The needs of access control policies

program construct for supporting this game are examined. A new

relevant program constructs are then incorporated into JACIE

(Java-based Authoring language for Collaborative Interactive

Environments). The usefulness of these program construct are

being demonstrated through the extended scrabble.

Keywords-component; Access Control Policy, Colloborative

Environment, Data Sharing

I. INTRODUCTION

Collaborative data sharing application in e-service requires
access control policies managed by designated administrators.
Access control policies govern among remote users are rare
and hardly implemented in existing applications.
Implementation of data sharing application usually involves
system-level programming interface. It also requires high level
features such as carefully formulated access control
management policies for shared data. While many software
solutions that have been proposed over the years in the context
of various applications, these high-level features are rarely
supported by software development tools in a coherent manner.
It is hardly to find programming language that features
language constructs for providing direct support for access
control policies manage by the end users.

This research is concerned with access control policies that
govern data sharing activities among multiple users or group of

users in collaborative environments. The implementation of
the policies is often not a trivial task in the development of an
application involving data sharing. The provision of access
control policies mechanisms is the weaknesses of most existing
programming language and development tools.

In this paper, we attempt to identify a collection of useful
access control policies that are common in many data sharing
applications. We consider an abstraction of various
collaborative data sharing application in the form of variation
of rules of scrabble game.

We examine the needs in these games for programming
access control policies, and propose a comprehensive
collection of program construct for supporting these new
constructs into JACIE (Java-based Authoring Language for
Collaborative designed to support rapid prototyping and
implementation of networked collaborative applications)[1].

Although the concept for access control or also known as
interest management was first introduced in JACIE, the
language construct provided in its version are limited. This
became quite apparent when we attempted to implement
variation of rules for the enhanced scrabble game.

These variations provided us with an effective means for
identifying different type of policies that can exist and the
useful parameters for their customization.

With the corresponding application in mind, it is the study
of the game that resulted in a major extension to the access
control management features in JACIE. The implementation of
this game also helped us verify the correctness of the new
access control policies introduced in the extension.

The variation of rules for the extended scrabble game are
simple enough for us to concentrate on the access control for
data sharing requirement of the language and applications.
Such access control policies appear in many real applications.

mailto:suzana@tmsk.uitm.edu.my

This paper is organized as; Section 2 gives an overview of
the related work. Section 3 discuss the rules in extended
scrabble. Section 4 reports the implementation and observation
of a case study for enhanced policy model. Section 4
deliberates the results of the implementation and observation.
Finally, section 5 gives the concluding remarks.

II. RELATED WORK

 Unauthorized access is becoming a major concern when

dealing with collaborative data [2] within the rapid explosion

of information technology and security. Common models for

access control are discretionary, mandatory and non-

discretionary or role based [3]. These three access models act

as elementary guidance for data access control. Combining or

extending such models provides adaptable and secure data

collaboration which allows data interchange, sharing and

dissemination. Discretionary access control (DAC) model is

based on object owner’s requirement. A system that uses

DAC allows object owner to specify whom or which subjects

can access any specific object. The most common

implementation of DAC is through access control lists (ACL)

which are dictated and set by the owners and enforced by the

operating system (OS) [4]. UNIX, Linux and Windows are

example of OS that uses DAC as an access control [5]. DAC

systems will grant or deny the access based on subject’s

identity.

 Implementation of these access control models are done by

numerous programming languages. These include general

purpose conventional languages such as Java and C#, and

scripting languages such as Perl, Python, VBScript and

JavaScript. In addition, there are also many domain-specific

languages such as Distributed Oz [6] for network

transparency, Yoix [7] for handling broadcast messaging,

threaded communications, logging, and screen management,

and JCell [8] for distributed object and mobile code.

However, the interaction management is mostly achieved with

the support of the operating system or by designing a specific

algorithm.

III RULES IN EXTENDED SCRABBLE

In this section, we first define a set of abstract notations for
modeling the rules in extended scrabble, its variations of rules
and the corresponding access control policies in later sections.
A summary of the various rules is given in section 3 where we
highlight their main policies features, linking them with real
data sharing applications

The standard scrabble can be generalized in many different
ways increasing the number of players, altering the rules
governing the game, changing the definition of data sharing
and so on. In our generalizations, we choose to give a high
degree of freedom to the specification of game rules
(management policies), in order to explore a variety of access
control policies and cover a very broad range of applications.
At the same time, we restrict ourselves to using only additional

control policy from the end user which enables us to maintain a
reasonable level of abstraction in order to focus on the access
control policies in the games rather than on the games
themselves.

a. Extended Scrabble Rules

All players are randomly allocated 7 tiles each at the start
of a new games. Each player need to form a word by
combining two or more of his or her letters and places it on the
board for each turn. Upon success of placing of a new word on
the board, score will be counted and announced. Player will
then have to draw as many new letters that had been played
and at the same time they should always keeping seven letters
on player’s rack – as long as there are enough tiles left in the
letter bag.

All letters played on a turn must be placed in one row
across or down the board, to form at least one complete word.
New words may be formed by adding one or more tiles to the
beginning or end of a word already on the board, or to both the
beginning and end of that word. No tile may be shifted or
replaced after it has been played and scored. Words cannot be
spelt nor read backwards. Player may use a turn to exchange
all, some or none of the letters with the tiles in the bag.

No restriction on the number of times a player may
exchange tiles during a game. However, there must be at least
seven tiles remaining in the bag, regardless of the number of
tiles being exchanged. Player may also use a turn to exchange
tile with other player. Rules for exchanging tile with other
player are: Each player will lose a turn for each exchanged tile
and only those players who are interested of changing would
be able to view the offered tile. If there are more than one
player interested in exchanging the tile, the first one who
response will be able to offer his/her tile to be exchange (this
should be invisible to other players). The initial player who
request to exchange has to determine whether to accept the
offered tile or not. Exchange will only take place, if both
parties agree on the exchange tiles. Each player would not
lose their turn if the exchange operation failed. If the initial
player who request to exchange declines to accept the tile
from the other player, he/she could not make another offer in
the same round. The player should either play or just pass
his/her turn and wait for another round to offer his/her tile to
be exchanged with other player.

Any player may be challenged before the next player
starts a turn. If the play challenged is unacceptable, the
challenged player takes back his or her tiles and loses that
turn. If the play challenged is acceptable, the challenger loses
their turn, and points scored. A player can only challenge the
previous players play. If a word is challenged, and with the
consent of the player who played the invalid word, then that
word can be removed, and its points deducted. This
effectively makes the player who played the ‘invalid’ word
lose their turn. If the play is not challenged – gone unnoticed
and yet seen later and it cannot be challenged two or more
moves after the foul. The game ends when all letters have
been drawn and one player uses his or her last letter; or when
all possible plays have been made. Passing, exchanging or
skip turn, is permitted at any time during the game. If each
player passes thrice in succession, the game is declared has
ended.

b. Variation of Access Control Policies for

Extended Scrabble

Based on extended scrabble game rules, four common data
sharing activities are being identified. These activities
requires access control policies in order for the next action to
proceed. Activities identified are: view, update, exchange
and challenge. These activities can be conducted by either
individual user or player or group which most likely by the
admin of the group. Therefore, eight variation of access
control policies are derived (refer to table 1) where all the
actions will be either deny or allow.

Access
Control
Policy

Activities /
Event

Condition

P1 View () Visibility and ownership true

P2 Update () Visibility and ownership true

P3 Exchange () Visibility and ownership true;
agreement between users valid

P4 Challenge () Visibility and ownership true;
within time constraint

P5 View () Visibility and (group) ownership
true

P6 Update () Visibility and (group) ownership
true

P7 Exchange () Visibility and (group) ownership
true; agreement between users
valid

P8 Challenge () Visibility and (group) ownership
true; within time constraint

Table 1: Variations of Access Control Policies

However, current JACIE could only accommodate access

control policy P1 and P2. In order for the implementation of
the case study four language constructs for four activities had
been derived and embedded into JACIE.

IV IMPLEMENTATION AND OBSERVATION

JACIE had been embedded with new language construct to
cater for the variations of access control policies identified.
Normally one would aspect a complex set of pre-defined
library functions or objects for managing collaborative
activities and for interfacing with communication sub-
functions. In JACIE, however, for an ordinary programmer,
the programming interface to these predefined sub-functions is
largely declarative, that is, in the form of protocol
specifications. Due to space limitations, the full specification
of all language constructs in JACIE are omitted. In the
following subsections, we give only the syntactic specification
of the language construct for each access control policy. As
JACIE is a scripting language, most arguments (or extensions)
of a protocol are optional, which facilitate ‘fast scripting’ for

simple and commonly used policies, and the extensibility when
introducing new variations and extensions.

P1 and P5 statement

P1 and P5 are the most common policies that are being
used, these policies will invoke view language construct. In
this construct, user can choose to let the data viewed by
individuals, groups or both of it.

P2 and P6 statement

Update language construct will triggered P2 or P6 policies
or both the policies. This construct will give the user to choose
either to let the other parties own and update the data or not to
give permission to do any amendments.

P3 and P7 statement

Exchange language construct is to handle P3 and P7
policies. Unlike previous construct, exchange construct
requires an operation to validate the access permissions for all
shared variables involved. Shared variables denotes as <sv-
expression>. Exchange operations will be performed only if the
validations is successful.

P4 and P8 statement

Similar to exchange construct, challenge construct also
need to perform validation in order to complete operation.
Though this construct do need another parameter to be true
which is time. Challenge construct with successful validation
will revoke back specified sharing operation to previous state.

With JACIE which had been extended language construct a
scrabble application game had been developed as a case study.
Focus of this case study is to analyze all access control policies
that could be done by the player or group of player

These four actions of the main activities will be the main event
to trigger the invocation of the access control policies. Access
control policies together with the conditions will determine
whether an action could be carried out or not.

view <shared variable> by [<user list>|<group list>]
[to visible |not to visible]

update <shared variable> by [<user list>|<group list>]
[to own |not to own]

[to read [with password <string>] |[not to read]]
[to write [with write <string>] |[not to write]]

exchange <shared variable> by [<user list>|<group list>]
check <conditional sv-expression> <statement>

{else check <condition sv-expression> <statement>
[else <statement>] [default <statement>]

[to own |not to own]

challenge <shared variable> by [<user list>|<group list>]
check <conditional sv-expression> <timer><statement>

{else check <condition sv-expression><timer> <statement>
[else <statement>] [default <statement>]

[to own |not to own]

This game could be played by two to four players on a square
board with a 15-by-15 grid of cells. Each of the cells
accommodates a single letter tile.

bag : 100 tiles : B (T[1 – 100])

Brd : 15 x 15

Four players : P = { Pw , Px , Py , Pz} , ƥ ∈ P

Each player – 7 tiles : ƥ n [T1 – T7]

1 round – each player got a turn : Rdn = { ƥ w [Rdn] , ƥ x[Rdn] ,

ƥ y[Rdn] , ƥ z[Rdn] }

Each turn – player could either view(), update(), exchange()

and challenge()

Listed in table below are the examples of activities that run

under four main events.

Example of activities are successfully handled by enhanced

JACIE.

Table 2: Example of activities are successfully handled by

enhanced JACIE.

V CONCLUSIONS

 In this paper, we have built a discussion around variations

of access control policies to complement an extended scrabble,

which serve as an ‘abstract’ collection of data sharing

activities, and enable us to focus on the policies, rather than

the context specific details in the applications.

Based on the formal notations and consideration of extended

scrabble developed, we have developed a collection of access

control policies and have incorporated them into JACIE, a

scripting language purposely designed for prototyping

networked collaborative applications. Our main contribution

in this aspect is the adventurous attempt in providing language

constructs for specifying a variety of access control policies.

The implementation of such functionality typically requires

the skills of experienced network programmers.

REFERENCES

[1] Abidin S. Z. Z. (2006). Interaction and Interest Management in a

Scripting Language. Ph.D. Thesis. University of Wales, Swansea; UK.

[2] Ahmad S., Abidin S.Z.Z. and Omar N., "Data Sharing in Networked
Environments: Organization, Platforms and Issues", Proceeding WSEAS
2011, pp 207-213.

[3] Samarati, P. and Vimercati, C. S., “Access Control: Policies, Models,
and Mechanisms”, Lecture Notes in Computer Science Vol 2171. 2001.
Pp 137-196 2001

[4] Sandhu, R.S.; Coyne, E.J.; Feinstein, H.L.; Youman, C.E., "Role-based
access control models," Computer , vol.29, no.2, pp.38,47, Feb 1996

[5] Bhatti R., Bertino E. and Ghafoor A., “A Trust-Based Context-Aware
Access Control Model for Web-Services”, Distributed and Parallel
Databases July 2005, vol 18, Issue 1, pp 83-105 2005

[6] Roy PV, Haridi S, Brand P, Smolka G, Mehl M, Scheidhauer R, Mobile
objects in distributed oz. ACM Trans. Programming Language Systems
(TOPLAS) 1997;19(5):804-51

[7] Drechsler RL, Mocenigo JM, The Yoix scripting language as a tool for
building web-based systems. In:Gregori E. Cherkasova L, Cugola G,
Panzieri F, Picco G, editors, Web engineering and peer-to-peer
computing: NETWORKING 2002, Lecture notes in computer science,
vol. 2376. Berlin and Heidelberg, Pisa, Italy: Springer; 2002. P. 90-103

[8] Rinat R, Smith S, Modular internet programming with cells. In:
Magnusson B, ediotr, ECOOP 2002 –object oriented programming: 16th
european conference, Lecture notes in computer science, vol. 2374.
Berlin and Hedelberg, Malaga, Spain: Springer: 2002. P. 257 - 80

Event Example by example

View() Viewing tiles on the game board
ƥ Brd : { Tn,… Tn}

Viewing player’s own tiles
ƥ ƥ {T1, T2, T3, T4, T5, T6, T7}

Update() Construct New Word
ƥ = {T1, T2, T3, T4, T5, T6, T7}

 Brd : { T2, T4, T5}. ƥ = {T1, T3, T6, T7} + {Tn,Tn,Tn} .bag {Tn-3}

Update existing Word
ƥ = {T1, T2, T3, T4, T5, T6, T7}

Brd : { Tn..,+ T4}. ƥ = {T1, T2, T3, T5T6, T7} + {Tn}.bag {Tn-1}

Exchange() Exchange tile/s with tile/s in bag

ƥ = {T1, T2, T3, T4, T5, T6, T7}

bag {Tn-3+ T2, T4, T5}. ƥ = {T1, T3, T6, T7} + {Tn,Tn,Tn}

Exchange tile with other player
Px = {Tx1, Tx2, Tx3, Tx4, Tx5, Tx6, Tx7}. Py = {Ty1, Ty2, Ty3, Ty4, Ty5, Ty6, Ty7}
Px = { Tx5 } exchange with Py = { Ty3}

Px = {Tx1, Tx2, Tx3, Tx4, Ty3, Tx6, Tx7}. Py = {Ty1, Ty2, Tx5, Ty4, Ty5, Ty6, Ty7}

Challenge() Challenge opponent to withdraw his/her tiles (update word/
new word) on the game board

ƥx = {T1, T2, T3, T4, T5, T6, T7}

Brd : { T2, T4, T5}. ƥ = {T1, T3, T6, T7} + {Tn,Tn,Tn} .bag {Tn-3}

ƥx challenge that the word is not correct, if challenge is
acceptable:

Brd : { T2, T4, T5}. ƥ = {T1, T3, T6, T7}+ {Tn,Tn,Tn} .bag {Tn-3}

Brd : { Tn-3 }. ƥ = {T1, T2, T3, T4, T5, T6, T7} .bag {Tn+3}

{ T2, T4, T5}

{ T2, T4, T5}

{ T4}

{ T2, T4, T5}

{ T2, T4, T5}

