
Service Selection based on Non-Functional Properties

Stephan Reiff-Marganiec1, Hong Qing Yu1, Marcel Tilly2

1 Department of Computer Science, University of Leicester, UK
email: {srm13,hqy1}@le.ac.uk

2 European Microsoft Innovation Centre, Aachen, Germany
email: marcel.tilly@microsoft.com

Abstract. Service-oriented Architecture supports software to be composed from services
dynamically. Selecting and composing appropriate services according to business process,
policies and non-functional constraints is an essential challenge. This paper proposes a method
for automatic selection of the most relevant service for composition based on non-functional
properties and the user’s context. In doing this we also propose a method of obtaining and
evaluating non-functional aspects.

1 Introduction and Motivation

Service-oriented Architecture (SOA) is by now widely used in the industry for
solving B2B problems due to their ability to deliver flexible software systems
that support the changing nature of business co-operations. The predominant
implementation of SOA is called Web Services (WS). Considering WS, the
fundamental standards are SOAP, WSDL and UDDI – together they address
the fundamental paradigm of SOA: publish-find-bind.

Services are made available via the internet by a service provider, and
their description is published (using WSDL descriptor files with details stored
in UDDI repositories); a service consumer will query the UDDI repository to
find an appropriate service and then use SOAP to invoke that service (this
involves very late binding, essentially taking place at execution time).
Currently this process is largely based on a human user making the decisions
as to which service is suitable for their purpose. Furthermore, currently the
matching is mostly based on functional requirements while non-functional
aspects are not formally considered. However, in order to decide which
service is most suited for a particular user in their current situation clearly
depends on the functionality, but also on non-functional properties such as
cost or reliability. Of course a UDDI repository might contain information
about the cost of using a service or the service level agreements provided, but
again this mostly for human consideration and hence not suitably formalised

2 S. Reiff-Marginec, H. Q. Yu, M. Tilly

for automatic selection. There has been some effort in the Semantic Web
Services Community to address these issues, however adopting this requires
much more fundamental changes than our suggestion and hence might not be
as readily available in the short term.

The complexity of business processes and the dynamic nature of the
co-operations make it difficult for the business modeller to select appropriate
services, manage the compositions efficiently and understand requirements
within a dynamic context correctly. In this paper we present the service
management layer developed as part of the inContext project1 which is aimed
at addressing the above issue, in particular considering that a service’s
suitability depends largely on the user’s context. We will focus on a specific
aspect of this management layer: namely the service lookup and relevance
ranking. What is special about this lookup is that in addition to the functional
aspects of a service non-functional aspects are considered both when looking
up a service as well as when finding the most suitable service.

The remainder of this paper is structured as follows: section 2
introduces the reader to relevant background and related work, section 3
presents the service management layer of the inContext platform and its
position in the wider platform. Section 4 discusses how data concerning the
non-functional aspects is obtained, while section 5 discusses how it is
quantified. Section 6 describes the ranking mechanism and section 7 shows an
example. Finally we round the paper off with a summary and discussion of
future work in section 8.

2 Background

Most of the related work on using non-functional properties for service
selection concentrates on defining QoS (Quality of Service) ontology
languages and vocabularies and identification of various QoS metrics and
their measurements with respect to semantic services.

In [1] and [2], QoS ontology models are defined, which propose QoS
ontology frameworks aimed at formally describing QoS attributes. To our
understanding, these works have not considered non-functional property
based service matching and neither how to quantify the attributes.

1 Interaction and Context Based Technologies for
Collaborative Teams; EU-IST-2006-034718; www.in-context.eu

Service Selection based on Non-Functional Properties 3

Ran [3] enumerates a large number of non-functional properties and
organizes them into several categories, such as runtime-related, transaction
support related, configuration management, cost-related QoS, and security-
related QoS. However, the work fails to illustrate the quantifiable
measurements as it simply assumes that all measured values are available
somewhere.

The work in [4], [5], and [6] attempts to conduct a detailed evaluation
and proposes QoS-based service selection. However, it does not explicit
where the criteria come from. Additionally, all the current works does not
consider the logic relations between criteria, using only the average of all
individual values of the criteria as the final score.

Compared to the existing work, our selection approach has 5 major
advantages. (1) Our process combines evaluation and selection activities in
contrast to [4] and [7] which only address selection issues. (2) Our three
measurement functions can deal with most types of criteria. This makes the
measurement functions reusable and applicable to a wide range of non-
functional attributes. Other work only focuses on criteria specific metrics and
does not provide generic functions for all kinds of criteria. (3) Our method is
more dynamic in that it automatically applies the correct metric while other
work requires a manual association, or at least predefined maps, relating
metrics to attributes. (4) We separate different non-functional criteria into
different service categories. This is more sensible than ranking all kinds of
services by using the same predefined criteria and hence not considering the
different attributes that occur with specific services. (5) The key feature of
incorporating the Logic Scoring of Preferences (LSP) method into our
approach is that it captures the logic relations between criteria rather than just
simply using average weight mechanism. LSP has been successfully used in
manual multi criteria decision making.

3 Service Management

The inContext platform provides means of integrating services to support
collaborative teams. In that sense it is a quite a complex structure and not all
of it is relevant for this paper. An overview is provided in Figure 1.

4 S. Reiff-Marginec, H. Q. Yu, M. Tilly

Context
Provider

Access
Layer

Data &
Patterns
Mining

Service Management

Service
Lookup

Relevance
Engine Service

Composer

Pro-Active
Engine

Policy
Store

Pro-Active Rules

(de)register lookup

WF Execution
Service

Store
Template

Find services

Template
Store

Get ranked
list of services

Pub/Sub
Query

invoke

Get
Mining Data

Find
services

Get
Mining Data

Service
Registry

Pub/Sub
Query

Lookup template
Get Context Data

Compose
workflow

Figure 1: The Service Management Subsystem of the inContext Platform

The most interesting part is the service management core. This is located
inside the platform, and provides access to service lookup, registration and
invocation through the access layer to users. We will consider some aspects of
the core in more detail, as is relevant for this paper – other aspects will remain
unexplained here.

The other parts of the architecture that it interacts with are the context
provider and the data and pattern mining subsystems. The context provider
can be queried to gain insight into a user’s current context which includes
location, but more interestingly information about their activity and its
relation to other collaborators. The data mining system provides information
about past use of services and the situations that they have proven useful in.

A typical invocation starts with a request being submitted via the
access layer to the service lookup. This queries the service registry to obtain
all relevant services – that is services in the category that the user requires:
e.g. a user might be looking for printing services. The list of services thus
obtained is passed to the relevance engine, which conducts 2 tasks: filtering
out services that do not meet minimal requirements (one might require a
colour printer, and not all printing services will fulfil that need) and then rank
the remaining ones based on the evaluation of additional, mostly non-
functional, criteria (e.g. print cost or print quality).

Service Selection based on Non-Functional Properties 5

An additional way of invocation is through the workflow execution
engine, which when executing workflows will encounter the need to
instantiate tasks with services. Again, this uses the lookup mechanism and the
process described above, but it provides additional context in the form of
which step is being executed next and which steps have already been executed
thus allowing for a more fine grained service ranking taking the larger
execution frame into account.

The next few sections will discuss how the data of non-functional
properties is stored and used in the lookup and ranking steps described above.

4 Obtaining Relevant Non-functional Properties

Essential questions that have not been addressed by previous work include
how one obtains the non-functional requirements (that is the requirements of
the service user) and how the non-functional properties of the relevant
services can be captured. We address this by assigning each operation offered
by a service to one or more categories at registration time, essentially storing
the extra information in the service repository. Capturing the data would be
step in the design of individual services. We deliberately assign categories at
an operation level, rather than service level, as a single service might offer
quite diverse functionality. A category associates to a certain set of criteria
(non-functional properties) which are defined during generation of the
categories. As Figure 2 shows, a criterion is defined as a tuple {Name, Type,
Weight and Value}. Name is the unique string for identifying criteria, the
same string is used for the CriterionData in the semantic description of
services. Type is the data type of each criterion such as Boolean, String,
Integer, etc. The weights have an initial value created at the same time as the
criteria. However, the values of the weights can be modified by end-users at
invocation time. The meaning of the weight is as follows: if the weight is
equal to 1, then the criterion is hard requirement, which means that services
not satisfying this criterion should be discarded. If the weight is less than 1
and larger than 0, then criterion is considered a soft requirement which
impacts on the final ranking of the service. When the criterion is of numerical
type, the weight can be less than 0 but bigger than -1. In this special case, it
means that a smaller numerical value is desired (as e.g. for bandwidth usage
or price). The value attribute is to specify the parameter constrains for the
criterion. For instance, a value for cost can be defined as 100 Pounds.

6 S. Reiff-Marginec, H. Q. Yu, M. Tilly

However, the value can be empty since if we simply want to have the lowest
or highest one.

-name
-description

Category -name
-type
-weight
-value

Criterion

-name
Operation

*

*

CriterionData

-name
-endpoint
-description

Service

-service 1

-operations *

-url
-attribute
-value

MetaData

-SPARQLExpr
-value

ContextData

1

-data

*

-criterion1

-data1

-categories

*

-criteria

*

Figure 2: Generic model for non‐functional service aspects

Furthermore, each criterion also has associated a CriterionData class; this is
subclassed in two ways allowing for two different methods to obtain the
related information from relevant services descriptions. Metadata allows
gaining information through an URL, querying by id or attribute. ContextData
describes how to get data from context management system by using the
SPARQL query language. Figure 3 shows a concrete example in terms of
“Send SMS” service category.

Service Selection based on Non-Functional Properties 7

Figure 3: the "send‐SMS" service class

5 Metrics for Non-functional Properties

As we discussed in the previous section, the values gained from context
information are not only numerical types, but also text and Boolean types. For
automated ranking and service selection it is crucial to invoke the correct
evaluation functions dependent on the data type of the criteria; we found that
we require three metrics (one for each of the three above types).

If the value of the criterion can be expressed by a numerical data type,
then the numerical metric is used. The numerical type includes all the types
that can be shown as number, such as “integer”, “double”, “time” and
“currency”. For example, if the cost criterion can be defined as
{Name=“cost”, type=“Currency”, weight=“-0.5”, value=“”}, then formula (1)
will be invoked as evaluation function.

 If the criterion is Boolean type, then the exact match will be used as
Boolean metric (formula (2)). Moreover, the Boolean type is used not only to

8 S. Reiff-Marginec, H. Q. Yu, M. Tilly

capture 0/1 values, but also matching of text. For example the location
criterion can be defined as {Name=“location”, type=“Boolean”, weight=“1”,
value=“UK”}. This definition implies that the service’s location must be in
UK.

However, not all text criteria can be defined as Boolean type. For
example, the payment criterion can be defined as {Name=“payment”,
type=“string”, weight=“0.3”, value=“credit card, debit card, pay pal”} we use
the set type. If the type is set, then it means that a subset of the provided string
can be matched. Of course, a larger subset match is preferable. This contrast
to the Boolean type in that a partial match will already provide a score, rather
than requiring a full match. Formula (3) is designed for the set type, and will
be selected in this case.

Because of the link to the data type, it can be automatically
determined which function should be used. The respective formula to
compute values for these three types are as follows:

1. Given vmin and vmax being the minimum and maximum value of all
services. v is the value for the current service, we calculate (note that
this calculation takes the weight W of the aspect in the aggregation
into account):

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−
=

otherwise
vv

vv

Wiff
vv

vv

E

minmax

max

minmax

max 01

2.
⎩
⎨
⎧

=
otherwise

metiscriteriaif
E

0
1

3.
()

settheofelement
eachforscoreabeingewithneeeE in /...21 +++=

The big advantage of our metric is that we have designed evaluation rules
dependent on the attributes’ type. As the result, we can reuse one metric rule
for different metric aspects.

Service Selection based on Non-Functional Properties 9

6 Ranking services

Normally, more than one non-functional criterion is desired for a required
service in the category. Therefore, we need a global preference calculation
function))(aE,),(aL(E nn...11 to calculate all aspects of criteria. The function

itself must reflect specific requirements and logic conditions, such as
simultaneity, replaceability and others [8]. The logic conditions can be
reflected by the value of the weight. The function iE is one of the individual

evaluation methods which were discussed in the previous section. The
formula (4) is defined as the function L :

| | | | | | | | 1 1,0 with
1

/1
2211 =ωE)Eω++Eω+Eω(=L

n

=i
i

rr
nn

rr ∑≤≤… ,

where theω is the weight of each criteria. r is the logic power value adopted
from the LSP method [8], however we obtain the value of r automatically by
using the method introduced in [9].

Additionally, we use the conjunctive partial absorption function as
global aggregation structure (see Fig. 4) [10]. Preferences are separated into a
hard criteria group (h

iEP) and a soft criteria group (S
jEP). The hard criteria

group presents all mandatory requirements; the soft criteria group takes all
other preferences. The function L is applied twice using two different values
for r. The first r value is automatically calculated and is called DAC. The
second r value is statically defined as CA; CA acts as a filter to weed out the
services not satisfying one or more hard criteria. Note that DAC and CA are
two of the typically offered LSP GCD operators, and details can be found in
[11], but are immaterial here.

10 S. Reiff-Marginec, H. Q. Yu, M. Tilly

Figure 4: The structure of the conjunctive partial absorption aggregation
function

Behaviours of the conjunctive partial absorption function are such that the
global preference value (denoted by GP) will be 0 when any of the critical
preferences are not satisfied, in which case the service will be discarded. On
the other hand, a web service that satisfies all critical preferences will be
valuated to a non-zero value, from which the degree of satisfaction of the
desired preferences determines the final global preference.

7 Example

Let us now consider a scenario (depicted in Fig. 5), where a business
organization needs a payment service to complete an online product selling
business process. The payment services category includes several non-
functional criteria. Firstly, the market aspect, the target customers might be at
home or travelling. In the case that they are travelling, the customers could
make use of several devices, such as a laptop, PDA, landline, desktop or
mobile phone. Secondly, the QoS aspects, such as security must be high;
performance rate should be reasonable and privacy should be respected.
Thirdly, the policies include that customers are supposed to understand one
language out of English, Spanish and French. Moreover, the service provider
must be located in UK, Spain and France. A lower transaction fee is better.
Finally, being able to accept more types of bank card such as Visa,
MasterCard, Solo and Switch is preferable. Table 1 shows the definition of all
criteria.

Service Selection based on Non-Functional Properties 11

Figure 5: Four registered payment services

Soft Criteria Data type Weight Value

Performance rate Integer 0.1

Devices String 0.1 laptop, PDA, landline,
desktop, mobile phone

Privacy Boolean 0.1 High

Cost Percentage ‐0.5

Bank cards String 0.2 Visa, MasterCard

Hard Criteria Data type Weight Value

Security Boolean 1 High

Location String 1 UK, Spain, France, US

Language Boolean 1 English, Spanish, French

Table 1: Weights and types of criteria

There are four services available, which can functionally fulfil the payment
task shown in Figure 5. To obtain a ranking result, we first calculate the value
of the power r to be 3 by using the automated calculation method introduced
in [9]. The global soft criteria evaluation results for each service are shown in
Table 2.

 Performance Devices Privacy Cost Bank Cards
Global
soft

12 S. Reiff-Marginec, H. Q. Yu, M. Tilly

result

 w v E W E w E w v E w v E L(1)

Service
1

0,1 0,8 0,75 0,1 0,6 0,1 1 0,5 1 1 0,2 M,V,
Sw

0,67 0,8975

Service
2

0,1 0,5 0,00 0,1 0,6 0,1 0 0,5 2 0,75 0,2 M,V,
So

1,00 0,7563

Service
3

0,1 0,9 1,00 0,1 0,6 0,1 1 0,5 1 1 0,2 M,V 0,67 0,9209

Service
4

0,1 0,9 1,00 0,1 0,8 0,1 0 0,5 5 0 0,2 M,V 0,67 0,5948

Table 2: Evaluation of soft criteria

This is not the final result as we also need to consider the hard criteria. We
integrate soft and hard criterion and obtain the final results shown in Table 3.
 Security Location Language Soft value Final scores

 W E w v E w E W L(1) L(2)

Service1 0,1667 1 0,1667 GER 0 0,16667 0 0,5 0,8975 Discard

Service2 0,1667 0 0,1667 SPN 0,25 0,16667 1 0,5 0,7563 Discard

Service3 0,1667 1 0,1667 US 0,25 0,16667 1 0,5 0,9209 0,6853

Service4 0,1667 1 0,1667 UK 0,25 0,16667 1 0,5 0,5948 0,5644

Table 3: Evaluation of hard criteria and overall result

The result means that for the given situation service 3 is the best one, second
best is service 4 and services 1 and 2 are discarded as they do not satisfy the
hard criteria.

8 Conclusion and Further Work

We have presented a method for selecting services based on non-functional
requirements adding to ongoing work on selection of services in general
which mostly concentrates on functional aspects.

Our method consists of a number of elements, notably a generic
model for capturing non-functional attributes which are defined for categories
of services with equal (or at least similar) functional behaviour and a method
of automatically ranking services. The latter takes into account that some
services might not fulfil what we termed hard selection criteria – essential
requirements by the user – and filters these out while ranking the remaining
ones using soft criteria (essentially preferences). The method is embedded in

Service Selection based on Non-Functional Properties 13

the relevance engine of the inContext project, but is generic and hence can be
used to enhance any service lookup process. In the framework of the
inContext project, the engine makes use of user context to obtain
requirements.

Future work includes enhancing the ranking mechanism to also
include ranking based on information available through workflows: services
are usually not executed on their own but in the context of other services and
hence one might make different choices depending on the usage environment
(a cheaper product buying service might become less preferential if high
shipping costs occur).

Another aspect for future investigation is enhancement of the model
for non-functional properties, especially capturing user requirements in other
forms and hence depending less on the context system.

Acknowledgement

This work is supported by the inContext (Interaction and Context Based Technologies
for Collaborative Teams) project IST-2006-034718.

References

1. I.V. Papaioannou, D.T. Tsesmetzis, I.G. Roussaki, and E.A. Miltiades, A QoS
Ontology Language for Web-Services, aina, pp. 101-106, 20th International
Conference on Advanced Information Networking and Applications - Volume 1
(AINA'06), 2006.

2. D.T. Tsesmetzis, I.G. Roussaki, I.V. Papaioannou and M.E. Anagnostou, QoS
awareness support in Web-Service semantics, aict-iciw, p. 128, Advanced
International Conference on Telecommunications and International Conference on
Internet and Web Applications and Services (AICT-ICIW'06), 2006.

3. S.P. Ran, A Model for Web Services Discovery with QoS,. ACM SIGecom
Exchanges, v.4 n.1, p.1-10, Spring, 2003.

4. Y. Liu, A.H.H. Ngu and L. Zeng, QoS Computation and Policing in Dynamic Web
Service Selection, In Proceeding 13th International Conference, World Wide Web,
2004.

5. Y. Mou, J. Cao, S.S. Zhang, J.H. Zhang, Interactive Web Service Choice-Making
Based on Extended QoS Model, CIT 2005, pp.1130-1134.

6. D.A. Menasce, QoS Issues in Web Services. IEEE Internet Computing, 2002, 6(6).
7. X. Wang , T. Vitvar, M. Kerrigan and I. Toma, A QoS-aware Selection Model for

Semantic Web Services, ICSOC 2006.

14 S. Reiff-Marginec, H. Q. Yu, M. Tilly

8. J.J. Dujmovic, Continuous Preference Logic for System Evaluation, In
Proceedings of Eurofuse 2005, edited by B. De Baets, J. Fodor, and D. Radojevic,
ISBN 86-7172-022-5, Institute “MihajloPupin”, Belgrade, 2005, pp. 56-80.

9. H.Q. Yu and H. Molina, A Modified LSP method for services evaluation and
selection, In S. Gorton, M. Solanki and S. Reiff-Marganiec (eds) Proceedings of
the 2nd European Young Researchers Workshop on Service Oriented Computing.
June 2007.

10. J.J. Dujmovic, A Method for Evaluation and Selection of Complex Hardware and
Software Systems. The 22nd International Conference for the Resource
Management and Performance Evaluation of Enterprise Computing Systems. CMG
96 Proceedings, Vol. 1, 1996, pp. 368-378.

11. S. Y. W. Su, J. Dujmovic, D. S. Batory, S. B. Navathe, R. Elnicki. A Cost-Benefit
Decision Model: Analysis, Comparison, and Selection of Data Management
Systems. ACM Transactions on Database Systems, Vol. 12, No. 3, September
1987, pp. 472-520.

