
Noname manuscript No.
(will be inserted by the editor)

Combining Time Series Prediction Models Using Genetic
Algorithm to Auto-scaling Web Applications Hosted in the
Cloud Infrastructure

Valter Rogério Messias · Julio Cezar Estrella · Ricardo Ehlers · Marcos

José Santana · Regina Carlucci Santana · Stephan Reiff-Marganiec

Received: date / Accepted: date

Abstract In a cloud computing environment, compa-

nies have the ability to allocate resources according to

demand. However, there is a delay that may take min-

utes between the request for a new resource and it is

ready for using. This causes the reactive techniques,

which request a new resource only when the system

reaches a certain load threshold, are not suitable for the

resource allocation process. To address this problem, it

is necessary to predict requests that arrive at the system

in the next period of time to allocate the necessary re-

sources, before the system becomes overloaded. There

are several time-series forecasting models to calculate

the workload predictions based on history of monitor-

ing data. However, it is difficult to know which is the

best time series forecasting model to be used in each

case. The work becomes even more complicated when

the user does not have much historical data to be an-

alyzed. Most related work, considers only single meth-

ods to evaluate the results of the forecast. Other work

propose an approach that selects suitable forecasting

methods for a given context. But in this case, it is nec-

essary to have a significant amount of data to train the

classifier. Moreover, the best solution may not be a spe-

cific model, but rather a combination of models. In this

paper we propose an adaptive prediction method using

V. R. Messias · J. C. Estrella · R. Ehlers · M. J. Santana · R.
C. Santana
Institute of Mathematics and Computer Sciences
University of Sao Paolo
P.O. Box 668
E-mail: {valterrm, jcezar, ehlers, mjs, rcs}@icmc.usp.br

S. Reiff-Marganiec
Department of Computer Science
University of Leicester
Leicester - UK
E-mail: srm13@le.ac.uk

genetic algorithms to combine time-series forecasting

models. Our method does not require a previous phase

of training, because it constantly adapts the extent to

which the data is coming. To evaluate our proposal we

use three logs extracted from real web servers. The re-

sults show that our proposal often brings the best re-

sult, and is generic enough to adapt to various types of

time series.

Keywords Genetic Algorithm · Time Series Predic-

tion Models · Elasticity · Cloud Computing

1 Introduction

With the emergence of cloud computing, computing re-

sources, such as storage, processing and bandwidth are
available as services, in which the user pays only for

the resources used during a period of time. The elastic-

ity, the main characteristic of cloud computing, allows

to quickly allocate and deallocate large amounts of re-

sources at runtime. These resources can be acquired au-

tomatically and quickly, with increasing demand, and

released on lower demand. For users, the resources avail-

able to be used appear to be unlimited and can be pur-

chased in any amount and at any time [7].

To take advantage of this new reality, companies

are increasingly using the cloud infrastructure to host

their Web applications [29]. The reasons for that are

practically two: avoid non-compliance with SLAs (Ser-

vice Level Agreements), considering an increase in the

number of requests; and save money, in situations of

low amount of requests. The main challenge is to join

these two objectives.

Infrastructure providers, such as Amazon, offer the

possibility that the user allocates and deallocates re-

sources by paying a fixed price per hour. Thus, the

2 Valter Rogério Messias et al.

companies using such infrastructures must decide the

amount of resources used at each time.

The techniques for deciding when and how to al-

locate the resources are named auto-scaling and can

be separated into two groups: reactive and proactive.

The reactive techniques keep monitoring the system

events (CPU usage, number of requests in the system,

queue length, etc.) and choose to allocate or release re-

sources when these events exceed a threshold. On the

other hand, proactive techniques attempt to predict the

amount of resources at any given time, to anticipate un-

wanted events.

The problem is that in reactive techniques, often,

time to react is insufficient. The time between the re-

quest for a resource in the cloud (virtual machine) and

it being ready for use can be minutes [26], sufficient

time for overloading the system. Concerning proactive

techniques, the time series analysis, based on classical

statistical models offers a spectrum of forecasting meth-

ods. But as none of these methods is the best in all

cases, we are going to use genetic algorithm to com-

bine the benefits of the individual forecasting methods

to achieve higher forecast accuracy to auto-scaling web

applications hosted on cloud infrastructure.

The goal is use several time series models and com-

bine them using genetic algorithm. The advantage of

this technique is that the auto-scaling can adapt to

new types of workloads. That is important because the

workloads, specially in web applications, usually change

characteristics over time. The genetic algorithm will

work to adjust a suitable weight for each prediction

time series model used in the system.

Our forecasts are based on five statistical models:

naive model (Naive); autoregressive model (AR); au-

toregressive moving average model (ARMA); autore-

gressive integrated moving average model (ARIMA);

and extended exponential smoothing model (ETS). Af-

ter predicting demand, a queue M/M/m model is used

to calculate the amount of resources. The goal is to de-

termine the minimum amount of resources to meet the

demand without violating service level agreements.

To perform the experiments three real web logs were

used. The logs have different characteristics which makes

the results and conclusions more realistic and reliable

to be used in real web applications.

In summary, the contributions of this paper are as

follows: (i) We propose a novel forecasting methodol-

ogy that uses genetic algorithm to combine time series-

based forecasting approaches. (ii) We propose a new

metric for measuring the elasticity, named MEI (Mean

Elasticity Index). (iii) We evaluate our proposal in the

context of multiple different experiments and case stud-

ies based on real web server logs.

The results of our evaluation considering multiple

different scenarios show that combination of time se-

ries forecasting models using genetic algorithms offers

a generic and adaptative model, which often brings the

best results, and is therefore more appropriate than

statically selected fixed forecasting methods.

The remainder of this paper is organized as follows:

in the next section related work will be presented and

discussed. Next, in section 3, we will present an intro-

duction to genetic algorithms and how we will use them

in our proposal, including a brief explanation about

time series forecasting models. After that, in section 4,

our System Architecture will be presented. Next, in sec-

tion 5, the evaluation of the proposal and discussion of

results will be presented. Finally, in section 6, the con-

clusion and proposals for future work are announced.

2 Related Work

This section aims to present a survey on work related

to resource allocation and demand forecasting in cloud

computing environments.

Threshold-based rules or policies are very popular in

cloud providers such as Amazon EC2, and third-party

tools such as RightScale [14]. This tool allows setting

the rules such as the upper and lower thresholds for the

performance variable (e.g. 30% and 70% of CPU load).

This technique requires an extra effort from the user,

who needs to select suitable performance variables or

logical combination of variables, and also to set several

parameters [27]. Several authors have adopted auto-

scaling techniques based on rightScales auto-scaling al-

gorithm [4]. [13] propose a set of reactive rules based on
the number of active sessions. [12] extends the previous

work following the RightScale approach: if all VMs have

active sessions above the given upper threshold, a new

VM is provisioned; if there are VMs with active ses-

sions below a given lower threshold and with at least

one VM that has no active session, the idle one will be

shut down. Some work such as [9] and [25] use adaptive

techniques to dynamically define threshold. In these

techniques initial values are set-up, but they are au-

tomatically modified as a consequence of the observed

SLA violations. In conclusion, due to their simplicity,

rules become a popular way to auto-scaling applications

without much effort, specially in the case of applica-

tions with quite regular, predictable patterns. However,

in case of bursty workloads the client should consider a

more advanced and powerful auto-scaling system.

Other works propose more sophisticated reactive te-

chniques, based on control theory. In [5] the authors

propose combining two proactive and adaptive contro-

llers for scaling down with dynamic gain parameters

Title Suppressed Due to Excessive Length 3

based on input workload, and a reactive approach for

scaling up. In [30] the authors discussed a MIMO (Multi-

ple-input multiple-output) adaptive controller that uses

a second-order ARMA (Auto Regressive Moving Aver-

age) to model the non-linear and time-varying relation-

ship between the resource allocation and its normalized

performance. The controller is able to adjust the CPU

and disk I/O usage. The work proposed in [23] designs

different SISO (Single-input single-output) and MIMO

controllers to determine the CPU allocation of VMs, re-

lying on Kalman filters. [32] and [33] apply an adaptive

fuzzy controller to the application, and estimate the re-

quired CPU load for the input workload. The problem

of the control theory based approaches is that they are

difficult to set up and are essentially reactive, which can

cause problems during the allocation of resources, since

these take minutes until they are ready for use.

Finally, we highlight the work using proactive tech-

niques for demand forecasting and resource allocation

in the cloud. In [22] an optimal VM-level auto-scaling

scheme with cost-latency trade-off is proposed. The num-

ber of requests was predicted in each re-allocation time-

unit using linear regression. Next, the optimal number

of VMs was calculated based on queuing theory, using

a M/M/m model. In [31], the authors proposed a look-

ahead resource allocation algorithm based on model

predictive control. A second order ARMA model was

used on Fifa World Cup 98 workload [6] to predict the

number of requests that arrive in the system. After fore-

casting, an optimization function was used to determine

the number of resources to be allocated.

In [17] the authors present an auto-scaling system

that supports heterogeneous cloud infrastructures and

different client requirements. Several statistical models

were considered for workload prediction and a decision

tree was used to determine optimal resource combina-

tion. An approach classifying WIB (Workload Intensity

Behaviour) to dynamically select appropriate forecast-

ing methods is presented in [19]. Based on user-specified

forecasting objectives, a decision tree decides on the ap-

propriate forecasting method through direct feedback

mechanisms that evaluate and compare the recent accu-

racy of different forecasting methods. The authors in [8]

presented a comparative study about the performance

of two predictive models (Holt-Winters and ARIMA)

using a workload extracted from a NASA WWW server

[3].

Proactive techniques, using time series analysis, are

very appealing for implementing auto-scalers, as they

are able to predict future demands arriving to elastic

applications. Having this information, it is possible to

provide resources in advance and deal with the time re-

quired to start up new VMs. However, their main draw-

back is the prediction accuracy, that highly depends on

several factors, including: the target application, input

workload pattern and/or burstiness, the selected met-

ric, the history window and prediction interval, as well

as on the specific technique being used. To address these

problems we need a model that suits the changes of the

factors mentioned above, combining the various fore-

casting techniques for every time interval. That is the

goal of this work.

3 Genetic Algorithm

Genetic algorithms (GAs) use concepts from the prin-

ciple of natural selection to address a wide range of

problems, in particular optimization. They are robust,

generic and easily adaptable. Inspired by the way Dar-

winism explains the process of evolution of species, the

GAs are broken down into the following steps: initializa-

tion, evaluation, selection, crossover, mutation, update

and completion. Figure 1 describes the overall structure

of a simple GA.

Basically, what a genetic algorithm does is create

a population of possible answers to the problem to be

treated, and then submit it to the process of evolution.

Next, will be described each step:

– Evaluation: the ability of solutions is evaluated (in-

dividuals of the population) by means of an analy-

sis in order to establish which individuals are more

likely within the population (best solution to the

problem);

– Selection: individuals are selected for reproduction.

The probability of a given solution be selected is

proportional to its fitness;

– Crossing: characteristics of the chosen solutions

are recombined, generating new individuals;

– Mutation: characteristics of individuals resulting

from the reproduction process are changed, thus

adding variety to the population;

– Update: individuals created in this generation are

inserted in the population;

– Finishing: it is checked whether the conditions for

the end of evolution has been reached, returning to

the evaluation stage if not, and ending execution

otherwise.

3.1 Representation

Individuals are the fundamental unit of a genetic algo-

rithm: they encode possible solutions to the problem

to be treated, and it is through its manipulation (by

the process of evolution) that answers are found. The

4 Valter Rogério Messias et al.

Evaluate Population

Initialize Population

Select Players

Crossing Selected

Mutate Resulting

Evaluate Resulting

Update Population

Stop

Criterion

Satisfied?

Output Solution

Start

Stop

Yes

No

Fig. 1: The overall structure of genetic algorithm

choice of representation for individuals is the most im-

portant step in development of a GA, since it will have

primary responsibility for program performance. In this

study, each individual is represented by a set of five real

numbers. Each of these numbers are called gene. Each

gene represents a model of time series forecasting. The

values that each gene may assume belong to the range

between zero and one. The sum of the values of all genes

must be equal to one. Each individual is composed of a

combination of genes representing each of the prediction

models used. These models will be described in section

3.2. The value of each gene represents the weight of the

model has the individual. Equations 1, 2 and 3 show

the formalized representation of genes and individuals.

gene ∈ [0, 1] (1)

individual = {gene1, gene2, gene3, gene4, gene5} (2)∑5

i=1
genei = 1 (3)

3.2 Classical Statistical Models for Time Series

Forecast

Naive Forecasting

The naive method is very simple because it is based on

the assumption that the last observed value will occur

in the next time interval. This method requires only a

single time series point to be applied.

Auto-Regressive (AR)

In this model, the variable of interest is forecasted using

a linear combination of past values of the variable. The

term auto-regression indicates that it is a regression

of the variable against itself [20]. Equation 4 shows an

autoregressive model of order p.

yt = c+ φ1yt−1 + φ2yt−2 + . . .+ φpyt−p + et (4)

where c is a constant and et is white noise. We refer to

this as an AR(p) model.

Despite being a simple method with optimal compu-

tational performance [19], according to [20] auto-regres-

sive models are remarkably flexible at handling a wide

range of different time series patterns.

Moving Average (MA)

Rather than using past values of the forecast variable

in a regression, a moving average model uses past fore-

cast errors in a regression-like model [20]. Equation 5

represents a moving average model.

yt = c+ et + θ1et−1 + θ2et−2 + . . .+ θqet−q (5)

where et is white noise. This is denoted an MA(q) model.

The values of et are not observed, so it is not really a

Title Suppressed Due to Excessive Length 5

regression in the usual sense. Each value of yt can be

thought of as a weighted moving average of the past

few forecast errors [20].

The strength of this method is the simplicity, and

the weakness is the lack of sensitivity to trends and

seasonal components [19].

Simple Exponential Smoothing (SES)

Exponential smoothing is a technique that assigns ex-

ponentially decreasing weights over time, whereas in

the simple moving average the past observations are

weighted equally, as described in equation 6 [20].

ŷT+1|T = αyT +α(1−α)yT−1 +α(1−α)2yT−2 + · · ·(6)

where 0 ≤ α ≤ 1 is the smoothing parameter. The

one-step-ahead forecast for time T + 1 is a weighted

average of all the observations in the series y1, . . . , yT .

The rate at which the weights decrease is controlled by

the parameter α [20]. Since the weights are adjusted to

be larger on more recent observations, this model has

more flexible reaction to trends or other developments

than the moving average model, however, has no sea-

sonal component or interpolation.

Auto-Regressive Moving Averages (ARMA)

ARMA models provide a parsimonious description of a

stationary stochastic process in terms of two polynomi-

als, one for the auto-regression and the second for the

moving average. The model is usually then referred to

as the ARMA(p, q) model where p is the order of the

autoregressive part and q is the order of the moving

average part.

The ARMA model is useful for times series with

some noise and changes within trend, but no seasonal

behavior [19].

Holt-Winters Method

Holt-Winters method was created to capture seasonal-

ity. This method comprises the forecast equation and

three smoothing equations: one for the level `t, one

for trend bt, and one for the seasonal component de-

noted by st, with smoothing parameters α, β∗ and γ.

There are two variations to this method: additive and

multiplicative, that differ in the nature of the seasonal

component. The first one is preferred when the sea-

sonal variations are roughly constant through the se-

ries, while the second one is preferred when the seasonal

variations are changed proportional to the level of the

series [20].

Extended Exponential Smoothing (ETS)

The ETS model [21] works by choosing the best fore-

cast model between SES model, additive or multiplica-

tive Holt-Winters model. The forecasting process starts

selecting an optimized model instance for a given time

series. After, the parameters of the equations are esti-

mated. Having the model and the parameters adapted

to the time series data, point forecasts are computed.

[19].

ARIMA (Auto-Regressive Integrated Moving Averages)

The ARIMA model is a stochastic process modeling

framework [10] defined by six parameters (p, d, q) and

(P, D, Q), where the first triple defines the model con-

cerning trend and noise component, and the second vec-

tor is optional and defines a model for the seasonal com-

ponent. P or p stands for the order of the AR(p) process,

D or d for the order of integration (needed for the trans-

formation into a stationary stochastic process), and Q

or q for the order of the MA(q) process [19].

The weakness of this model is the difficulty of select-

ing parameters. In general, the selection is done using

different unit-root tests and Akaike information crite-

rion (AIC). To address this problem, a process for au-

tomated model selection implemented in the auto.ari-

ma() function of the R forecast package is proposed in

[21]. That function fits an ARIMA model to the time

series data and select the best parameters to compute

point forecasts.

3.3 Genetic Operators

Initialization

After choosing a representation method, the next step

will be choose the population size and a method for

generating the initial population. The initial popula-

tion should has a gene pool as large as possible in order

to be able to explore the whole search space, and thus,

in this paper, the initial population has been generated

considering five individuals. Each individual is a time

series forecasting model, that is, has one of its genes

with value equal to one and the other genes with value

equal to zero. In sequence, all individuals are combined

each other (arithmetic average) in groups of two, three,

four and five individuals. Thus is formed the initial pop-

ulation.

6 Valter Rogério Messias et al.

Evaluation

The evaluation is a process of assigning a value to each

individual according to a fitness function. This value

shows the goodness of an individual. In this work, we

propose a metric named Elasticity Index (EI) as fitness

function. The aim is to maximize the sum of EI (SEI)

in previous forecasts. Equation 7 shows the sum of EI

(SEI). We can see in Equation 7 that EI can assume

values between 0 and 1. The closer to 1 the value, the

better is the solution. The parameter N represents the

number of past predictions. Thus, the best individual

(solution) is the one that maximizes the sum of EI.

Figure 2 illustrates the evaluation process.

SEI =

N∑
i=1

min(Vexp,i, Vpred,i)

max(Vexp,i, Vpred,i)
(7)

Forecast

Model 1

Forecast

Model 2

Forecast

Model 3

Forecast

Model 4

Forecast

Model 5

Observed

Value
Predicted

Value

Individual A {0.2, 0.1, 0.25, 0.15, 0.3}

15 20 3010 35

25

round(0.2*15 + 0.1*10 + 0.25*20 + 0.15*35 + 0.3*30) = 23

Fig. 2: Evaluation Example

In Figure 2 we can see how the forecast models are

combined using the individual genes as weights for your

values. After that, we have the predicted value and we

can use the Equation 7 to calculate the EI. This pro-

cess is repeated for each individual in all previous pre-

diction, and each EI value is added to previous values.

The individual with the highest value for the SEI will

be better able to solve the problem.

We want to use the metric EI as fitness function

because it favors the model that has the best perfor-

mance most of the time, i.e., it is less sensitive to out-

liers. Other metrics such as MAE and RMSE, are very

sensitive to outliers, that is, if an individual has very

poor performance at some point, it can be misjudged

by these metrics, even if it has done well most of the

time.

Selection

Selection is the process of choosing two parents from the

population for crossing. In this study, we opted to select

the best 50 individuals ranked in the evaluation phase.

These individuals are going to the crossover phase.

Crossover

Crossover is done to explore new solutions. This op-

erator changes defined parts of two members that are

selected and obtains different members that give new

points in the search space. In this work, the chosen

crossover operator was the arithmetic average of the

values assigned to the genes of each individual par-

ticipant of the intersection. After the parents were se-

lected as described above, in the Selection phase, will be

made the combination of all parents, two by two, where

the couple will mate with probability of 0.90. Figure 3

shows a crossover operation.

Individual A Individual B

Crossover(A, B)

{1, 0, 0, 0, 0} {0, 0, 0, 0, 1}

{0.5, 0, 0, 0, 0.5}

Fig. 3: Crossover Example

Mutation

The mutation operator is critical to the success of ge-

netic algorithms since it determines the search direc-

tions and avoids early convergence. However, unlike the

crossover, mutation is usually done by modifying genes

within a chromosome and its probability is low. In this

paper, we used the swap operator as mutation operator

with probability of 0.10. In the swap operator, two ran-

domly selected genes will exchange their values. Figure

4 shows a mutation operation.

Update

At this point, individuals resulting from the crossover

and mutation process are entered in the population ac-

Title Suppressed Due to Excessive Length 7

Fig. 4: Mutation Example

cording to the policy adopted by the GA. In the most

traditional way, the population maintains a fixed size

and individuals are created in same number as its prede-

cessors and replace them altogether. However, there are

alternatives to this approach, for example, all of the N

best individuals can always be maintained. In our case,

we want to maintain the original individuals and their

sons resulting of crossover and mutation process.

Finishing

The finish does not involve the use of any genetic op-

erator. It is simply composed of a test that gives order

to the process of evolution if the GA has reached a pre-

determined stopping point. The criteria for arrest may

be different from the number of generations have grown

to the degree of convergence of the current population.

In our case, the stopping rule is when individuals stop

to evolve, that is, when the best solution (individual)

of the current generation is the same as the previous

generation, or when the algorithm reach one hundred

iterations.

4 System Architecture

A typical Web Architecture deployed in a cloud envi-

ronment is shown in Figure 5. A Front-End is respon-

sible to receive requests from clients and distribute it

between the several servers in Back-End. Each server is

a Virtual Machine (VM) rented by a Cloud Provider.

It is easy to see that the architecture shown represents

a Queue M/M/m model, in agreement with Queuing

Theory [16].

A queue M/M/m has a single entry point to queue

and m servers to meet demand. In the architecture

shown in Figure 5, the load balancer would be the point

where all requests have to pass (single line). There-

after, the load balancer distributes requests among the

m servers who will be responsible for meeting them.

Virtual

Machine 1

Virtual

Machine 2

Virtual

Machine 3

Virtual

Machine 4

Load Balancer

Clients

Fig. 5: Web Applications Architecture Deployed on

Cloud Infrastructure.

The function of an auto-scaler is to find the min-

imum number of servers (m) to meet requests within

the expected time (SLA) and at the same time save

resources. Figure 6 shows our proposed proactive auto-

scaler in two phases. The first stage is responsible for

forecasting demand for the next time interval. Then,

in the second phase, the minimum amount of resources

required is calculated to meet the demand.

Our auto-scaling system scales a Web Application

in response to change in amount of requests at fixed in-

tervals, which we denote by reconfiguration intervals set

to one hour. This value (one hour) was chosen because

most cloud infrastructure providers define this period

as minimum to charge for resources. That is, if a re-

source is allocated by a lower range at a time, this will

be charged as if it had been used throughout the period

(one hour). Therefore, to optimize the amount paid to

providers is necessary to plan the resources that will be

used every hour.

Requests

Logs

Cloud

Infrastructure

Provider

AutoScaler

Resource

 Allocation

Module

Forecast

Module

Fig. 6: Autoscaler Architecture.

4.1 Requests Forecast

For this work, we used, in addition to naive model, the

functions arima(p, d, q), auto.arima() and ets() of the

8 Valter Rogério Messias et al.

R forecast package. The first of them is used to imple-

ment the autoregressive model. The second one adjust

the best arima model for determined time serie. The

third one choose the best exponential smoothing model

in agreement with data. We tried our system using three

real web applications logs: three months of Fifa World

Cup 98 web servers [1], two months of Nasa web servers

[3] and two weeks of ClarkNet web server [2].

To compose the time series, the maximum amount

of requests per second in each hour was considered. The

model is adjusted hour by hour with new data that

arrives to the system. After, next time series point is

predicted. The algorithm 1 shows the forecast process.

Data: time serie
Result: next point forecast
initialization;
foreach hour do

1 timeSerie← readLog(allData);
foreach model do

2 model← estimateModel(timeSerie);
3 value[model]←

predictOneStepAhead(model);

end
4 nextV alue← combineModelsUsingGA(value);

end

Algorithm 1: Forecast Process

In the line 1 the information are extracted from the

web logs. Then, this information is transformed into a

time series. Next, in line 2, a function is used to es-

timate the most appropriate parameters for a partic-

ular forecasting model, in relation to the time-series

data. All the forecasting models used and their param-

eters are described in Section 3.2. The functions naive,

arima(1, 0, 0), arima(1, 0, 1), auto.arima() and ets()

were considered. All these functions are implemented in

the statistical package R [11]. In line 3, the prediction is

calculated for the next time interval, based on the esti-

mated model in the previous step. Finally, in line 4, the

combination of models using Genetic Algorithms (GA)

is done. Algorithm 2 shows the process of combining

models. This entire process is repeated every one-hour

interval.

Before the forecast, the data were converted to log-

arithmic scale. This procedure is useful, especially in

series that have great variation in their values, such

as the FIFA world cup series. After the prediction, its

value is transformed to normal range.

The algorithm 2 shows the process of combination

of predictive models. Each of the steps shown in the

algorithm is explained in section 3.3.

Data: previous forecasts
Result: weights for each model
initialization;

1 initializatePopulation();
while not reach stop condition do

2 evaluatePopulation();
3 selectP layers();
4 crossSelected();
5 mutateResulting();
6 evaluateResulting();
7 updatePopulation();

end
8 outputSolution();

finalization;

Algorithm 2: Combine Models Process

4.2 Resource Allocation

With next point forecasted such as described in previ-

ous section, we allocated resources following the prin-

ciples of a Queue model M/M/m. In this category of

Queue, system utilization is modeled as follows [18]:

ρ =
λ

mµ
(8)

In equation 8, ρ is the system utilization, λ is the

arrive rate, µ is the processing rate and m is the number

of servers.

For the system to be stable, ρ must be less than 1

[18]. Our aim is find the smallest value to m that keep

the system stability. So let’s rewrite the equation 8 in

m function.

m = d λ
ρµ
e (9)

To find an adequate ρ value it is needed consider
the µ value and the desired response time to requests.

The response time can be calculated as follows [18]:

R =

1
µ

1− ρ
(10)

Putting equation 10 in ρ function we obtain next

equation:

ρ = 1− 1

Rµ
(11)

Where R represents the response time promised to

the clients in Service Level Agreements (SLA).

Joining equations 9 and 11 we have the next equa-

tion:

m = d Rλ

Rµ− 1
e (12)

So, the solution of our problem is to substitute the

parameters in equation 12 by point forecast for next

hour, server processing capacity and SLA values, to find

Title Suppressed Due to Excessive Length 9

Data: next point forecast
Result: amount of resources to be allocated
initialization;
foreach hour do

1 arriveRate← getForecastOneStepAhead(model);
2 processingRate← getProcessingRate();
3 sla← getMaxResponseT ime();
4 amountServers←

calculateResources(arriveRate, processingRate, sla);

end

Algorithm 3: Resource Allocation Process

the number of VMs needed in next hour. The algorithm

3 shows the allocating resources process.

Algorithm 3 starts picking predicting the arrival

rate of requests for the next period of time. Next, the

values of the processing rate for each server (virtual

machine) and the maximum response time required are

obtained. Based on these parameters, the amount of

resources to be allocated for the next time interval is

calculated according to equation 12.

5 Evaluation

In this section we will present results about accuracy

of forecast models and how it works in resource allo-

cation considering several scenarios. After that, results

are analysed and discussed.

5.1 Data Logs Utilized

We evaluate our proposal using three real web server

logs: three months of Fifa World Cup 98 web servers

[1], two months of Nasa web servers [3] and two weeks

of ClarkNet web server [2].

5.1.1 ClarkNet Log

The ClarkNet Log was extracted from a Web server for

the Metro Baltimore-Washington DC area. It is based

in two traces that contains all HTTP requests to the

ClarkNet WWW server during two weeks. The first log

was collected from 00:00:00 August 28, 1995 through

23:59:59 September 3, 1995, a total of 7 days. The sec-

ond log was collected from 00:00:00 September 4, 1995

through 23:59:59 September 10, 1995, a total of 7 days.

In this two weeks period, there were 3,328,587 requests.

Timestamps have 1 second resolution [2].

Looking at Figure 7, we see that the ClarkNet series

presents a behavior that has similarity over time, and

indicate periods with higher demand. Their values are

of the order of tens.

5.1.2 Nasa Log

The Nasa series was based in two traces that contains

all HTTP requests to the NASA Kennedy Space Cen-

ter WWW server in Florida during two weeks. The first

log was collected from 00:00:00 July 1, 1995 through

23:59:59 July 31, 1995, a total of 31 days. The second

log was collected from 00:00:00 August 1, 1995 through

23:59:59 Agust 31, 1995, a total of 31 days. In this two

months period, there were 3,461,612 requests. Times-

tamps have 1 second resolution. From 01/Aug/1995:14-

:52:01 until 03/Aug/1995:04:36:13 there are no accesses

recorded, as the Web server was shut down, due to Hur-

ricane Erin [3].

In NASA series, shown in Figure 7, we see a repeti-

tion in your pattern in certain periods, more prominent

than in ClarkNet series. Also, their values are of the

order of tens, and do not vary much among themselves.

5.1.3 Fifa World Cup Log

The Fifa World Cup logs consists of all the requests

made to the 1998 World Cup Web site between April

30, 1998 and July 26, 1998. During this period of time

the site received 1,352,804,107 requests. The requests

timestamps have 1 second resolution. The time on each

server was coordinated with the local time in France

(+0200). The first access logs were collected on April

30th, 1998; the final access logs were collected on July

26th, 1998. During this 88 day period, 1,352,804,107

requests were received by the World Cup site. [1].

Fifa World Cup time series, showed in figure 7, is the

most complicated of all considered in this work because

it has a high degree of variation in their values, does

not have a repeating pattern of data (many random

components), and has peaks, wich are complicated to

predict. Their values vary with great randomness of the

order of tens to the thousands. The challenge is achieve

good results with this type of series.

5.2 Accuracy Forecast Results

To evaluate the accuracy of the models four metrics

were considered: Mean Absolute Error (MAE); Mean

Elasticity Index (MEI); Root Mean Squared Error (RM-

SE); and Mean Absolute Percentage Error (MAPE).

MAE =
1

N

∑N

i=1
|Vexp,i − Vpred,i| (13)

MEI =
1

N

N∑
i=1

min(Vexp,i, Vpred,i)

max(Vexp,i, Vpred,i)
(14)

10 Valter Rogério Messias et al.

FIFA World Cup Series

Time

R
eq

ue
st

s

0 500 1000 1500 2000

0
20

00
40

00

Nasa Series

Time

R
eq

ue
st

s

0 200 400 600 800 1000 1200 1400

5
10

15
20

ClarkNet Series

Time

R
eq

ue
st

s

0 50 100 150 200 250 300

10
20

30
40

Fig. 7: Utilized Time Series.

RMSE =

√√√√ 1

N

N∑
i=1

(Vexp,i − Vpred,i)2 (15)

MAPE =
1

N

N∑
i=1

∣∣∣∣Vexp,i − Vpred,iVexp,i

∣∣∣∣× 100% (16)

The smaller the values according to the MAE, RMSE

and MAPE metrics, the better is the model perfor-

mance. However, for MEI metric that may assume val-

ues between 0 and 1, the closer the value of 1, the better

is the model performance. The parameter N is the num-

ber of past predictions from the beginning of the time

series.

5.2.1 ClarkNet Series

The figures 8 and 9 shows the distribution of forecast

errors for each model, with and without outliers re-

spectively, considering ClarkNet series. It can be seen

that the ARMA (1, 1) model had the best performance,

showing a more symmetrical distribution of errors and a

smaller difference between the first and the third quar-

tile. We also see that the ARMA (1, 1) model also

showed lower values for outliers. Our proposal (GA) was

the one with the lowest number of outliers. The worst

performance was of the NAIVE model, which showed

the greatest distance among the quartiles and high val-

ues for outliers. To calculate these outliers the following

formula was used:

outlier =

{
value < −1.5(Q3−Q1),

value > +1.5(Q3−Q1).

Where Q1 is the first quartile and Q3 is the third

quartile.

Regarding the metrics used, according to Table 1,

ARMA model obtained the best result for ClarkNet

series, being better in all metrics. Our proposal was the

second best, with close proximity to the ARMA model

results. The NAIVE model had poor performance in all

metrics.

Observing figure 10, which shows the evolution of

the weights of each model for Clarknet series, we note

that the ETS and ARMA models were the most rele-

vant to the Clarknet series. The ETS model had more

weight at the beginning of the series and the ARMA

model became more important after time 200, receiving

more weight. This shows the evolution of our proposal

Title Suppressed Due to Excessive Length 11

Clarknet Series

Time

R
e

q
u

e
s
ts

0 50 100 200 300

1
0

2
0

3
0

4
0

ETS Model

Time
W

e
ig

h
ts

0 50 100 200 300

0
.0

0
.4

0
.8

ARMA(1, 1) Model

Time

W
e

ig
h

ts

0 50 100 200 300

0
.0

0
.4

0
.8

AR(1) Model

Time

W
e

ig
h

ts

0 50 100 200 300

0
.0

0
.4

0
.8

ARIMA Model

Time

W
e

ig
h

ts

0 50 100 200 300

0
.0

0
.4

0
.8

NAIVE Model

Time

W
e

ig
h

ts

0 50 100 200 300

0
.0

0
.4

0
.8

Fig. 10: Weights of the forecasting models for Clarknet series.

NAIVE AR(1) ARMA(1, 1) ARIMA ETS GA

−
5

0
0

5
0

1
0

0

Forecast Model

R
e

la
ti
ve

 E
rr

o
r

(%
)

Fig. 8: Forecast Error ClarkNet Log Without Outliers.

over time, adapting and converging to the model with

the best performance.

5.2.2 Nasa Series

In Figures 11 and 12 we can observe that, as in Nasa se-

ries, the ARIMA model showed a better distribution of

the errors. but in contrast, had a large number of out-

NAIVE AR(1) ARMA(1, 1) ARIMA ETS GA

−
5

0
0

5
0

1
0

0
1

5
0

Forecast Model

R
e

la
ti
ve

 E
rr

o
r

(%
)

Fig. 9: Forecast Error ClarkNet Log With Outliers.

liers. Our proposal had the lowest amount of outliers,

as well as lower values for its.

Table 2 shows that ARIMA model was better in

all metrics. Again, our proposal has a very good perfor-

mance, getting very close to the ARIMA model, accord-

ing to the metrics used. Note that the ARIMA model

had a bad performance considering the ClarkNet series.

12 Valter Rogério Messias et al.

Table 1: Performance of Forecast Models (ClarkNet)

Forecast Model MAE MEI RMSE MAPE
NAIVE 5.37 0.8554 7.41 28.01
AR(1) 4.46 0.8590 6.44 22.90

ARMA(1, 1) 4.29 0.8601 6.16 22.07
ARIMA 4.51 0.8588 6.33 23.96

ETS 4.45 0.8592 6.24 23.24
GA 4.35 0.8600 6.17 22.40

NAIVE AR(1) ARMA(1, 1) ARIMA ETS GA

−
6

0
−

4
0

−
2

0
0

2
0

4
0

6
0

Forecast Model

R
e

la
ti
ve

 E
rr

o
r

(%
)

Fig. 11: Forecast Error Nasa Log Without Outliers.

NAIVE AR(1) ARMA(1, 1) ARIMA ETS GA

0
1

0
0

2
0

0
3

0
0

4
0

0
5

0
0

Forecast Model

R
e

la
ti
ve

 E
rr

o
r

(%
)

Fig. 12: Forecast Error Nasa Log With Outliers.

This shows that the choice of appropriate model is very

dependent on the type of observed series. Our proposal

can adapt to the series, always converging on the best

model.

Table 2: Performance of Forecast Models (Nasa)

Forecast Model MAE MEI RMSE MAPE
NAIVE 1.40 0.8636 1.96 18.56
AR(1) 1.34 0.8651 1.92 16.88

ARMA(1, 1) 1.31 0.8668 1.87 16.39
ARIMA 1.28 0.8686 1.84 16.07

ETS 1.35 0.8633 1.89 17.05
GA 1.30 0.8676 1.85 16.37

Figure 13, which shows the evolution of the weights

of each model for NASA series, we observed that the

models had similar weights over time. Anyway, we can

see that the ARIMA model received the highest weights

for most of the time. Again, our proposal converged on

the best model.

5.2.3 FIFA World Cup Series

In Fifa World Cup serie, there was almost a tie between

our proposal (GA) and the NAIVE model, as can be

seen in Figure 14. However, according to Figure 15, we

see that the GA model had the smaller amount, and

the lowest values for outliers.

NAIVE AR(1) ARMA(1, 1) ARIMA ETS GA

−
4

0
−

2
0

0
2

0
4

0

Forecast Model

R
e

la
ti
ve

 E
rr

o
r

(%
)

Fig. 14: Forecast Error Fifa World Cup 98 Log Without

Outliers.

The results for the Fifa World Cup series reflect its

complexity. Observing Table 3, NAIVE model was the

Title Suppressed Due to Excessive Length 13

Nasa Series

Time

R
e

q
u

e
s
ts

0 200 600 1000 1400

5
1

0
1

5
2

0

ETS Model

Time
W

e
ig

h
ts

0 200 600 1000 1400

0
.0

0
.4

0
.8

ARMA(1, 1) Model

Time

W
e

ig
h

ts

0 200 600 1000 1400

0
.0

0
.4

0
.8

AR(1) Model

Time

W
e

ig
h

ts

0 200 600 1000 1400

0
.0

0
.4

0
.8

ARIMA Model

Time

W
e

ig
h

ts

0 200 600 1000 1400

0
.0

0
.4

0
.8

NAIVE Model

Time

W
e

ig
h

ts

0 200 600 1000 1400

0
.0

0
.4

0
.8

Fig. 13: Weights of the forecasting models for Nasa series.

NAIVE AR(1) ARMA(1, 1) ARIMA ETS GA

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Forecast Model

R
e

la
ti
ve

 E
rr

o
r

(%
)

Fig. 15: Forecast Error Fifa World Cup 98 Log With

Outliers.

best in the MAE and MEI metrics, while the AR (1)

model was the best in the RMSE metric and the GA

model was the best in MAPE metric. Interestingly, the

NAIVE model, which had a poor performance in the

previous series (NASA and ClarkNet), was one of the

best for the FIFA World Cup series. And, once again,

our proposal was able to adapt the series, converging

to the best result.

Table 3: Performance of Forecast Models (World Cup)

Forecast Model MAE MEI RMSE MAPE
NAIVE 71.23 0.8760 249.46 18.64
AR(1) 76.87 0.8612 240.61 17.85

ARMA(1, 1) 81.04 0.8601 244.67 18.21
ARIMA 80.07 0.8567 248.82 19.78

ETS 80.08 0.8654 260.74 19.15
GA 71.55 0.8740 248.25 17.68

According to the figure 16, we can observe the evo-

lution of the weights of each model to FIFA World Cup

Series. We note that the ETS and AR models have re-

ceived the greatest weight at the beginning of the series.

From the time in 1000, the two models have lost rele-

vance and the NAIVE model started to prevail, receiv-

ing the highest weights. Coincidentally, from the time

in 1000, the series now has high variability, with a lot of

bursts. The results show that none of the models used is

suitable for treating this type of series. For this reason,

the NAIVE model prevailed. Either way, our proposal

again proved to be able to indicate into the best result.

14 Valter Rogério Messias et al.

FIFA World Cup Series

Time

R
e

q
u

e
s
ts

0 500 1000 1500 2000

0
1

0
0

0
3

0
0

0

ETS Model

Time
W

e
ig

h
ts

0 500 1000 1500 2000

0
.0

0
.4

0
.8

ARMA(1, 1) Model

Time

W
e

ig
h

ts

0 500 1000 1500 2000

0
.0

0
.4

0
.8

AR(1) Model

Time

W
e

ig
h

ts

0 500 1000 1500 2000

0
.0

0
.4

0
.8

ARIMA Model

Time

W
e

ig
h

ts

0 500 1000 1500 2000

0
.0

0
.4

0
.8

NAIVE Model

Time

W
e

ig
h

ts

0 500 1000 1500 2000

0
.0

0
.4

0
.8

Fig. 16: Weights of the forecasting models for FIFA World Cup series.

5.3 Resource Allocation Results

To measure the efficiency of our proposal in the proper

allocation of resources, we compare it with the use of a

linear combination of models, by means of linear pro-

gramming, as shown in Equations 17, 18, 19 and 20. To

solve the Equations 17, 18, 19 and 20 we use the Sim-

plexSolver class from Apache Commons Math library

[28]. This class implements the two-phase Simplex al-
gorithm [15]. We chose the Simplex algorithm to com-

pare with our proposal (GA) because it is widely used

in linear optimization problems. Initially, the zero value

is assigned for the MEI of each forecasting model. After

this, in each time interval, we will: a) update the MEI

in accordance with the past predictions of each model;

b) set the weight of each forecasting model by solv-

ing Equations 17, 18, 19 and 20; c) combine the future

forecast of each model, by means of the weights cal-

culated in the previous stage; and, finally, d) calculate

and allocate the required number of resources for the

next hour using the Equation 12. Figures 17, 18 and 19

illustrate the results obtained, and include three time

series used in this study and two different scenarios out-

lined in Table 4. The X axis represents the number of

under-provisioned resources and the Y axis represents

the number of over-provisioned resources.

Z = max
∑5

i=1
Mixi (17)

subject to:

xi ∈ [0, 1] (18)∑5

i=1
xi = 1 (19)

where:

Mi = mean elasticity index according to the fore-

casting model i

xi = weight of the forecasting model i in the next

forecast

Table 4: Scenarios considered in the experiments

Scenario Processing rate (µ) SLA (R)
First 10 requests per second 0.4 second

Second 20 requests per second 0.8 second

5.3.1 ClarkNet Series

Figure 17 shows the results for ClarkNet series. We can

see that the GA method is in both scenarios evalu-

ated, among the Pareto optimal solutions. The ETS and

ARMA models also are among the optimal solutions, in

both scenarios. The Simplex method was dominated in

the second scenario, it is not an optimal solution in this

case.

Title Suppressed Due to Excessive Length 15

In the Tables 5 and 6 we can observe the exact

amounts of under and over-provisioned resources gen-

erated by the GA and Simplex methods, and by each

isolated prediction model. The 5 table shows that the

GA method was the one that had the least value for

the sum of under-provisioned and over-provisioned re-

sources, in the first scenario. The Simplex method was

only in fourth. In the second scenario, shown in Table

6, again the GA method showed the best results for

the total of under and over-provisioned resources gen-

erated, tied with the ETS model. The Simplex method

was fourth, next to the ARMA model.

Table 5: First Scenario: ClarkNet Series

Under- Over-
provisioned provisioned

Model resources resources Total
NAIVE 117 117 234
AR(1) 138 70 208

ARMA(1, 1) 127 63 190
ARIMA 126 82 208

ETS 115 71 186
Simplex 106 95 201

GA 116 65 181

Table 6: Second Scenario: ClarkNet Series

Under- Over-
provisioned provisioned

Model resources resources Total
NAIVE 52 52 104
AR(1) 81 29 110

ARMA(1, 1) 65 34 99
ARIMA 58 40 98

ETS 57 39 96
Simplex 59 40 99

GA 59 37 96

5.3.2 Nasa Series

Figure 18 shows the results for Nasa series. We can see

that all models except the ARMA in the first scenario

and the NAIVE in the second, were among the Pareto

optimal solutions. In Table 7, which shows the results

for the first scenario, we can see that the GA method

had the second best result for the amounts of under and

over-provisioned resources generated, getting very close

to the first place, the ARIMA model. In the second sce-

nario, presented in the Table 8, only the NAIVE model

was slightly worse than the others. We can notice also

that the ARIMA model, which had one of the worst

performances in ClarkNet series, this time it was the

model that had the best performance.

Table 7: First Scenario: Nasa Series

Under- Over-
provisioned provisioned

Model resources resources Total
NAIVE 148 148 296
AR(1) 244 56 300

ARMA(1, 1) 223 67 290
ARIMA 215 64 279

ETS 204 87 291
Simplex 154 135 289

GA 209 73 282

Table 8: Second Scenario: Nasa Series

Under- Over-
provisioned provisioned

Model resources resources Total
NAIVE 1 1 2
AR(1) 1 0 1

ARMA(1, 1) 1 0 1
ARIMA 1 0 1

ETS 1 0 1
Simplex 1 0 1

GA 1 0 1

5.3.3 FIFA World Cup Series

In the FIFA World Cup series, shown in Figure 19, the

only model dominated in both scenarios was the ETS.

The others were among the Pareto optimal solutions.
However, observing the Tables 9 and 10, we note that

three solutions stand out from others: NAIVE model,

the GA method and Simplex method. The difference

between the three solutions was very small, in both sce-

narios, with NAIVE model a little better than the GA

method, which was slightly better than the Simplex

method. Another interesting fact is that the NAIVE

model, which had a very poor performance in the pre-

vious series (ClarkNet and NASA), this time was the

model that had the best performance. Instead, the ETS

model, which in previous cases performed well, this time

was the worst performing model.

5.4 Complexity and Overhead

Figure 20 shows the overhead caused by predictive mod-

els and our proposal. To implement the models con-

sidered in the experiments we use the following func-

tions of the statistical package R: the arima (1, 0, 0)

16 Valter Rogério Messias et al.

Fig. 17: Solutions for ClarkNet series.

Fig. 18: Solutions for NASA series.

Table 9: First Scenario: FIFA World Cup Series

Under- Over-
provisioned provisioned

Model resources resources Total
NAIVE 9,883 9,882 19,765
AR(1) 14,707 6,622 21,329

ARMA(1, 1) 14,655 7,800 22,455
ARIMA 13,264 8,924 22,188

ETS 11,947 10,234 22,181
Simplex 10,051 9,806 19,857

GA 10,537 9,248 19,785

Table 10: Second Scenario: FIFA World Cup Series

Under- Over-
provisioned provisioned

Model resources resources Total
NAIVE 3,956 3,955 7,911
AR(1) 5,908 2,641 8,549

ARMA(1, 1) 5,895 3,123 9,018
ARIMA 5,356 3,540 8,896

ETS 4,807 4,057 8,864
Simplex 4,025 3,924 7,949

GA 4,238 3,696 7,934

Title Suppressed Due to Excessive Length 17

Fig. 19: Solutions for the Fifa World Cup series.

function as AR(1) model, the arima (1, 0, 1) function

as ARMA(1, 1) model, the auto.arima () as ARIMA

model and the ets () as ETS model. The genetic algo-

rithm for combining models was implemented using the

Java language. To perform the experiments we used a

quad core machine with 2 GB of speed and 16 GB of

RAM.

According to the Figure 20, the AR (1) model has 5

ms overhead for 300 data points and the ARMA (1, 1)

has 8 ms overhead for 300 data points. The ARIMA

model shows a considered increase in overhead over

the previous models. The model has an overhead of

100 ms to 300 data points. ETS model was more com-

plex, with an overhead of approximately 300 ms to 300

data points. Our proposal to combine the models using

genetic algorithm (GA), showed an overhead slightly

higher, around 400 ms to 300 data points. The Simplex

method showed a overhead very similar to our proposal.

However, it is important to clarify that this overhead

is negligible for the application, since the prediction is

performed only once every hour. The NAIVE model is

not shown in the Figure because has virtually no over-

head.

To analyze the complexity of our proposal, we will

consider the number of comparisons that is performed

to find the best solution to the problem. Whereas, in

each iteration (evolution), the top 50 assessed individ-

uals are selected for reproduction, and that intersect in

pairs, with probability 0.9, we will have approximately(
50
2

)
individuals (solutions) at the end of the crossover

phase.

To select the best individuals, we use the Merge-

sort algorithm for ordering them according to their re-

spective valuations. The Merge-sort complexity is O(n∗
log2n), where n is the number of individuals (candidate

solutions). Therefore, in our case, this complexity would

be
(
50
2

)
*log2

(
50
2

)
.

At the end of each iteration, it is necessary to find

the best individual of the current generation. There-

fore, it is needed
(
50
2

)
comparisons. As our solution

allows up to 100 iterations, we have, in total, up to

100*
(
50
2

)
*
(
50
2

)
*log2

(
50
2

)
comparisons. We can conclude,

then, that the complexity of our proposal depends on

two parameters: the number of selected individuals to

cross (N); and maximum number of allowed iterations

(M). In our case N equals 50 and M equals 100.

Therefore, given the above facts, the complexity of

our proposal is M ∗
(
N
2

)2 ∗ log2(N2), or O(M ∗ N2 ∗
log2N). Where N is the number of individuals selected

to cross and M is the maximum number of iterations

(evolutions) allowed.

Regarding the Simplex algorithm, according to the

literature [24] the maximum complexity is considered

exponential in K, where K is the number of problem

variables. However, according to the literature [24], few

problems that need this complexity to be solved. This

is why the Simplex is widely used. Figure 20 shows that

for a problem of five variables, as in our case, the Sim-

plex algorithm processing time is very similar to the

time spent for the solution using genetic algorithms

(GA).

18 Valter Rogério Messias et al.

AR(1)

Data Points

T
im

e
(m

s)

0 50 100 150 200 250 300

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

ARMA(1, 1)

Data Points

T
im

e
(m

s)

0 50 100 150 200 250 300
4

5
6

7
8

ARIMA

Data Points

T
im

e
(m

s)

0 50 100 150 200 250 300

40
60

80
10

0

ETS

Data Points

T
im

e
(m

s)

0 50 100 150 200 250 300

50
10

0
15

0
20

0
25

0

Simplex

Data Points

T
im

e
(m

s)

0 50 100 150 200 250 300

10
0

20
0

30
0

40
0

GA

Data Points

T
im

e
(m

s)

0 50 100 150 200 250 300

10
0

20
0

30
0

40
0

Fig. 20: Overhead of the forecasting models.

5.5 Bootstrap

To show that our proposal does not depend on a specific

forecasting model, we retrace the experiments, remov-

ing in every execution, one of the predictive models.

Thus, in the first round, we removed the NAIVE model

from the initial set of five models: NAIVE, AR, ARMA,

ARIMA and ETS. In the second round, we removed the

AR model. In the third, the ARMA model, and so on. In

total there were five rounds of experiments, each with-

out one of the five models considered in our proposal.

The Figures 21, 22, 23, 24, and 25 illustrate the

bootstrap results. We note that in all cases and sce-

narios, our proposal (GA) has always been among the

Pareto optimal solutions. All isolates forecasting mod-

els, were dominated in some scenery. This shows the

adjustment capacity of our proposal, which, regardless

of the series, scenario or set of models considered, al-

ways converges to an optimal solution, in relation to

this set.

5.6 Feasibility Test

To show the feasibility of our proposal we made a pro-

jection of cost with under-provisioned and over-provisioned

resources for a year, considering the nominal price of

$ 1 for either a under-provisioned resource as a over-

provisioned resource. For the purposes of this paper, a

resource is a virtual machine rented in an infrastruc-

ture cloud provider. In addition to the projection of

costs, we also consider the overhead of each model and

deployment difficulty.

To calculate the estimated annual average cost, we

use the values shown in the Tables 5, 6, 7, 8, 9 and 10,

for under-provisioned and over-provisioned resources,

in each series used. From these values we project the

average cost in a year, multiplying these values by the

number of days in a year, and divided by the number

of days in the respective log, in each scenario. Then we

calculated the average of the values presented in each

scenario. Finally, we calculated the average of the values

presented in three series and get the overall average

among all series. The Table 11 illustrates the results of

our study.

Title Suppressed Due to Excessive Length 19

(a) ClarkNet series

(b) Nasa series

(c) FIFA World Cup series

Fig. 21: Bootstrap for NAIVE Model.

20 Valter Rogério Messias et al.

(a) ClarkNet series

(b) Nasa series

(c) FIFA World Cup series

Fig. 22: Bootstrap for AR Model.

Title Suppressed Due to Excessive Length 21

(a) ClarkNet series

(b) Nasa series

(c) FIFA World Cup series

Fig. 23: Bootstrap for ARMA Model.

22 Valter Rogério Messias et al.

(a) ClarkNet series

(b) Nasa series

(c) FIFA World Cup series

Fig. 24: Bootstrap for ARIMA Model.

Title Suppressed Due to Excessive Length 23

(a) ClarkNet series

(b) Nasa series

(c) FIFA World Cup series

Fig. 25: Bootstrap for ETS Model.

24 Valter Rogério Messias et al.

In Table 11 we can see that combining predictive

models reduces costs with under-provisioned and over-

provisioned resources. Both on linear programming ap-

proach using the simplex method as the solution based

on genetic algorithms (GA) showed better results than

the use of a single prediction model in isolation. How-

ever, between the two, the solution based on genetic

algorithms was the one with the best result.

Another important point to be considered is the

overhead raised by the models to make a prediction.

After all, a very high overhead could make the solu-

tion unfeasible. Those overhead were taken from exper-

iments conducted and were detailed in Section 5.4. We

can see in the Table 11 that the overhead raised by

solutions based on combination of predictive models is

superior to the overhead of solutions based on a sin-

gle model. However, still, the overhead of around 400

ms, is extremely low considering that a prediction will

be made only every one hour time interval. Therefore,

this does not make in any way, the proposed solution

unfeasible.

Finally, we can analyze the difficulty of implement-

ing the proposals. Of course that solutions based on

the combination of models has a slightly higher diffi-

culty of implementing than the solutions based on a

single model. But even so, this difficulty can be consid-

ered low. That is due to the fact that both the Simplex

algorithm as the use of genetic algorithms are widely

described and documented in the literature. Thus, it is

very easy to find professionals able to work with such

technologies.

According to the data presented above, we can con-

clude that our proposal is feasible to solve the resource

allocation problem for Web applications hosted on the

cloud infrastructure. Compared to the linear program-

ming based solution and the solutions based on a sin-

gle forecast model, our solution (GA) was the one that

proved the most suitable to resolve the issue.

Table 11: Estimated Costs per Year

Average Cost per Year (estimate)
Series

Model ClarkNet Nasa World Cup Total
NAIVE 4394 968.5 59964.67 21775.72
AR 4134 978.25 64735.67 23282.64
ARMA 3757 945.75 68191.5 24298.08
ARIMA 3978 910 67348.67 24078.89
ETS 3666 949 67264.17 23959.72
Simplex 3900 942.5 60246.34 21696.28
GA 3601 919.75 60057.84 21526.2

5.7 Final Remarks About Results

We can notice by the results that there is not a better

predictive model for all cases. The NAIVE model, for

example, had the best result for the FIFA world cup

series and the worst for the other series. Similarly, the

ARIMA model had the best performance for the Nasa

series and the worst for the ClarkNet series. Our pro-

posed method had good results in all scenarios and se-

ries used. It showed itself a generic and efficient model,

able to adapt to each series and scenery.

The results show that the higher the rate of pro-

cessing of the server and the lower the response time is,

less error will be in the allocation of resources. This rule

applies to all models and series. From this premise, we

can conclude that, when decrease the server processing

rate and maximum response time (SLA), the prediction

accuracy becomes more important.

The models evaluated, in general, showed low error

rates in resource allocation, especially for ClarkNet and

NASA series. For FIFA World Cup series, the error rate

was higher than in the two other series analyzed. How-

ever, the results can not be considered bad at all. The

Fifa World Cup series presents high variability of val-

ues, which makes it difficult to forecast. We have also

to consider that the values achieved by the series is of

the order of thousands, unlike the other two where the

values achieved are on the order of tens.

Regarding the metrics used, MEI metric is presented

as the best option to evaluate the elasticity of auto-

scaling techniques. Our proposed metric was less sen-

sitive to outliers, rewarding the model which had the

best regularity.

6 Conclusion and Future Works

The focus of this work was to conduct a study on the use

genetic algorithm to combine classical statistical mod-

els in predicting demand for web applications hosted

in cloud infrastructure. The demand forecast is impor-

tant because reactive techniques are not able to cope

with variations in demand without causing system in-

stability. This is due to the fact that the allocation of

resources in the cloud infrastructure is not instanta-

neous, and there is a delay until the resource is ready

for use. It is therefore necessary to predict the future

demand, to request the necessary resources in advance.

However, choosing the best prediction model is a diffi-

cult task. As seen from the results, there is not a bet-

ter prediction model for all cases. A model that has a

good performance for a given time series can have a bad

performance to another. The task becomes even more

Title Suppressed Due to Excessive Length 25

complicated when the user does not have much histor-

ical data to analyze. For example, a company that is

starting a business and want to host your Web appli-

cation in the cloud. Our proposal strikes precisely this

problem, because our proposed method is able to adapt

to various types of time series, and does not need a lot

of historical data to work, because it does not require

a previous training phase, being able to adapt the ex-

tent to which the data is coming. Thus, our method

is generic enough to be used by any user wishing to

host your Web application in the cloud and be guar-

anteed to get a good result. It was also shown that

the smaller the parameters: server processing rate and

maximum response time, becomes more important to

choose a good predictive model. Finally, the MEI met-

ric proposed in this work, is effective in evaluating the

performance of the auto-scaling techniques, and can be

useful for future work, since there is a lack of metrics

to measure elasticity in the cloud. For future work will

consider the use of a cost model to optimize the fitness

function. Also, we will consider other kinds of crossover

and mutation. Other forecasting models may also be

considered as well.

Acknowledgements We would like to thank the Federal
Institute of Sao Paulo (IFSP) and the Higher Education Per-
sonnel Training Coordination (CAPES) for financial support.
The logs used in this work were obtained in 1.

7 Compliance with Ethical Standards and

Disclosure of potential conflicts of interest

Our research did not involve human participants and

neither animals.There are no conflicts of interest with

reviwers, funding agencies, etc and neither financial sup-

port for the development of this work, that could have

direct or potential influence or impart bias on the work.

The reviewers are given the following countries: Spain,

Italy, Germany, Australia and the Netherlands. None

of the reviewers are from the same country or the same

institution of the authors. The content of this paper

are according with of ethical and professional conduct

described by the Springer.

References

1. 1998 world cup web site access logs.
http://ita.ee.lbl.gov/html/contrib/WorldCup.html.
Accessed: 2014-10-15

2. Clarknet-http - two weeks of http
logs from the clarknet www server.
http://ita.ee.lbl.gov/html/contrib/ClarkNet-
HTTP.html. Accessed: 2014-10-15

1 http://ita.ee.lbl.gov/html/traces.html

3. Nasa-http - two months of http logs from the ksc-nasa
www server. http://ita.ee.lbl.gov/html/contrib/NASA-
HTTP.html. Accessed: 2014-10-15

4. Rightscale. set up autoscaling using voting tags.
https://support.rightscale.com/. Accessed: 2015-01-10

5. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adap-
tive hybrid elasticity controller for cloud infrastructures.
In: Network Operations and Management Symposium
(NOMS), 2012 IEEE, pp. 204–212. IEEE (2012)

6. Arlitt, M., Jin, T.: A workload characterization study of
the 1998 world cup web site. Network, IEEE 14(3), 30–37
(2000)

7. Armbrust, M., Fox, O., Griffith, R., Joseph, A.D., Katz,
Y., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al.: M.: Above the clouds: A berkeley view
of cloud computing (2009)

8. Balaji, M., Rao, G., Kumar, C., et al.: A comparitive
study of predictive models for cloud infrastructure man-
agement. In: Cluster, Cloud and Grid Computing (CC-
Grid), 2014 14th IEEE/ACM International Symposium
on, pp. 923–926. IEEE (2014)

9. Beloglazov, A., Buyya, R.: Adaptive threshold-based ap-
proach for energy-efficient consolidation of virtual ma-
chines in cloud data centers. In: Proceedings of the 8th
International Workshop on Middleware for Grids, Clouds
and e-Science, p. 4. ACM (2010)

10. Box, G.E., Jenkins, G.M., Reinsel, G.C.: Time series
analysis: forecasting and control. John Wiley & Sons
(2013)

11. Braun, J., Murdoch, D.J.: A first course in statistical pro-
gramming with R, vol. 25. Cambridge University Press
Cambridge (2007)

12. Chieu, T.C., Mohindra, A., Karve, A.A.: Scalability and
performance of web applications in a compute cloud. In:
e-Business Engineering (ICEBE), 2011 IEEE 8th Inter-
national Conference on, pp. 317–323. IEEE (2011)

13. Chieu, T.C., Mohindra, A., Karve, A.A., Segal, A.: Dy-
namic scaling of web applications in a virtualized cloud
computing environment. In: e-Business Engineering,
2009. ICEBE’09. IEEE International Conference on, pp.
281–286. IEEE (2009)

14. Clark, T.: Quantifying the benefits of the rightscale cloud
management platform. Fact Point Group Whitepaper,
funded by Rightscale (2010)

15. Dantzig, G.B.: Linear programming and extensions.
Princeton university press (1998)

16. Di Penta, M., Casazza, G., Antoniol, G., Merlo, E.: Mod-
eling web maintenance centers through queue models.
In: Software Maintenance and Reengineering, 2001. Fifth
European Conference on, pp. 131–138. IEEE (2001)

17. Fernandez, H., Pierre, G., Kielmann, T., et al.: Autoscal-
ing web applications in heterogeneous cloud infrastruc-
tures. In: IEEE International Conference on Cloud En-
gineering (2014)

18. Gross, D., Shortle, J.F., Thompson, J.M., Harris, C.M.:
Fundamentals of queueing theory. John Wiley & Sons
(2013)

19. Herbst, N.R., Huber, N., Kounev, S., Amrehn, E.:
Self-adaptive workload classification and forecasting for
proactive resource provisioning. Concurrency and Com-
putation: Practice and Experience (2014)

20. Hyndman, R.J., Athanasopoulos, G.: Forecasting: prin-
ciples and practice. OTexts (2014)

21. Hyndman, R.J., Khandakar, Y.: Automatic time series
for forecasting: the forecast package for r. Tech. rep.,
Monash University, Department of Econometrics and
Business Statistics (2007)

26 Valter Rogério Messias et al.

22. Jiang, J., Lu, J., Zhang, G., Long, G.: Optimal cloud
resource auto-scaling for web applications. In: Clus-
ter, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on, pp. 58–65.
IEEE (2013)

23. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-
adaptive and self-configured cpu resource provisioning for
virtualized servers using kalman filters. In: Proceedings
of the 6th international conference on Autonomic com-
puting, pp. 117–126. ACM (2009)

24. Kleinberg, J., Tardos, É.: Algorithm design. Pearson Ed-
ucation India (2006)

25. Lim, H.C., Babu, S., Chase, J.S., Parekh, S.S.: Auto-
mated control in cloud computing: challenges and op-
portunities. In: Proceedings of the 1st workshop on Au-
tomated control for datacenters and clouds, pp. 13–18.
ACM (2009)

26. Lorido-Botrán, T., Miguel-Alonso, J., Lozano, J.A.:
Auto-scaling techniques for elastic applications in cloud
environments. Department of Computer Architecture
and Technology, University of Basque Country, Tech.
Rep. EHU-KAT-IK-09 12 (2012)

27. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A
review of auto-scaling techniques for elastic applications
in cloud environments. Journal of Grid Computing pp.
1–34 (2014)

28. Math, C.: The apache commons mathematics library
(2014)

29. Miller, M.: Cloud computing: Web-based applications
that change the way you work and collaborate online.
Que publishing (2008)

30. Padala, P., Hou, K.Y., Shin, K.G., Zhu, X., Uysal, M.,
Wang, Z., Singhal, S., Merchant, A.: Automated control
of multiple virtualized resources. In: Proceedings of the
4th ACM European conference on Computer systems, pp.
13–26. ACM (2009)

31. Roy, N., Dubey, A., Gokhale, A.: Efficient autoscaling in
the cloud using predictive models for workload forecast-
ing. In: Cloud Computing (CLOUD), 2011 IEEE Inter-
national Conference on, pp. 500–507. IEEE (2011)

32. Wang, L., Xu, J., Zhao, M., Tu, Y., Fortes, J.A.: Fuzzy
modeling based resource management for virtualized
database systems. In: Modeling, Analysis & Simulation
of Computer and Telecommunication Systems (MAS-
COTS), 2011 IEEE 19th International Symposium on,
pp. 32–42. IEEE (2011)

33. Xu, J., Zhao, M., Fortes, J., Carpenter, R., Yousif, M.:
On the use of fuzzy modeling in virtualized data center
management. In: Autonomic Computing, 2007. ICAC’07.
Fourth International Conference on, pp. 25–25. IEEE
(2007)

