
Performance and Energy Evaluation of
Restful Web Services in Raspberry Pi

Luiz H. Nunes, Luis H. V. Nakamura, Heitor de F. Vieira,
Rafael M. de O. Libardi, Edvard M. de Oliveira, Lucas J. Adami, Julio C. Estrella

University of São Paulo (USP)
Institute of Mathematics and Computer Science (ICMC), São Carlos-SP, Brazil

Email: {lhnunes, nakamura, heitorfv, mira, edvard, ljadami, jcezar}@icmc.usp.br

Abstract—This paper analyzes the execution behavior of
web services on devices with limited resources. To conduct the
experiments, web services are available for both Axis2 and CXF
framework. To determine which framework is better suited for
service provision, a performance and energy evaluation between
them is presented. In this context, services developed with CXF
framework proved to be more suitable for these devices, since its
abstract implementation details both services provider and clients
applications, also it has shorter times to process large amount of
data.

I. INTRODUCTION

The Raspberry Pi is a low-cost computer similar to a
motherboard of a personal computer. It consists of a set of
microchips similar to those found in mobile phones, so it has
the size of a credit card. Furthermore, it is available in two
variations: model A and model B. The latter being provided
with more features. This device consists of a microprocessor
System on Chip (SoC) of ARM11 architecture and it has a
graphic processor unit (GPU) with at least 256MB of RAM
memory. Moreover, depending on the model, it may contains
some I/O ports such as Fast Ethernet, USB and HDMI [8].

The Raspberry Pi lacks operation system by default, it must
be installed into a SD memory card. However, this facilitates
maintenance and helps system recovery in case of problems.

The original application of the Raspberry Pi was for
teaching Computer Science in schools [26]. Though, due to
its configuration and price, it also allows users to use it for
games, Internet access, multimedia applications and personal
projects [12]. Currently, some of these personal projects use
the Raspberry Pi to photograph the person who opens the
refrigerator, monitor the temperature in a freezer and also take
air photos from party balloons [12].

The Raspberry Pi is also used in commercial projects, for
example, the German company All For Accounting put it on a
black and red box to sell it as a cheap computer for small
commercial tasks (inventory management and accounting)
[15]. Also, the Raspberry Pi was used to create a computer
cluster to perform parallel processing [25].

Although there are numerous projects for Raspberry Pi, the
limited resources are still a problem, especially related to the
processing capacity and memory. On the one hand this limits
the execution of applications that consume a large amount of
data and require high computing capacity [10], but on the other
hand, it makes the device cheap and saves energy.

Because service-oriented applications use other resources
to perform tasks, they can overcome these limitations and
improve the performance of embedded devices, including the
Raspberry Pi. For example, a project presented in [12] used
Raspberry Pi to monitor heart rate and body temperature.
However, the use of service-oriented applications in embedded
devices still need to be investigated with other types of infor-
mation, such as larger messages that demand more resources.
This study is relevant because services use large amounts of
data to create additional information in the message body,
which increases the size and processing time of those messages
[17]. Another important factor to investigate is the energy
consumption to perform those proccess in embedded devices.

The service-oriented applications are implemented as web
services that can be classified into two categories: RESTFul
and SOAP. REST is the acronym for Representational State
Transfer. In RESTful services the resources are identified by
an URI (Uniform Resource Identifier) and manipulated using
HTTP methods (i.e: GET, PUT, POST, DELETE). Further-
more, SOAP is an acronym for Simple Object Access Protocol
and services based on this protocol are described by a Web
Services Description Language (WSDL) and manipulated by
XML messages. Finally, both RESTful and SOAP services
enable the exchange of information through XML messages
[24], [30].

SOAP web services uses additional XML data unneces-
sary for embedded and mobile clients, which consumes more
bandwidth and increase the complexity to parse the message.
Therefore, REST is more suitable than SOAP for embedded
applications because it is based on the Web, which was created
to be scalable. Thus, the advantages of RESTful services over
SOAP services are simplicity, flexible interfaces and scalability
[31]. However, it lacks important features provided by SOAP,
such as security and QoS support standards.

In this paper, we conducted a performance and energy
consumption evaluation to study the behavior of RESTFul
web services using the Raspberry Pi. To perform this eval-
uation, services were developed with the same features using
both Axis2 and CXF frameworks developed by the Apache
Software Foundation. Besides, it was analyzed the times to
marshal/unmarshal messages with different sizes. Tests were
made in real devices with normal CPU clock and overclocking
configurations.

This paper is organized as follows: Section II presents
a literature review of embedded web services performance



evaluations studies and methodologies. Section III highlights
the characteristics of hardware, frameworks and technologies
used in this study. Section IV describes the methodology and
configurations used for the experiments. The results are then
discussed in Section V. Finally, the conclusions and future
work are presented in Section VI.

II. RELATED WORK

The literature review followed a strict methodology, it was
used the following databases: IEEE Xplore1, ACM Digital
Library2, Web Of Science3, Scopus4 and the meta-searcher
Google Scholar5. The research query used was: “(performance
AND (evaluation OR analysis) AND (mobile OR embedded)
AND ("web services" OR SOAP OR RESTFul))”. Rele-
vant research papers and their references were reviewed and
categorized into a synthesis matrix regarding two subjects:
performance evaluation methodologies for embedded/mobile
devices; and previous web services performance evaluation
for mobile devices. Then, it was realized that the literature
lacks studies comparing performance of RESTFul frameworks
in embedded devices, which is the focus of this study.

Previous web services performance evaluation methodolo-
gies for embedded and mobile environments were categorized
into two approaches: real device experiments; and mathemat-
ical models with simulation. Real experiments were found
in [27], [29], [21] and [17] and is the most used. In this
approach, real devices and prototypes are used to measure
response variables in a real environment using replications
for non-deterministic variables. Although this is the widely
used approach, it is more expensive, needs to follow a rigid
methodology and requires deep statistical analysis.

Another methodology found in [32] and [18] uses mathe-
matical models and simulation tools to evaluate their proposed
architecture. In this methodology there is the need to emulate
or create mathematical models that represent the system to
evaluate. This approach is cheaper than real experiments and
often misrepresent the environment, but it is useful when it is
hard or expensive to evaluate using a real device or prototype.
The approach used in this study was based on real device
experiments using a testbed environment.

It was also researched previous web services performance
evaluations for embedded environments. The work of [29] re-
viewed some web services approaches and concluded that they
are suited for mobile devices. Although it was an extensive
study, it lacks RESTFul web services experiments. The study
in [17] evaluated two SOAP frameworks (ksoap and ws4d)
for embedded devices. They used a real device and measured
the overhead using distinct metrics, such as response time and
energy consumption. However, this work lacks the evaluation
of REST architectural concepts in embedded devices.

Some studies [27], [18], [11], [9], [19] compared SOAP
against RESTFul for mobile environments and concluded
that RESTFul is more suited for these devices because it
generates less overhead in data transfers and spend less time

1http://ieeexplore.ieee.org/
2http://dl.acm.org/
3http://thomsonreuters.com/web-of-science/
4http://www.scopus.com/
5http://scholar.google.com/

to pack/unpack the request and response messages. However
these studies performance evaluation are superficial because
they lack at least one of the following elements for perfor-
mance evaluations: confidence intervals (or other deviance
estimators), replication and statistical analysis [20]. In [14]
it was also discussed the usage of RESTFul web services in
embedded devices, concluding that they save a lot of resources
and energy because they use small messages by removing their
headers. But it lacks a performance evaluation and replication
tests to support this conclusion.

Thus, this study differs from the other studies in the litera-
ture in at least three points. It presents an energy consumption
and performance analysis of RESTful applications developed
using different frameworks in embedded devices, represented
by the Raspberry PI.

III. TOOLS AND TECHNOLOGIES

A. Raspberry PI

Fig. 1: Raspberry PI structure, B model [5].

Raspberry Pi model B is a computer based on a SoC
Broadcom BCM2835, which has a 700 MHz ARM1176JZF-S
processor integrated with a VideoCore IV GPU and 512 MB of
RAM memory. Besides it has a SD card slot for data storage,
although it does not include a non-volatile memory such as a
hard drive [13].

Figure 1 shows the architectural model of a Raspberry Pi,
which is composed by the following components:

• Two video outputs: An RCA and HDMI output, which
can not be used simultaneously;
• Two audio outputs: TRS (3.5mm) and HDMI audio

output, which can not be used simultaneously either;
• Two USB 2.0 inputs to communicate with peripherals;
• One Ethernet 10/100MBps input to allow the commu-

nication between device and network;
• One micro-USB input for energy supply. For this, it is

essential to use a power supply with 5V and 700mA for
appropriate operation of the device.

The Raspberry Pi can use a customized version of Debian
GNU/Linux called Raspbian (http://www.raspbian.org/). This
operating system contains a set of basic programs and utilities
that make the Raspberry Pi usable. It also includes over 35,000



software packages pre-compiled and ready for installation, and
it has an active community focused on improving stability and
performance for each new version released [6].

B. Arduino

Arduino is an open-source electronics prototyping platform
used by developers and engineers to create personal and
commercial projects. A major use of the Arduino is to control
electronics like lights, motors, and other components. Arduino
can also sense environments by receiving input information
from sensors, hardware extentions (known as Shields) can
be attached to provide more features such as Ethernet and
Wifi access [4]. There are several types of Arduinos boards
(products) like Arduino Uno, Arduino Due, Arduino Robot,
etc. The board used for the experiments in this paper was an
Arduino Nano 3.0, based on the ATmega328 microcontroller
running at 16MHz with 1Kb SRAM, 32KB Flash memory and
Mini-B USB interfate (Figure 2).

Fig. 2: Arduino Nano 3.0

C. RESTful Web Services

REST provides a set of standards that, when applied
properly, emphasizes the scalability of component interactions,
generalization of interfaces and encapsulate legacy systems
[16]. Besides, clients and service providers exchange resources
representations through a standard interface using free state
protocols for communication, typically HTTP. These resources
are identified by an universal resource identifier (URI) and
manipulated through four HTTP methods: GET, PUT, POST
and DELETE. WSDL 2.0 and Web Application Description
Language (WADL) files can be used to describe RESTFul
services, although there is no need, once they are usually de-
scribed by their own URLs. The main advantages of RESTful
services according to [24], [28] are:

• Unique addresses - resources are accessed through an
URI, eliminating the use of a separate resource to discover
services;
• Free state - client requests has all data required to

perform an operation in service provider. In addition they
are not related to previous requests;
• Several supports for data access - information can be

accessed through multiple formats of files such as plain
text, JavaScript Object Notation (JSON) or XML.

Figure 3 shows the common flow of a RESTFul applica-
tion. The client application makes a request to a server through
an HTTP method, where a message (XML, JSON, plain text,
etc.) is directed to a specific URI. The GET and POST methods
are most used by these requests.

REST Client REST Server

Application Service
HTTP Request

(GET/POST)

Endpoint
URI

Method()

Request()

Response()
Method()HTTP Response

(XML, JSON,

Plain Text, etc..)

Message
Processor()

Message
Response()

...

Fig. 3: Common flow of a RESTFul application [33].

When this message arrives at the server side, it starts
its process seeking information of which service it should
run, which parameters will be used and it checks errors in
the message. Therefore, when this message is processed, the
desired service runs, then the response message is produced
and forwarded to the client application by HTTP methods.

According to [30], choosing the REST protocol removes
the need to make a number of architectural decisions related
to SOAP protocol layers, introducing a simple and lightweight
alternative to services development based on a set of operations
already defined in the HTTP protocol. However, for advanced
functionality, such as security, it is complex to extend RESTFul
web services to support them and the use of SOAP protocol
is more appropriate.

D. Axis2 Framework

Apache Axis2 is a project implemented in Java language
that facilitates the implementation of web services for both
client applications and service providers. Besides, it offers
a completely object-oriented approach and it is built upon
a modular architecture. Its core processing is done only to
process SOAP messages and every message that arrives to the
system is transformed into a SOAP message before handled
by Axis2 [22]. The messages used in this framework are built
from the Apache Axiom library, which provides a set of XML
information for the creation and organization of objects into a
tree [7].

Sending and receiving messages is one of the key tasks of
web services. The Axis2 architecture provides two pipes (or
flows) to perform these two operations. The flow to receive
a message is known as Inflow, while the flow that sends
the message is the Outflow. Therefore, the complex message
exchange (MEPs) are performed through the combination of
these two flows [23].

The flow concept consists of a series of stages, in which
each stage is described as a set of handlers. These handlers
process parts of the message and provide functions to ensure
quality of service. If the message goes through this flow
without any problem, it is sent to a message receiver to
be handled by the application. Otherwise, if it is needed
to return any data to the application that made the request,
the Outflow is initialized and the message is sent. Once the
client application receives the message, the Inflow will start
to process the returned data.

Figure 4, illustrates the message flow described in Axis2,
where InFlow, Outflow and execution of the requested service
are represented.



Message
Receiver

Service
ClassPhase 1 Phase 2 Phase N...

InFlow

Phase 1 Phase 2 Phase N...

OutFlow
Message
Sender

Fig. 4: Message flow in Axis2 [22].

E. CXF Framework

Apache CXF is an open source framework that provides
easy development of web services in Java, for SOAP protocol
and RESTFul architectural concepts. This is done through
standard-based programming model for the development of
web services. Several patterns are provided by CXF to develop
web services, including: Java API for XML Web Services
(JAX-WS) and Java API for XML Binding (JAXB) to the
SOAP protocol and Java API for RESTful Services (JAX-RS)
to RESTFul architectural concepts, which is the aim of this
paper.

JAX-RS provides the semantics for the creation of RESTful
web services and abstracts implementation details of their
clients. These clients can exchange data in different formats
such as JSON and XML. For the XML format, CXF JAX-RS
allows the reuse of existing databinds, facilitating integration
with other specifications, for example JAXB [2].

Apache CXF Services Framework

Front-ends Service ModelMessaging and
Interceptors

Pluggable Data
Bindings

Protocol 
Bindings

Transports

Bus

Fig. 5: Architecture Layers of the Apache CXF [3].

The CXF architecture composed by layers and components
as presented in Figure 5. The function of each component can
be summarized as [3]:

• Bus: It is considered the backbone of CXF, which the
default implementation is based on Spring Framework. Its
target is to provide shared resources (extensions register,
interceptors and properties) during CXF execution;
• Front-End: Provides a programming model that makes

available front-ends APIs (JAX-WS, JAX-RS, Simple and
Javascript) to developers. Furthermore, the front-ends are
capable of providing functionality to services and clients
using interceptors;
• Messaging and Interceptors: This component provides

a generic low-level message layer and pipelines or Inter-
ceptors upon which most of the functionality of CXF are
built;
• Service Model: provides a service representation within

CXF. Besides, it adopts a WSDL service model with
their operations, connections, terminals and layout. Others

information like data-bindings, interceptors and service
properties are also available in this module;
• Protocol Bindings: allows the use and interpretation
of various types of binding protocols (SOAP 1.1, SOAP
1.2, REST/HTTP, pure XML and CORBA). Thus, it
makes possible to exchange the message according to the
specified protocol;
• Pluggable Data Bindings: let other Data Binding con-
nect to CXF;
• Transports: Provides a transport abstraction layer that
abstracts the specific binding process and front-end layer
details from the developer.

Thus, although complexity of the components and various
APIs usages, Apache CXF framework is a powerful tool rich
in features and capabilities ensuring agile and practical devel-
opment of web services (SOAP and RESTFul). The messages
flow in CXF is similar to the process discussed previously
for Axis2, in which the messages are handled in several
phases. However, in Apache CXF, the messages are handled by
interceptors that perform a particular functionality. They can be
added to an interceptor chain, which are grouped and arranged
in stages. Thus, the interceptor chain manages the resources
and information from others CXF components (Front-End,
Protocol Bindings, Transports) to handle the message and
establish communication among client and service [1].

IV. PERFORMANCE EVALUATION

The methodology used for the performance and energy
evaluation is explained in this section. First of all, it is impor-
tant to understand how the experiments were conducted. Thus,
Figure 6 illustrates the messages flows among the applications
used in this paper.

Fig. 6: Messages flow in the experiments.

The client device starts the application by generating a
sequence of random numbers and then performs the serial-
ization of this sequence in an XML message. Once built, this
message can be sent to a web service provided by the server
device. When the message arrives, the server first deserializates
the message, and then process its content sorting the numbers
that was received from the client, so a new message with the
ordered numbers is created, serialized in XML format and sent
back to the client device. Finally, the client deserializes the
response from the server and ends its execution.

Energy consumption was monitored using the Arduinos
Nanos. To obtain the electric current a 1Ω (Ohm) resistor
was connected in series with the Raspberry Pi (Figure 7). By
measuring the voltage drop in this resistor is possible to infer
the electric current of the circuit.

The Arduino was responsable to collect data like time,
voltage and current. These data are collected 170 times per
second from both client and server devices through a shield



Fig. 7: Experiments Enviroment.

that was made to measure the energy, and these data are stored
in a desktop computer using the Mini-B USB interface.

Joule (J) is a unit commonly used to measure mechanical
energy (work). It is also used to measure thermal energy (heat).
In the International System of Units (SI), all work or energy
are measured in joules. The energy consumption, in Joules, is
calculated according with Formula 1, where V(t) is voltage,
I(t) is electrical current collected in the time t.

Joules =

x∫
0

V(t)I(t) dt. (1)

A. Experiment Enviroment

The experiments environment configurations are described
in Table I. Two Raspberry PI devices model B were used
with the settings modified for each experiment. The first
configuration uses the standard CPU clock (700Mhz) and
the second one uses an overclock configuration (950MHz).
Moreover, the maximum amount of memory configured in the
JVM (Java Virtual Machine) was set to 128Mb and the rest
was used by the system.

TABLE I: Configuration of Raspberry PI model B

Raspberry Pi (model B)

Processor ARMv6-compatible processor rev 7 (v6l)
697.95 BogoMIPS

Hardware Rev. BCM2708
Memory 512 MB RAM
SD Card 8GB

Operational System Raspbian
(GNU/Linux)

Others

JDK 1.6
Apache Tomcat 6.0

Axis2 1.6.2
CXF 2.7.4
Jetty 7.0

B. Experiment Design

After setting up the environment, it is necessary to plan
the performance evaluation experiments to extract relevant
information about the system.

The experiments were designed to gather as much infor-
mation as possible to compare the performance difference
between the Devices CPU Frequency Configurations (700Mhz
and 950Mhz) using different development Frameworks for web
services (Axis2 and CXF). It was designed eight experiments
involving combinations of factors (Device CPU Frequency,
Framework and Message Size) with different configurations
or levels, as shown in Table II.

TABLE II: Design of Experiments

Exp Device CPU Frequency Framework Message Size

1 700MHz Axis2 100Kb
2 700MHz Axis2 500Kb
3 700MHz CXF 100Kb
4 700MHz CXF 500Kb
5 950MHz Axis2 100Kb
6 950MHz Axis2 500Kb
7 950MHz CXF 100Kb
8 950MHz CXF 500Kb

The web services developed and their respective frame-
works were instrumented to collect the time of serialization and
deserialization in both client and service. The total time of both
were also recorded. Each experiment of Table II was repeated
50 times in order to calculate the average time and guarantee a
statistically correct result. Besides, the standard deviation and
confidence intervals (assuming a rate of 95% of confidence
level) were also calculated for each of the average times
collected. All results of the experiments and some statistical
information are presented in the next section.

V. RESULTS

This section presents the results of experiments using bar
graphs. Subsections divide these results by server and client
devices, where it is possible to observe the behavior of both
frameworks considering different sizes of messages. In the last
subsection it is made a general analysis of the results.

A. Server Results

1) Server Serialization: Figure 8 shows the time in mil-
liseconds for the message serialization on the device server,
where both Axis2 and CXF frameworks had an increased
time for serializing 500Kb messages when compared to 100Kb
messages.

Fig. 8: Server Serialization Time.



This behavior occurs because both frameworks use a "flow"
of methods to process the data and perform the message
serialization, making its time proportional to the amount of
serialized data. Axis2 framework was faster than CXF to
process both messages. This difference occurs because during
the message deserialization all information on how serialize
that message is obtained. On the other hand, JAX-RS library
is less optimized in relation to Axis2 because it uses methods
of generic classes to serialize the message.

Figure 9 shows energy consumption during the server
message serialization. It is possible to notice that energy results
reflect the same behavior of time results, because the longer
the processing time is greater will be the energy consumed.
An interesting observation was noticed when the Raspberry
Pi is working with 950Mhz (Overclock), it consumes fewer
energy than when working with 700Mhz. It can be explained
because when it is using 950Mhz the processing time is shorter.
Thus, the total consumption is lower although it consumes
more Joules per unit time, the amount of this time is shorter.
More explanation of this behavior is discussed in section V-C.

Fig. 9: Server Serialization Energy Consumption.

2) Server Deserialization: The graph in Figure 10, presents
the deserialization message results from the server device.

Fig. 10: Server Deserialization Time.

It is noted that due to the use of libraries (JAX-RS), the
CXF framework had deserialization times lower in messages
of 100Kb and 500Kb. On the other hand, the framework
Axis2 showed larger times to deserialize messages of 100Kb
and 500Kb. This behavior occurs because before starting the
deserialization, the Axis2 libraries needs to read a WSDL

file, which contains the format of input/output messages and
services descriptions.

Fig. 11: Server Deserialization Energy Consumption.

Figure 11 shows the energy consumption during the server
message deserialization. Again, the energy results were pro-
portional to the time results. Unlike the serialization, the
deserialization results shows lower energy consumption when
using CXF.

3) Server Total: The graph in Figure 12, shows total time
in seconds to execute the service on the server device. As
expected, both frameworks had increased service execution
time with the increase the size of message, since the processing
time is directly proportional to the amount of data.

It is possible to notice that the CXF framework requires
less time than the Axis2 framework to execute services with
500Kb messages. This reduction is explained by the use of
JAX-RS library, which handles with real RESTful messages,
whereas Axis2 has an overhead to handle with SOAP messages
during service execution. CXF also was faster to messages with
100Kb when the server device was configured to 950Mhz.

Fig. 12: Server Total Execution Time.

Figure 13 shows the energy consumption during the server
execution (Serialization + Service Processing + Deserializa-
tion). In all results the CXF saves more energy than Axis2,
except in 100Kb messages and 700Mhz of CPU clock. Thus,
in general CXF framework presents better performance and
energy results than Axis2 for those experiments executed on
the server side.



Fig. 13: Server Total Power Consumption.

B. Client Results

1) Client Serialization: The graph in Figure 14 presents
the message serialization time in the client device where the
Axis2 framework showed a large difference in time while
serializing 100Kb and 500Kb messages. This difference is due
to the serialization step implemented by the developer in Axis2
framework, which two points should be highlighted.

Fig. 14: Client Serialization Time.

Fig. 15: Client Serialization Energy Consumption.

Firstly, in Axis2 client a ’fake’ message serialization is
done directly by the developer through AXIOM library, where
no pre-processing of data is accomplished, constructing the
message to be sent directly. When this messages comes to the
transport level, it is converted into a SOAP message before it

is sent to the server provider. The second point is that Axis2
uniform times showed in Figure 14 occurs because the message
only has one field for the payload, which is already in the client
device memory. This is the procedure adopted by the developer
to send REST messages using the Axis2 framework.

Figure 15 shows the energy results obtained from the client
serialization experiments. Once the client serialization time
in Axis2 was shorter than CXF, so Axis2 had lower energy
consumption. Furthermore, it is possible to notice that the CXF
energy results with 500Kb messages are statistically equals
using 700MHz and 950Mhz.

2) Client Deserialization: The Figure 16 presents the
results of the deserialization time in the client device. In these
results, the CXF framework has shorter times to deserialize
500Kb messages. This difference is due to the deserialization
performed through CXF framework libraries that are optimized
to deserialize the messages efficiently.

Fig. 16: Client Deserialization Time.

Fig. 17: Client Deserialization Energy Consumption.

The Axis2 framework was more efficient to deserialize
100Kb than 500Kb messages, once they showed a considerable
increase in the time of deserialization. This increase is due to
Axis2 deserialization be executed sequentially by the Axiom
libraries, where the information is extracted from the object
tree received in the message. Thus, the larger is the size of the
information contained in the message, the longer will be the
time to extract the information required by their deserialization.

Therefore, unlike the serialization time, the deserialization
time in Axis2 framework was faster to 100Kb messages,



once this deserialization is implemented sequentially by the
developer. Otherwise, the CXF framework was more efficient
to deserialize messages 500Kb, once its deserialization is
performed through the JAX-RS library, which handles mes-
sages with generics classes before starting the extraction of
information, and consequently improving the deserialization
of larger messages.

Figure 17 presents the client energy consumption results
in the deserialization step. When considering 500Kb messages
this process is faster with CXF and consequently the average
energy consumption is lower. But, this deserialization process
for 100Kb messages saves energy when using Axis2 frame-
work.

3) Client Total: The Figure 18, shows the total time for
the client application execution. This time includes the client
serialization and deserialization times, the network traffic,
and the service execution time on the server side (Server
Total Time). As expected, both frameworks have increased the
client execution time according to the increasing size of the
messages. This occurs because the service execution time is
proportional to the amount of data to be processed and this
time has great influence on the final client time.

Fig. 18: Client Total Execution Time.

Its also possible to notice that Axis2 framework had a better
performance for 100Kb messages while CXF framework had a
better performance for 500Kb messages. JAX-RS libraries uses
methods of generics classes to handle with RESTful messages
which has better performance for larger messages. In the other
hand, Axis2 framework handles REST messages as SOAP
messages in its core that causes an overhead proportional to
the quantity of converted data.

In Figure 19, the energy consumption results are presented.
They represent the total energy consumption in the client side
including the time to create the message, serialize it, sending it
through the network, waiting for a server response, deserialize
the message, and having it as a Java object. In resume, the
results show that CXF framework saves energy with 500Kb
messages while Axis2 saves energy with 100Kb messages.
Moreover, the overclocking configuration had influence in the
time results and consequently in the energy consumption. In a
controlled enviroment (air conditioning at 230C), we reached
better results using 950Mhz for both performance and energy
consumption.

Fig. 19: Client Total Energy Consumption.

C. Results Analysis

A general analysis of the results that were obtained from
the client and servers devices indicate that Axis2 framework
was more effective for messages with 100Kb while the CXF
framework is most suitable for 500Kb. However, the differ-
ences in the execution time among the frameworks is shorter.

Table III shows the percentages occupied by the serializa-
tion time, deserialization and execution time in the service on
the client device. It can be seen that for both frequencies the
serialization and deserialization times practically have no in-
fluence in total time. It is also noticeable that the average time
of client applications is primarily influenced by the service
time followed by other times that include the manipulation of
data and network times.

TABLE III: Average Client Times (%)

Client Times

Frequency 700MHz
Framework Axis2 CXF
Message Size 100Kb 500Kb 100Kb 500Kb
Serialization Time(%) 0,002 0,001 0,013 0,005
Deserialization Time(%) 0,004 0,003 0,006 0,002
Service Times(%) 62,946 73,495 49,713 66,545
Others(%) 37,048 26,501 50,269 33,447
Total Time (s) 30,00 124,91 38,64 125,22
Frequency 950MHz
Framework Axis2 CXF
Message Size(%) 100Kb 500Kb 100Kb 500Kb
Serialization Time(%) 0,002 0,001 0,015 0,006
Deserialization Time(%) 0,004 0,003 0,006 0,002
Service Times(%) 61,190 71,324 44,292 65,607
Others(%) 38,804 28,672 55,687 34,385
Total Time (s) 28,54 106,71 29,77 102,59

As this table shows, Axis2 framework spend more time
to receive the response message, once the server side handles
with a SOAP message. While CXF framework spend more
time doing others tasks like in preparing and recovery content
phases with generics classes. Furthermore, the frequency in-
crease reduces the total time needed to conclude the operation.

Table IV shows the percentages occupied by serialization,
deserialization and execution energy consumption on client
device. Through this table, it can be seen for both frequencies
the major factors were the same as in Table III. But the seri-
alization and deserialization consumption have more influence
than that showed in this table, because more processing is



TABLE IV: Average Client Energy Consumption (%)

Client Energy Consumption

Frequency 700MHz
Framework Axis2 CXF
Message Size 100Kb 500Kb 100Kb 500Kb
Serialization Consumption(%) 2,348 13,717 0,634 5,767
Deserialization Consumption(%) 3,614 6,001 3,579 2,424
Service Consumption(%) 59,734 47,924 73,987 64,846
Others(%) 34,304 32,359 21,800 26,963
Total Consumption(J) 58,73 233,88 70,73 223,67
Frequency 950MHz
Framework Axis2 CXF
Message Size 100Kb 500Kb 100Kb 500Kb
Serialization Consumption(%) 2,449 15,795 0,684 6,450
Deserialization Consumption(%) 3,764 6,701 3,662 2,599
Service Consumption(%) 58,534 41,024 68,746 66,349
Others(%) 35,253 36,480 26,908 24,601
Total Consumption(J) 56,26 203,78 57,64 196,55

needed in this phase which raise the energy consumption. It
is important to highlight that higher frequencies also reduces
total energy consumption.

TABLE V: Client Power Consumption

Client Power Consumption (Watts)

Frequency 700MHz 950MHz
Message Size / 100Kb 500Kb 100Kb 500KbFramework
Axis2 1,96 1,87 1,97 1,91
CXF 1,83 1,79 1,94 1,92

However, the relation between energy consumption and
total time or power, as showed in Table V, is proportional.
Thus, the reduction in energy consumption related with higher
frequencies is due to the shorter processing times caused by
higher power levels.

TABLE VI: Average Server Times (%)

Server Times

Frequency 700MHz
Framework Axis2 CXF
Message Size 100Kb 500Kb 100Kb 500Kb
Serialization Time(%) 2,202 1,871 3,025 4,447
Deserialization Time(%) 3,134 2,986 2,114 1,287
Service Times(%) 94,664 95,143 94,861 94,265
Total Time (s) 16,36 93,13 19,39 86,63
Frequency 950MHz
Framework Axis2 CXF
Message Size 100Kb 500Kb 100Kb 500Kb
Serialization Time(%) 2,168 2,218 3,543 4,646
Deserialization Time(%) 3,423 3,875 2,858 1,389
Service Times(%) 94,408 93,908 93,598 93,965
Total Time (s) 14,98 74,90 13,26 70,25

Table VI shows time percentages for serialization, deserial-
ization and execution of service on server device. In this table,
the greatest impact factor is service execution time. because
a CPU Bound service is executed and takes the most part
(around 93%) of total time due to high process level. It is
important to emphasize that for Axis2 framework the execution
time includes the times to handle with a SOAP message which
raise the execution time compared to CXF framework.

Serialization and deserialization times has little influence
in this scenario, once the time to perform this steps is less

than 7% in all cases. Likewise, in Table III, higher frequencies
reduces the total time of service execution.

TABLE VII: Average Server Energy Consumption (%)

Server Energy Consumption

Frequency 700MHz
Framework Axis2 CXF
Message Size 100Kb 500Kb 100Kb 500Kb
Serialization Consumption(%) 1,453 0,257 3,060 4,253
Deserialization Consumption(%) 3,140 4,007 2,441 1,387
Service Consumption(%) 95,407 95,735 94,499 94,360
Total Consumption(J) 31,98 164,42 35,01 157,69
Frequency 950MHz
Framework Axis2 CXF
Message Size 100Kb 500Kb 100Kb 500Kb
Serialization Consumption(%) 10,909 1,897 3,571 4,336
Deserialization Consumption(%) 3,403 3,641 3,016 1,513
Service Consumption(%) 85,688 94,462 93,413 94,151
Total Consumption(J) 29,39 146,39 26,04 137,51

Table VII shows the percentages of serialization, dese-
rialization and execution consumption in the server device.
For both frequencies the major factors were the same as in
Table VI. But the serialization and deserialization consumption
have more influence than that showed in this table, because
in these phases more processing is necessary which raise the
energy consumption. It is important to highlight that higher
frequencies also reduces the total energy consumption needed
to conclude the operation.

TABLE VIII: Server Power Consumption

Server Power Consumption (Watts)

Frequency 700MHz 950MHz
Message Size / 100Kb 500Kb 100Kb 500KbFramework
Axis2 1,96 1,77 1,96 1,95
CXF 1,81 1,82 1,96 1,96

Like Table V, Table VIII shows that the relation between
frequency and power is proportional. Therefore the shortest
time achieved by higher frequencies also leads to lower total
energy consumption rather than higher power levels.

Finally, when Raspberry Pi is working as a server, it
increased the final time of the client application, although
the serialization and deserialization times have few influence
on the final result, once this device has low CPU resources.
Also working at higher frequencies Raspberry Pi can achieve a
better performance and energy consumption rather than higher
power levels.

VI. CONCLUSION

A wide variety of projects explore the resources of mobile
and embedded devices that, although their hardware are lim-
ited, they are able to perform personal and commercial tasks.
The Raspberry Pi offers a computational architecture with a
general purpose, low cost, and low power consumption. In
this paper, the performance and energy results showed that
Raspberry Pi resources are insufficient for the execution of
tasks that depend mostly on the processor. However, these
devices can be used to serialize and deserialize REST messages
in a timely manner, justifying its use as client applications or



as service providers for applications that do not require large
computational capacity.

Regarding the frameworks, both have several benefits to the
developer. However, the CXF framework was more appropriate
in this environment, once it provides support for the creation
of both service providers and client applications. Furthermore,
when using CXF in service providers applications it have
obtained shorter overall times for larger messages (500Kb)
while Axis2 was better for smaller messages (100Kb). The
overclocking configuration also has influence in time and
energy consumption results. These results are more efficient
when the Raspberry Pi is overclocking, especially for large
messages, but it is important to remember that the overclocking
was done in a controlled enviroment and it has a higher power
levels.

In terms of development experience, the small time and
energy consumption difference between the frameworks does
not justify Axis2 use, once it is more complicated to develop
RESTFul clients. In a few words, the Raspberry PI has
impressed because of its easy installation, configuration and
use of resources to provide and access web services. It can
be a good low-cost solution for applications that require a
smaller processing capacity, such as a monitoring system. In
future work we intend to monitor the energy consumption
using batteries and also testing another kinds of applications,
like IO-Bound services to verify the performance of reading
and writing data into SD cards.

REFERENCES

[1] Apache cxf - how it works. Avaliable in http://cxf.apache.org/docs/
custom-transport.html. Last access: 06/06/2013.

[2] Apache cxf - jax-rs (jsr-311). Avaliable in http://cxf.apache.org/docs/
jax-rs.html. Last access: 06/06/2013.

[3] Apache cxf software architecture guide. Avaliable in http://cxf.apache.
org/docs/cxf-architecture.html. Last access: 06/06/2013.

[4] Arduino homepage. Avaliable in http://www.arduino.cc/. Last access:
06/06/2013.

[5] Raspberry pi - quick start guide. Avaliable in http://www.raspberrypi.
org/wp-content/uploads/2012/04/quick-start-guide-v2.pdf. Last access:
06/06/2013.

[6] Raspbian. Avaliable in http://www.raspbian.org/. Last access:
06/06/2013.

[7] Welcome to apache axiom. Avaliable in http://ws.apache.org/axiom/
index.html. Last access: 06/06/2013.

[8] Rpi hardware. Avaliable in http://elinux.org/RPi_Hardware, November
2012. Last access: 06/06/2013.

[9] T. Aihkisalo and T. Paaso. Latencies of service invocation and
processing of the rest and soap web service interfaces. In Services
(SERVICES), 2012 IEEE Eighth World Congress on, pages 100–107,
2012.

[10] F. AlShahwan and K. Moessner. Providing soap web services and restful
web services from mobile hosts. In Internet and Web Applications and
Services (ICIW), 2010 Fifth International Conference on, pages 174–
179, 2010.

[11] F. AlShahwan, K. Moessner, and F. Carrez. Distributing resource in-
tensive mobile web services. In Innovations in Information Technology
(IIT), 2011 International Conference on, pages 41–46, 2011.

[12] C. Andrews. Easy as pi. Engineering Technology, 8(3):34–37, 2013.
[13] M. Brose. Broadcom bcm2835 soc has the most powerful mobile

gpu in the world? Avaliable in http://www.grandmax.net/2012/01/
broadcom-bcm2835-soc-has-powerful.html, January 2012. Last access:
06/06/2013.

[14] C. Chang, F. Mohd-Yasin, and A. Mustapha. An implementation of
embedded restful web services. In Innovative Technologies in Intelligent
Systems and Industrial Applications, 2009. CITISIA 2009, pages 45–50,
2009.

[15] C. Edwards. Not-so-humble raspberry pi gets big ideas. Engineering
Technology, 8(3):30–33, 2013.

[16] R. T. Fielding. Architectural styles and the design of network-based
software architectures. PhD thesis, 2000. AAI9980887.

[17] C. Groba and S. Clarke. Web services on embedded systems - a perfor-
mance study. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International Conference on,
pages 726–731, 2010.

[18] H. Hamad, M. Saad, and R. Abed. Performance evaluation of restful
web services for mobile devices. Int. Arab J. e-Technol., 1(3):72–78,
2010.

[19] K. Hameseder, S. Fowler, and A. Peterson. Performance analysis of
ubiquitous web systems for smartphones. In Performance Evaluation
of Computer Telecommunication Systems (SPECTS), 2011 International
Symposium on, pages 84–89, 2011.

[20] R. Jain. The art of computer systems performance analysis, volume
182. 1991.

[21] M. Jansen. Evaluation of an architecture for providing mobile web
services. International Journal On Advances in Internet Technology,
6(1 and 2):32–41, 2013.

[22] D. Jayasinghe. Quickstart Apache Axis2: A practical guide to creating
quality web services. Packt Publishing, 2008.

[23] D. Jayasinghe. Apache Axis2 Web Services, 2nd Edition. Packt
Publishing, February 2011.

[24] R. Kanagasundaram, S. Majumdar, M. Zaman, P. Srivastava, and
N. Goel. Exposing resources as web services: A performance oriented
approach. In Performance Evaluation of Computer and Telecommu-
nication Systems (SPECTS), 2012 International Symposium on, pages
1–10, 2012.

[25] lee Garber. News briefs. Computer, 45(11):18–20, 2012.
[26] S. Mitra-Thakur. Tweeting chicken uses raspberry pi to deter dieters.

Avaliable in http://eandt.theiet.org/news/2013/jan/raspberrypi-chicken.
cfm, January 2013. Last access: 15/05/2013.

[27] R. Mizouni, M. Serhani, R. Dssouli, A. Benharref, and I. Taleb.
Performance evaluation of mobile web services. In Web Services
(ECOWS), 2011 Ninth IEEE European Conference on, pages 184–191,
2011.

[28] K. Mohamed and D. Wijesekera. A lightweight framework for web
services implementations on mobile devices. In Mobile Services (MS),
2012 IEEE First International Conference on, pages 64 –71, june 2012.

[29] A. Papageorgiou, J. Blendin, A. Miede, J. Eckert, and R. Stein-
metz. Study and comparison of adaptation mechanisms for perfor-
mance enhancements of mobile web service consumption. In Services
(SERVICES-1), 2010 6th World Congress on, pages 667–670, 2010.

[30] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services
vs. "big"’ web services: making the right architectural decision. In
Proceedings of the 17th international conference on World Wide Web,
WWW ’08, pages 805–814, New York, NY, USA, 2008. ACM.

[31] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau. Migration of soap-
based services to restful services. In Web Systems Evolution (WSE),
2011 13th IEEE International Symposium on, pages 105 –114, sept.
2011.

[32] Q.-D. Vu, B.-B. Pham, D.-H. Vo, and V.-H. Nguyen. Towards scalable
agent-based web service systems: performance evaluation. In Proceed-
ings of the 13th International Conference on Information Integration
and Web-based Applications and Services, iiWAS ’11, pages 481–484,
New York, NY, USA, 2011. ACM.

[33] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson. Developing web
services choreography standards—the case of {REST} vs. {SOAP}".
Decision Support Systems, 40(1):9 – 29, 2005. Web services and process
management.


