@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Batista BG, Estrella JC, Ferreira CHG,
Filho DML, Nakamura LHV, Reiff-Marganiec S, et al.
(2015) Performance Evaluation of Resource
Management in Cloud Computing Environments.
PLoS ONE 10(11): €0141914. doi:10.1371/journal.
pone.0141914

Editor: Yongtang Shi, Nankai University, CHINA
Received: July 3, 2015

Accepted: October 14, 2015

Published: November 10, 2015

Copyright: © 2015 Batista et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
available from Figshare (http://dx.doi.org/10.6084/m9.
figshare.1553251).

Funding: This work was supported by S&o Paulo
Research Foundation — FAPESP, process number
2011/17201-3, http://fapesp.br/en/ (BGB received the
funding). The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Performance Evaluation of Resource
Management in Cloud Computing
Environments

Bruno Guazzelli Batista'*, Julio Cezar Estrella’, Carlos Henrique Gomes Ferreira’,
Dionisio Machado Leite Filho', Luis Hideo Vasconcelos Nakamura’, Stephan Reiff-
Marganiec?, Marcos José Santana', Regina Helena Carlucci Santana’

1 ICMC, University of Sdo Paulo, Sao Carlos, SP, Brazil, 2 Department of Computer Science, University of
Leicester, Leicester, United Kingdom

* batista@icmc.usp.br

Abstract

Cloud computing is a computational model in which resource providers can offer on-
demand services to clients in a transparent way. However, to be able to guarantee quality of
service without limiting the number of accepted requests, providers must be able to dynami-
cally manage the available resources so that they can be optimized. This dynamic resource
management is not a trivial task, since it involves meeting several challenges related to
workload modeling, virtualization, performance modeling, deployment and monitoring of
applications on virtualized resources. This paper carries out a performance evaluation of a
module for resource management in a cloud environment that includes handling available
resources during execution time and ensuring the quality of service defined in the service
level agreement. An analysis was conducted of different resource configurations to define
which dimension of resource scaling has a real influence on client requests. The results
were used to model and implement a simulated cloud system, in which the allocated
resource can be changed on-the-fly, with a corresponding change in price. In this way, the
proposed module seeks to satisfy both the client by ensuring quality of service, and the pro-
vider by ensuring the best use of resources at a fair price.

Introduction

In recent years, cloud computing has been one of the most widely discussed topics in IT (Infor-
mation Technology). According to NIST (National Institute of Standards and Technology),
“Cloud computing is a model that allows ubiquity, convenience and on-demand access to a
shared pool of configurable resources and can be quickly delivered with minimum managerial
effort on the part of the clients” [1].

Cloud computing is a computing model in which resource providers can offer on-demand ser-
vices for clients in a transparent way, on a pay-as-you-use basis. It introduces a new level of flexi-
bility and scalability in IT organizations and allows clients and providers to deal with rapid

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015

1/21

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0141914&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1553251
http://dx.doi.org/10.6084/m9.figshare.1553251
http://fapesp.br/en/

@’PLOS ‘ ONE

ReMM: A Resource Management Module

changes in IT scenarios where there is a need to reduce costs and time by employing an infrastruc-
ture management solution. However, as the cloud is a distributed system that provides services,
the computational system that covers this environment is expected to operate properly, with no
interruption in its service, or data loss. This means that service providers should ensure Quality of
Service (QoS) to win the confidence of their clients and give them the expected satisfaction.

The term quality of service refers to the service performance, composed of performance of
individual features, that determines the degree of client satisfaction, i.e., the features of the sys-
tem that are required to meet the client’s requirements [2]. These characteristics are attributes
of a system that can be measured quantitatively by metrics and used to define QoS levels [3].
However, ensuring QoS in a cloud environment is not a trivial task, since there are different
types of clients with varied service requirements, that operate in an environment that is based
on the Internet. Furthermore, different providers can offer the same service by deploying dif-
ferent technologies.

As discussed in [4], resource matching and issues about making recommendations have
often been neglected, such as the use of attribute weights and the collaborative application of
empirical data, marginal utility, and QoS constraints. The collection and combination of data
in assessing the reliability of the cloud service is also challenging, since QoS values may be
missing in an offline situation, because they are time-consuming and the cloud service invoca-
tion is expensive, as Ding et al. [5] and Ding et al. [6] make clear.

With regard to the question of scalability in a cloud environment, where the demand for ser-
vices can change at almost any time, automatic resource allocation to meet this demand has
become a key issue both in the academic world and industry. Correct provisioning allows a bet-
ter use of available computational resources and, hence, of the whole infrastructure that com-
prises the cloud, because the system mapping between the workload and resources is more
efficient. Furthermore, it helps to achieve the QoS levels required by the clients and makes the
system more dynamic.

For instance, providing more computational resources to a client is really feasible and easily
achieved in a cloud environment, since the virtualized computational resources are regarded
by clients as being unlimited. However, the provisioning of more computational resources to
meet the requests increases the final cost that is paid by the client and requires the provider to
employ efficient mechanisms.

Providers such as Amazon EC2 and Microsoft Azure employ a resource provisioning meth-
odology in which clients are responsible for estimating the amount of resources needed and
selecting the instance [7]. The Virtual Machines (VMs) are responsible for executing the cli-
ents’ requests and are arranged in classes according to their configurations of memory, virtual
cores and disk size. The price is defined as being based on the class, where the most powerful
instances are the most expensive.

Owing to the scaling process, it is striking that an increase in the number of resources does
not necessarily lead to the best performance. However, this increase affects the costs. For exam-
ple, if an application needs significantly more CPU power, but has no additional memory, and
the next VM class provides an average increase in both areas (CPU and memory), the client
can change from a VM type to another one with more resources. In this way, they can obtain a
better performance by paying more. However, this increases all resources, while in practice all
that might be required is an increase in CPU capacity in order to execute the application with
the required QoS—hence unneccesary waste of other resources and costs for the user are
imposed by the current model.

The above mentioned providers do not change the VMs configurations on-the-fly. They
change the number of instances respecting the classes defined by them, by either adding or
removing VMs of the same class or VMs of different classes.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 2/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

In our view, the resource allocation in a cloud can be performed automatically and dynami-
cally a) by addressing the high-level needs of clients at a fair price, and b) where clients can set
up VMs with different configurations, instead of being restricted to the VMs classes defined by
providers, they must be able to define the number of virtual cores, memory or disk size, for
instance, that they want to contract at a fair price.

This is not an easy undertaking because it requires taking account of some key parameters
such as budgeted resources, time constraints, and/or the desired quality of service. Further-
more, there are unpredictable situations that can impair the efficiency of the provisioning ser-
vices and delivery during the execution time, such as demand estimation with expenditure
measurement errors, dynamic workload and unpredictable behavior of the system [8].

The wrong combination of computational resources and applications leads to either an under
or over-estimation of client demand and has an effect on the contracted QoS and on the service
costs. Moreover, highly variable load spikes can occur on demand, depending on the day and
time of year, and the popularity of an application. These factors give rise to problems in workload
behavior estimation and related requirements for resources. Finally, the availability, workload,
and throughput of resources and network connections can vary in an unpredictable way in a
large-scale computing environment such as the cloud. The instability in the above mentioned
system makes it hard to determine what resources are required during the provisioning process.

For this reason, this paper outlines a module for resource management in a cloud environ-
ment that examines how to handle the available resources on-the-fly and the effect of this
manipulation on both the performance of the system and the business model. The proposed
module, called ReMM—Resource Management Module, is a dynamic and self-managed mod-
ule that is responsible for load balancing, efficient utilization of resources and QoS level assur-
ance. It adopts an approach that involves varying the VMs resource capabilities and applies
both vertical and horizontal scalability, by changing the number of resources that compose a
VM and the number of instances, when necessary.

A performance analysis is conducted, in which the computational resources and the number
of these resources that have to be allocated to a client in a cloud with different workloads are
defined. In this way, it is possible to quantify the influence of configurations of a different num-
ber of VMs and virtual cores (vCPUs), disk size, network type and memory RAM capacity on
the performance of the system.

On the basis of influence of the resources, we simulated an environment to validate our pro-
posed module. Following this, we showed the impact on the execution mean time and on the
cost to contract a specific VM when there were changes in the configuration of the resources.
The results show that our module effectively changes the available resources on-the-fly, by
ensuring the QoS contracted with proportional changes to the cost.

To summarize the previous paragraphs, the main novel contributions of this paper are:

o A:adetailed performance analysis leading to conclusions of key influences on executions;

« B: anovel mechanism and management module to enable dynamic scalability in one
resource dimension;

o C: an evaluation showing the positive influence of the new module.

The remainder of this paper is structured as follows: the Section on Related Work conducts
a brief analysis of the works available in the literature; Section ReMM—Resource Management
Module outlines the proposed module that is deployed with the aid of CloudSim simulator [9];
the experiments that show the benefits of using ReMM were carried out and analysed in the
Section called Performance Evaluation; finally, there is the Conclusion and Future Work which
summarizes the main results and make recommendations for future work, respectively.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 3/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

Related Work

The complexity of finding an optimum resource allocation is exponential in huge systems such
as big clusters, grids and cloud data centers. Since resource demand and supply can be dynamic
and uncertain, various strategies for resource management are available in the literature [8].

In [10], for instance, the authors carry out a study about the allocation of resources among
multiple HPC (High Performance Computing) systems such as cluster, grid and cloud. Sharkh
etal. [11] discuss various internal and external factors that should be considered in the
resources allocation process. Manvi and Shyam [12] conduct a study that examines resource
management techniques such as provisioning, allocation, mapping and adaptation in an Infra-
structure as a Service. In [13], various resource allocation strategies and their challenges are
discussed.

The authors in [14] explore adaptive resource allocation for back-end mashup applications. In
the developed prototype, the back-end is a resource-intensive system responsible for the continu-
ous collection and analysis of real-time data from external services or applications. On the basis
of this analysis, the prototype adaptively allocates resources to the back-ends to meet the clients’
requests. However, in the shown results, there is only a kind of virtual machine with fixed config-
urations that is assigned to meet any demands. Thus, there is no heterogeneity in the VM config-
urations and no runtime adaptation in the VM capabilities. Another limitation of this prototype
is the lack of scaling down capability as the number of requests made by active clients declines.

The work shown in [7] proposes a cost-based approach for allocating resources to work-
flow-based applications which employs four strategies for the allocation of a virtual infrastruc-
ture. However, as one virtual machine is deployed per physical machine and all the physical
machines have the same configuration, the available resources can be overloaded or idle owing
to the heterogeneity of the application. Another limitation is that the prototype is not dynamic,
because it is not possible to add or remove instances or even change the VM capabilities during
the execution time.

Inomata et al. [15] propose a dynamic and not self-managed architecture, in which the cli-
ents are responsible for adding or removing instances by commands in accordance with the
workload. However, the prototype has only been set up for one type of instance and there is no
runtime adaptation in the VMs capabilities.

In [16], the authors propose resource allocation algorithms for SaaS (Software as a Service)
providers that are designed to reduce the costs of the infrastructure and Service Level Agree-
ment (SLA) violations. However, the simulated environment does not change the capabilities
of the VM. It seeks to maximize profits by reusing the created VMs. In view of this, the pro-
posed algorithms attempt to assign new requests to the created VMs, by adopting a multi-ten-
ancy approach, which can violate the SLA.

Calheiros, Ranjan and Buyya [8] propose an adaptive approach to investigate the automated
task management and resource scalability to ensure the QoS contracted by clients. The authors
put forward a simple load-balancing policy for resource provisioning, in which new VMs are
created with fixed configurations in the host where there are fewer running applications. How-
ever, there are no changes in the VM capabilities during the request execution time.

In the analysed papers, the authors employ different mechanisms for resource management,
but in all of them, there are no changes on-the-fly in the available resources. In this way, they
are able to apply a horizontal scalability. The module proposed in this paper takes account of
both horizontal and vertical scalability. Thus, in examining the scalability in a cloud environ-
ment, where the demand for services changes all the time, an environment with fixed resources
may not be the most efficient when the question of the use of resources and client satisfaction
are taken into account.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 4/21

el e
@) PLOS ‘ ONE ReMM: A Resource Management Module

ReMM—Resource Management Module

The module proposed in this paper, called ReMM, concerns the way the available resources are
handled during the execution time with regard to the QoS metrics defined in the SLA. We out-
line a resource management module for cloud applications in which both horizontal and verti-
cal scalability can be applied dynamically, thus leading to a change in price.

The most common type of scaling is horizontal scaling which involves the allocation and
release of virtual machines. The other type is vertical scaling which either increases or reduces
the computing resources (vCPU, memory, disk, etc.) of one or more instances [17]. In this way,
the ReMM aims to satisfy both the clients (thus ensuring the SLA at a fair price), and provider
by using the resources available in the system efficiently. Fig 1 shows the proposed module.

A client’s request will be answered by a provider, which uses three layers and can provide
different services: application layer (Software as a Service—SaaS), platform layer (Platform as a
Service—PaaS) and infrastructure layer (Infrastructure as a Service—IaaS). The application
layer handles all the application services that are offered to the clients. The platform layer
includes mapping and scheduling policies which are designed to translate the clients’ QoS
requirements to infrastructure level parameters and allocating virtual machines to meet their
requests. The infrastructure layer carries out the initiation and removal of VMs with specific
resource configurations for the client in a transparent way.

First of all, the client and provider must negotiate a SLA, by defining the QoS metrics and
the contract details (1). After this procedure, different clients request different types of services
from a provider. The Admission Control is responsible for analysing the request and decides

Saa$
Business Model ‘ Applications
1
« TREH D
A)
9.b
11 A 2
PaaS v v
— ReMM Admission Control
TS.a 3l
150 Performance Monitor Requests Queue —sb{ Scheduler ‘
TS 7.b l T 7.2
Y
laaS

i I e I e

» L - Yy

:‘L,a\’ a. Lo f g
Virtual Virtual Virtual Virtual
Machines Machines Machines Machines

@
ll

Fig 1. ReMM operation. Depending on the demand for the service and clients’ requests, the ReMM may
change the configuration of the resources while at the same time changing the price.

doi:10.1371/journal.pone.0141914.g001

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 5/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

.

i_1. SLA definitiony 1

2. Request

Admission
Request Queue | | ReMM | Data Center | Scheduler I
i
i

Cond
[Accept]

4. SLA information

T

5. Virtual Resources

A 4

Provisioning

T
6. Request information
“ 7.a. Resources Informatioa

7.b. Assigns request to
execute

Fig 2. Sequence diagram for processing a request. Services requests will be analysed by the Admission Control after a negotiation between the client
and the provider. If a request is accepted, virtual resources are allocated in the physical resources in accordance with the SLA specifications. After this the

requests are assigned to run.

doi:10.1371/journal.pone.0141914.9002

whether or not it can be met (2). During the system overload, for example, the service provider
can decide either to reject the new requests or violate the SLA. The SLA violation should result
in penalties for the provider. If the request is accepted, it will be stored in the Requests Queue
(3), where it will receive a priority that will define the execution sequence (a service differentia-
tion can be applied, for example, with different kinds of clients).

The ReMM will provide the virtual resources based on the information defined in the SLA
(4), and place them in the physical resources (5). After the resources allocation, the Scheduler
forwards the requests (6) so that they can be run on resources using scheduling policies (7.a)
(7.b). At intervals of time, the Performance Monitor collects information about the system
performance and about the request execution (8) and sends them to ReMM (9.a). This infor-
mation is compared with the QoS information available in the contract (9.b) and, if the results
are not in accordance with the SLA, the ReMM dynamically adjusts the amount of resources
(horizontally or vertically) in an attempt to ensure the SLA (10). Any changes in the system
influence the Business Model (11).

Other modules can be included in the environment described, such as a module for predic-
tion, analysis and load balancing, or new scheduling policies that are designed, for example, to
assist in energy saving. However, these modules will be addressed in future work. Optimization
techniques can also be applied to set the adjustment rate of the changes, which correspond to
the resources and the amount of these resources that ReMM must change.

The sequence diagrams in Figs 2 and 3 show the interactions carried out in response to the
client request and the analyses performed to determine whether the resources should be
changed or not, and the proportional this has on costs. In the next section, a number of experi-
ments are carried out, which involve an analysis of the behavior of the proposed module.

Performance Evaluation

In this section, there are two sets of experiments, one using a real and another using a simu-
lated environment. In the first round (Section First Round of Experiments— Analysis for
Resource Provisioning), an analysis is conducted to define the computational resources and the
amount of these resources that must be allocated to a client in a cloud with different workloads.
On the basis of this analysis, we designed a second round of experiments (Section Second

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 6/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

SLA | | Business Model

| Monitor | | Resources |
Loop J
8. Collects execution
information

Execution Time

l.------E

9.a. Sends infoimation to ReMM
i >

N

[S ——

< 9.b. SLA information

10. Applies resources |.cond /
scalability [Deadline out of SLA]
New resources
configuration

.
]
'

11. New cost T]

Fig 3. Monitoring and scalability process. At intervals of time, the Performance Monitor collects information about the execution and sends it to ReMM.
ReMM analyses the performance information and may or may not apply the resources scalability, which affect the costs.

doi:10.1371/journal.pone.0141914.g003

Round of Experiments—Simulated Environment with ReMM), in which we show the impact
on the system response variables with the changes in the available resources applied by ReMM.
The CloudSim 3.0.3 simulator was used to design and implement the cloud environment with
ReMM. CloudSim provides the following: modeling and simulated large-scale cloud comput-
ing data centers, virtualized server hosts, policies for allocation of hosts to virtual machines and
policies for mapping and scheduling applications to virtual machines, i.e., all the necessary
entities for resource management [18].

A full factorial experimental planning was used for both sets of experiments. This model is
outlined by Jain [19] and is suitable for the analysis of variable responses. In this methodology,
the planning and analysis of experiments include both factors and levels, where the factors corre-
spond to environmental characteristics and the levels are the possible environmental variations.

All the experiments were run 10 times, because through 10 repetitions it was noted that the
results did not show large variations. Therefore, it was concluded that 10 was a reasonable fig-
ure for the number of repetitions.

First Round of Experiments—Analysis for Resource Provisioning

The aim of the experiments shown in this section is to analyze which computational resources
should be provided to improve the performance in a cloud and the proportion in which they
should be changed. Two benchmarks were used in the experiments:

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 7/21

el e
@ ' PLOS ‘ ONE ReMM: A Resource Management Module

1. Apache—This System-Bound benchmark uses the number of served requests per second as
a response variable [20]. It measures how many requests per second a given system can sus-

tain when carrying out 1000000 requests with 100 requests being carried out concurrently.

2. Smallpt—This CPU-Bound benchmark renders an image using a Monte Carlo algorithm

and shows the execution time (in seconds) as a response variable [21].

In the experiments with Apache benchmark, five factors with different quantities of levels
were taken into account when forming the different scenarios. This information is given in

Table 1, where each level was increased by 100% more than the lower level.

After the analysis of the influence of the factors, new experiments were conducted with the
Smallpt benchmark, which only involved varying the number of VMs and vCPUs (Table 2) to
analyse the behavior of the system with different workloads. The results with both benchmarks

show the response variables with a 95% confidence interval.

In addition, a physical machine was operated that was based on an Intel Core 2 Quad pro-

cessor to host the virtual machines that execute the workload. The environmental configura-

tions are shown in Table 3.

Table 1. Factors and levels for experiments with Apache benchmark.
Factors

Disk size

Network type

Memory RAM capacity
VMs number

vCPUs number

doi:10.1371/journal.pone.0141914.1001

Table 2. Factors and levels for experiments with Smallpt benchmark.
Factors

Disk size

Network type

Memory RAM capacity
VMs number

vCPUs number

doi:10.1371/journal.pone.0141914.t002

Table 3. Environment specification for both benchmarks.

Machine Physical

Processor Core 2 Quad 2.4GHz
Cores 4

Memory RAM 8GB

Disk 160GB

Network -

Operational System Ubuntu Server 11.10
Hypervisor Xen 4.1

doi:10.1371/journal.pone.0141914.t003

Levels

8GB and 16GB
Megabit and Gigabit
512MB and 1024MB
1,2and 4
1,2,4and 8

Levels

8GB

Gigabit
512MB
1,2,4and 8
1,2,4and 8

Virtual

Core 2 Quad 2.4GHz
Varies
Varies
Varies
Varies
Ubuntu Server 10.04

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015

8/21

@‘PLOS | ONE

ReMM: A Resource Management Module

7000

6000

5000

4000

3000

Request per second

2000

1000

0
VMs

7000

6000

5000

4000

3000

Request per second

2000

1000

0
VMs

2466,78

2479 I

6299,22

o

42825

(a) 512MB RAM — Megabit Network

6251,65
*

4301,54

3

(c) 1IGB RAM — Megabit Network

4906,33

4979,7

2339,7¢

23781

4401,74

41261 @

2

4379,06
411372 @

2

278534

281543

The way in which the hypervisor combines the physical and virtual resources is an impor-
tant factor that should be noted in these experiments, since it forms the basis of an efficient
resource provisioning. However, this combination may vary depending on the type of hypervi-
sor used. The Xen hypervisor, which implements the Credit Scheduler algorithm, was used for
this study [22]. This algorithm considers the total number of vCPUs in the system and divides
it between the physical cores. Thus, there are times when, according to the configuration of the
experiments, a physical core can be idle or overloaded.

Results of the Apache benchmark. Fig 4 shows the average number of served requests
(per second) answered by one virtual machine during the experiments execution time. The
results show different combinations of levels that include the factors defined in the experimen-
tal design (Table 1). However, even with different configurations, the experiments showed
almost the same behavior.

According to the graphs, as new VMs were added to the system, the competition for compu-
tational resources became greater, and thus reduced the average number of served requests per
VM. This behavior was evident when a comparison was made between the experiments with 4
vCPUs and 1, 2 and 4 VMs (yellow columns). In these experiments, there was an increase of
100% in the number of VMs that led to a reduction of, approximately, 30% (1 to 2 VMs) and
46% (2 to 4 VMs) in the number of served requests. No CPU had remained idle since the
beginning of the experiments execution.

VCPUs 7000
627561

e
6000

AN

4994,95

5000
43829
28273 .
4000
34622 3361
281808
258276 R0 e 2579,14
2339 15 233612 238236
e
182520 % 000 1871,14
l 1000 l
0 | |
2 4

VMs

Request per second

(b) 512MB RAM - Gigabit Network
7000
627831

P
6000

4997,9

3344,86

5000
427831 7,0
83 4119, 33 0
4000
3364,29
2871,69
3000
259045 2589,59
23415 = 2364,38 2338 06
*
1790,74 2000 1815,16
I B l
0 18
4 1

Request per second

VMs
(d) 1GB RAM — Glgablt Network

Fig 4. Average number of served requests for each VM in an environment with an 8GB disk. The graphs show the variations of factors when the Jain
methodology is employed [19].

doi:10.1371/journal.pone.0141914.9g004

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 9/21

el e
@ ' PLOS ‘ ONE ReMM: A Resource Management Module

4 Physical Cores (CPUs) 4 Phy5|cal Cores (CPUs
| | | | |

de //\\

1 7 [

1vM -1 VCPU 1IvM -1 VCPU 1VM = 2 VCPUS 1VM = 2 VCPUs

Fig 5. Use of the processor. The way that the Credit Scheduler combines the vCPUs and the CPUs creates
situations in which the physical cores can be idle, balanced or overloaded.

doi:10.1371/journal.pone.0141914.g005

On the other hand, the experiments with 1 VM and 1 vCPU had similar results to the exper-
iments with 2 VMs and 1 vCPU. This behavior can be explained by the fact that there were
some idle resources during the experiments. This idleness occurred because the number of vir-
tual cores in the VMs was less than the number of available physical cores. The same behavior
occurred in the experiments with 1 and 2 VMs and both with 2 vCPUs. However, in the experi-
ment with 1 VM and 2 vCPUs, there was a total of 2 vCPUs that had to be executed in 4 physi-
cal cores. In the other case, (2 VMs with 2 vCPUs), there was a total of 4 vCPUs to be executed
in 4 physical cores. In this case, each CPU received one vCPU to run and all the vCPUs were
executed in parallel. Hence, the results were similar, as the average number of served requests
per second per each VM was considered. Fig 5 illustrates this behavior.

Continuing with Fig 4, in the experiments with 4 VMs, the higher the number of vCPUs,
the lower the number of served requests per second. For this set of experiments, the number of
physical cores was a limiting factor, because the competition for these resources increased as
the number of vCPUs increased and, for this reason, there was a reduction in the number of
served requests. However, in the experiments with 1 and 2 VMs, the competition for physical
resources was lower, and this resulted in a large number of served requests. In the case of 1
VM, the increase of 1 to 2 vCPUs and, later, from 2 to 4 vCPUs in the number of vCPUs
increased the response variable by, approximately, 73% and 46%, respectively. In the case of 2
VMs, the same increase in the number of vCPUs resulted in an increase of, approximately,
75% and 6%, respectively.

The behavior described in Fig 4 is applied in Fig 6 where the disk size was changed from 8 to
16 GB. In this way, in hte cases of both Figs 4 and 6, the changes in the memory RAM capacity
(from 512MB to 1GB), network (from Megabit to Gigabit) and disk size (from 8GB to 16GB) do
not lead to significant changes in the results, i.e., the performance of the system remained the
same. Thus, when account is taken of the experimental design and the workload used, there
were no statistical differences in the results with either a combination or change of these factors.
This assertion is discussed in the next section in the analysis of the factors influence.

Factors influence. In this paper, a full factorial model was used to measure the influence
of each factor and the respective levels on the response variables [19]. In this way, analyses con-
sidering the factors Disk size, Network type, Memory (RAM) capacity, VMs number and
vCPUs number were performed. Considering the vCPUs number factor has 4 levels, an analy-
sis combining the levels in 2-2 to determine the influence of each factor on the response vari-
able was performed. For the VMs number factor (with 3 levels), the extreme levels were
considered, i.e., 1 and 4 VMs.

In Fig 7, combination of the number of VMs and vCPUs factors had the greatest influence
on the results with 53.8% (Fig 7a), 43.3% (Fig 7b) and 46.4% (Fig 7¢). As previously mentioned,
as new VMs and vCPUs were added to the system, competition for physical resources became
greater, and this had a significant effect on the response variable.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 10/21

@‘PLOS | ONE

ReMM: A Resource Management Module

7000

6000

5000

4000

3000

Request per second

2000

1000

VMs

7000

6000

5000

4000

3000

Request per second

2000

VMs

426181

6305,67
i~y

5239.21

434624
412803 ¢

2769,93

240572 226783 I
1 2

(a) 512MB RAM — Megabit Network

633578
*

424095

2456,19

1

(c) 1IGB RAM — Megabit Network

5223,58

4,73
414944 4

27413

232048 I

VCPUs 7000

6281,04
.

[]|
PSUVIR

6000
5296,04

3340,75

5000
98,3
425895 n15207 g
4000
3357.21
25939 0001 o 21204 217,14
233125 4 2751 227,84
° .
165492 2000 1660
I B l
0 e
4 4

VMs

Request per second

(b) 512MB RAM - Gigabit Network

7000
6346,15
8 2

6000
5268,56

337015

5000
4371,03
241,91 413604 .
4000
332965
26067 3000 Gl 259623
23238 244067 230934 2360,59
. s
1659,74 2000 166453
I - l
0
4 1 2 4

VMs

Request per second

(d) 1GB RAM - Gigabit Network

Fig 6. Average number of served requests for each VM in an environment with 16GB disk. The results were similar as shown in Fig 4. This means that,
the previous analyses can be applied to these results.

doi:10.1371/journal.pone.0141914.9006

Note that it was only in Fig 7a that the number of vCPUs was the second factor with most
influence (22.4%), followed by the number of VMs (16.8%). Through the combinations shown
in this graph, it was possible to record situations in which the vCPUs number was lower, equal
and greater than the number of VMs. This allowed the percentages of the respective influences
to be obtained.

In Fig 7b, although the number of VMs had an influence (27.6%) larger than that of the num-
ber of vCPUs (25.3%), the combination of these factors led to a reduction (approximately 19%)
in the percentage of influence in Fig 7b when compared to the same combination in Fig 7a. This
percentage was added to the percentage of influence of the factors number of VMs and number
of vCPUs, which led to an increase of approximately 65% and 13%, respectively. In Fig 7c, the
third most influential factor, i.e., the number of vCPUs (11.8%), had a reduction (in terms of the
percentage of influence) that was approximately 53% lower than that shown in Fig 7b.

In this way, though the combination shown in Fig 7b, the idleness of processing resources
during the experiments was found to be lower than in Fig 7a, while the competition for these
resources was also lower than in Fig 7c. Thus given the experimental design and the workload
used in the system, the combination of the factors and their levels shown in Fig 7b provided
the most efficient use of available resources.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 11/21

@‘PLOS | ONE

ReMM: A Resource Management Module

53,8%

.y

0,1%
03% 02%

e e

(a) 1 and 2 vCPUs

0,1%
00% 0,1%

43,3%

0,3%
02% 09%

.

(b) 1 and 4 vCPUs

Category
[Disk
B Memory
|| Network
I VMs Number
I vcpus
["] VM and VCPUs
I Others

. g

S =

(¢) 1 and 8 vCPUs

Fig 7. Analysis of the influence of factors. In this analysis the levels in the number of vCPUs factor were combined in 2-2 to define the influence of each
factor on the number of served requests per second by taking account of environments with 1 and 4 VMs.

doi:10.1371/journal.pone.0141914.g007

Finally, the percentage of influences of the factors Disk size, Network type and Memory
RAM capacity were minimal, as mentioned in the previous section, less than 1% for each one.
In view of this, new experiments were performed that were based on these analyses and
included a strictly CPU-Bound load based on the Smallpt benchmark, as will be discussed in
the next section.

Results of the Smallpt benchmark. The previous sections showed that the number of
VMs and vCPUs were the factors which had more influence on the response variable when
based on a System-Bound workload. These results enabled additional experiments to be per-
formed with a strictly CPU-Bound workload. The purpose of this was to determine if the same
behavior is maintained with different workloads. The hardware configuration was the same as
that shown in Table 3.

In Fig 8, as new VMs were added in the system, the competition for computational
resources became greater, and as a result, increased the execution time of the workload. This
behavior is shown in the experiments with 4 vCPUs, in which the increase of 100% in the VMs
number (from 1 to 2, 2 to 4 and 4 to 8) provided an increase of approximately 95%, 105% and
100% in the response variable, respectively.

An useful way of conducting an analysis involves making a comparison between the columns
with the same colors. For instance, although all the experiments represented by the green columns
in Fig 8 had a total of 8 vCPUs, the experiments with a smaller VM number had better results. In

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 12/21

@’PLOS | ONE

ReMM: A Resource Management Module

3300 VCPUs
321745

.

] ||

3000

o AN

2500 2342,53 2344,74

082,5
2000
1556,40
1500 -
1170,03 1171,45
1040,20 1039,15 040,1
1000

Execution Mean Time (s)

586,00 58550 512,40
508,20
500
260,10 260,20
‘ °
1

0

VM 2 s 8

Fig 8. Smallpt analysis. As new vCPUs were added, the competition for physical resources was greater,

and this reduced the execution mean time. However this only occurred until the vCPUs number was less
than, or equal to, the physical CPU number. After this point, there were increases in the response variable.

doi:10.1371/journal.pone.0141914.g008

other words, the experiment with 1 VM and 8 vCPUs obtained a better execution time than the
experiment with 2 VMs and 4 vCPUs. This difference was of approximately 49%. When a com-
parison was made between 1 VM with 8 vCPUs and 4 VMs with 2 vCPUs, the former obtained a
lower result than the latter, approximately 78%. In the case of the extremities, i.e., experiments
with 1 VM with 8 vCPUs and 8 VMs with 1 vCPU, the difference in the execution time was
approximately 92% (when based on a change from 8 to 1 VM). In this way, when there is an envi-
ronment with the same total number of vCPUs, the combination of 1 VM with 8 vCPUs had a
better performance than the combination with 8 VMs and 1 vCPU. The same behavior occurred
with environments with 2 VMs with 4 vCPUs and 4 VMs with 2 vCPUs, in which the change
from 4 to 2 VMs led to a reduction in the response variable of approximately 57%.

Furthermore, it should be noted that the experiment with 1 VM with 1 vCPU had a similar
result to the experiment with 2 VMs with 1 vCPU. This can be explained by the occurrence of
idle physical resources in these scenarios while the experiments were being carried out. This
behavior was discussed in the analytical experiments described in Figs 4 and 6. The same
behavior occurred in the experiment with 2 VMs with 1 vCPU that obtained a similar result to
the experiment with 2 VMs with 2 vCPUs. This behavior is illustrated in Fig 5.

Finally, the increase in the vCPU number led to a reduction in the execution time of the sys-
tem. However, this statement was only valid until the vCPU number reached the physical core
number. From this point onwards, the increase in the vCPU number resulted in a greater com-
petition for physical resources, which impaired the system’s performance. When the experi-
ments are analysed with 8 VMs in Fig 8, there is an increase of 100% in the vCPU number,
from 1 to 2 and 2 to 4, which led to a reduction in the execution time of, approximately, 27%
and 11%, respectively. From this point on, the increase in the vCPU number, from 4 to 8, raised
the execution time by, approximately, 13%.

Fig 9 shows a comparison that takes account of the increase in the vCPUs number. By con-
ducting this analysis, it is possible to show the described behavior, and that there is an increase
in the vCPUs number, from 8 to 16, 16 to 32 and 32 to 64, leading to an increase of approxi-
mately 97%, 129% and 100%, respectively, in the response variable.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 13/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

2500

2344,74
+
2000
=
(]
£
'_.
~ 1500
©
§ 1171,45
= 1040,2 .-
.S 1000 0
-
I+
Q
l-ﬁ i 5124
500 a e
260,1 260,2
— @ ’—.*
0
vCPU 1 2 4 8 16 32 64

Fig 9. System behaviour with the increase in the number of vCPUs.

doi:10.1371/journal.pone.0141914.g009

In these analyses there has been a detailed experimental evaluation to assess the impact of
specific resource changes. Different workloads were examined and in nome of them did
changes in the memory capacity, disk size or type of network have a significant effect on the
response variable. On the other hand, increasing the number of vCPUs rather than the number
of VMs proved to be more effective. However, this rate of increase should include the number
of available physical cores. In an environment in which the number of vCPUs exceeds the
number of physical CPU cores, the environmental performance was impaired, since there was
a greater competition for physical resources.

On the basis of the results, only changes in the number of virtual cores were considered in
the ReMM implementation. In the vertical scalability, the changes had a percentage of 100%,
where 16 vCPUs was the maximum number allowed per VM and 1 vCPU was the minimum.
On the other hand, when there was horizontal scalability, the ReMM changed the number of
VMs. No account was taken of the physical resources and their limitations this paper. This
means the physical resources were regarded as unlimited.

Second Round of Experiments—Simulated Environment with ReMM

A suitable environment was simulated to evaluate the ReMM. It was assumed that all the physical
resources are unlimited, i.e., they are not limiting factors. As a result, all requests can be accepted
by the Admission Control. The question of how physical resources can be limited will be exam-
ined in future work, and where it is possible to assess the rate of accepted and rejected requests
with ReMM, and thus vary the workload demand. Table 4 shows the experimental design.

A client requests an image rendering execution that might be Low, Medium or Heavy,
through the Monte Carlo algorithm. This type of service request was modeled on the Smallpt
benchmark. Requests can be performed in environments with or without ReMM (Common
environment), which are configured with four different types of instances, m3.medium, m3.
large, m3.xlarge or m3.2xlarge, modeled on Amazon M3 instance types [23]. Each client per-
forms 10 service requests in each experiment and has dedicated resources, i.e., the computing
resources allocated to a client are not shared with other clients. Thus, each request is mapped
to the corresponding client’s VM. The initial configuration of the VM varies in accordance
with the experimental design.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 14/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

200
180

Table 4. Experimental design.

Factors Levels

VM Instance m3.medium, m3.large, m3.xlarge, m3.2xlarge
Application Low, Medium, Heavy

Environment Common, ReMM Horizontal, ReMM Vertical

doi:10.1371/journal.pone.0141914.t004

Response variables. Two types of response variables will be employed in our module anal-
ysis: the execution mean time and the cost. The Execution Mean Time (EMT) quantifies the
performance of requests by measuring the average time spent running the requests (in sec-
onds). Eq (1) represents the EMT. The cost (in dollars) is defined according to the instance and
this changes as the ReMM modifies the resource configurations on-the-fly.

10

TaskExecutionTime,
EMT = :
Z.: NumberofTasks

(1)

A SLA Margin is defined in the contract signing, which represents the variance-based per-
formance measurement. Its behavior is shown in Fig 10. In the experiments, the client requests
the image rendering (which might be Low, Medium or Heavy) in approximately 100 seconds,
with a SLA Margin of 20%, i.e., the request execution time can vary from 80 and 120 seconds.
The ReMM analyses the EMT in periods of time and, if the result is not in accordance with the
SLA Margin, it changes the amount of resources allocated for that client.

“ 160

140

e EMT at moment 3 -> Increase quantity of resources

120

100

60

R

Execution Mean Time

40

20 ® EMT at moment 2 -> Reduce quantity of resources

4 5 6 7 8 9 10
Monitoring Time

Fig 10. SLA Margin. The EMT is collected and analysed at intervals of time. The resources might be changed, depending on the results of the analysis.

doi:10.1371/journal.pone.0141914.9010

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 15/21

el e
@) PLOS ‘ ONE ReMM: A Resource Management Module

In Fig 10 the EMT at moment 2 is smaller than the contracted performance. This means
that the ReMM must reduce the VM resources during the execution time so that the next
request will be able to run with a different resource configuration. This change is necessary as
the current configuration, in this example, is using more resources than needed. Thus, the cli-
ent will be expected to pay more and his/her request will not be completed in the required
time. At moment 3, there is a situation in which the resources are not enough to complete the
request in the appropriate time, because the EMT is outside of the SLA Margin, and hence the
ReMM has to obtain an increase in resources in an attempt to reach the contract.

As a result, the proposed module seeks to ensure the requested execution time is met by
respecting the SLA Margin and changing the resources configuration, if necessary, with a cor-
responding change in price. The ReMM can use both vertical and horizontal scalability to
achieve this.

Results and discussion. Fig 11 shows the results obtained from the experimental design
described in the previous section. The vertical and horizontal scalability were applied in these
experiments and compared with a Common environment without ReMM, by measuring the
execution mean time in seconds, and estimating the cost in dollars. The results showed that the
execution mean time increased as the application complexity increased. On the other hand, as
the VM instance became more powerful, there were reductions in the execution mean times.

The amount of resources available in the m3.medium instances in the Common environ-
ment was insufficient for the execution of applications within the SLA (remembering that a cli-
ent required an execution time of around 100 seconds with a SLA Margin of 20%). Hence,
changes in the number of vCPUs and VMs were necessary.

Apart from the experiments with m3.medium instances running Heavy applications and
with m3.2xlarge instances running Low applications, both with horizontal scalability, the
ReMM fulfilled all the signed contracts (Table 5 shows all the values). In the first case, the ini-
tial amount of resources available on m3.medium instances (column Resources—Common
vCPUs) was found to be too small for the execution of Heavy applications, and resulted in an

1400 Environment
[Common
I ReMM Horizontal
- 1200 1 ReMM Vertical
g 1000
&
g 800
=
_§ 600
=
3
o 400
44
200
Applicati & B y
ication & & & >
o < &\}@ e?’ﬁ Ay &&Q Q?’ﬁ W &0& 6&6 \»éé && z?’@
@@ QV @@ *2\ @0 *2\ @6 *2*
Instance <& <) 2
& o o &
§ & o >
N & &

Fig 11. Results of the Execution Mean Time. Different applications were executed by different instances in
environments with and without ReMM.

doi:10.1371/journal.pone.0141914.g011

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 16/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

Table 5. Results of the experiments.

Design

Instances Application Common Horiz.

m3. Low
medium Medium
Heavy
ma3.large Low
Medium
Heavy
m3.xlarge Low
Medium
Heavy
m3.2xlarge Low
Medium

Heavy

EMT

380
720
1400
190
360
700
95
180
350
47.5
90
175

doi:10.1371/journal.pone.0141914.t005

102.7
115.2
180.6
97.4
107.5
112.0
95
92.3
104.5
47.5
90
89.7

Resources Changes Cost per Hour ($)
Vert. Common Horiz. Vert. Horiz. Vert. Horiz. Vert. Common Horiz. Vert.

vCPUs vCPUs VvCPUs VMs VMs
101.3 1 4 4 4 1 3 2 0.1082 0.4328 0.1352
100.7 1 8 8 8 1 7 3 0.1082 0.8656 0.1712
103.3 1 10 16 10 2 9 4 0.1082 1.0820 0.3424
97.4 2 4 4 2 1 1 1 0.2166 0.4332 0.2346
96 2 8 8 4 1 8 2 0.2166 0.8664 0.2706
979 2 16 16 8 2 7 3 0.2166 1.7328 0.5412
95 4 4 4 1 1 0 0 0.4387 0.4387 0.4387
923 4 8 8 2 1 1 1 0.4387 0.8774 0.4747
933 4 16 16 4 2 3 2 0.4387 1.7548 0.9494
905 8 8 4 1 1 0 1 0.8775 0.8775 0.8415
90 8 8 8 1 1 0 0 0.8775 0.8775 0.8775
89.7 8 16 16 2 2 1 1 0.8775 1.7550 1.7550

execution mean time of 180.6s. Additions of new m3.medium instances were necessary, and
this led to higher cost and reduced the execution mean time. However, the rate of change used
in the horizontal scalability was not enough to ensure the SLA was complied with before the
end of the execution. In this way, 9 changes (column Changes—Horiz.) in the number of
instances were carried out. In the second case, the amount of resources available in the
m3.2xlarge instance for the execution of Low applications was considered to be excessive (8
vCPUs). In view of this, the ReMM attempted to reduce the number of m3.2xlarge instances
but was unable to, because the minimum number of instances had been achieved (column
Resources—Horiz. VMs).

In view of the vertical scalability, the changes in the vCPUs led to an increase of approxi-
mately 25%, 58% and 216% in the cost (Fig 12a) during the execution of Low, Medium and
Heavy applications, respectively, by m3.medium instances. However, for the same applications,
the changes in the number of vCPUs reduced the execution mean times by approximately 73%,
86% and 93%, respectively, which made these changes essential for compliance with the SLA.
With regard to horizontal scalability, the changes in the number of m3.medium instances led to
reductions in the execution mean times of Low, Medium and Heavy applications, approxi-
mately 73%, 84% and 87%, respectively. However, these changes influenced in the costs and
caused rises of, approximately, 300%, 700% and 900%, respectively.

The changes applied by the vertical and horizontal scalability in m3.large instances yielded
similar results when both were compared with the Common results. The vertical scalability
applied an increase in the number of vCPUs of 100% for running Low, 300% for Medium and
700% for Heavy applications (columns Resources—Common and Vert. vCPUs). According to
Table 5 and Fig 11, this increase in the vCPUs led to reductions in the execution mean times of
approximately 49% (Low), 73% (Medium) and 86% (Heavy). On the other hand, the use of
horizontal scalability resulted in rises in costs of approximately 100%, 300% and 700%, respec-
tively. The reason for this was that the number of changes in this environment was greater
than the other ones (column Changes); as well as this horizontal scalability changes the number
of VMs, whereas vertical scalability only changes the number of vCPUs (Fig 12b).

In m3.xlarge instances, the amount of available resources for running Low applications was
considered to be sufficient in all the environments. Accordingly, the ReMM did not change the
m3.xlarge instances with Low applications. This means that, the execution mean times and the

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 17/21

@‘PLOS | ONE

ReMM: A Resource Management Module

Cost per Hour ($)

0,8

Cost per Hour ($)

0,6
0.4

0,2

0,
Application

Low

Medium

(a) m3.medium cost

Low

Medium

(c) m3.xlarge cost

B ReMM Horizontal

Environment
[Common 1.6

ReMM Vertical 1,4
1,2
1,0
0,8
0,6
0.4
b d
= Low

Cost per Hour (8)

Heavy Application’ Medium Heavy

(b) m3.large cost

Cost per Hour ($)

0,0
Heavy Application Low Medium Heavy

(d) m3.2xlarge cost

Fig 12. Cost per hour. In vertical scalability the costs were changed as the vCPUs number was changed. On the other hand, in horizontal scalability the
costs were changed proportionally to the number of instances.

doi:10.1371/journal.pone.0141914.9012

costs (Fig 12¢) were the same. On the other hand, the increase in the application required an
increase in the amount of resources in the other experiments, 100% for Medium and 300% for
Heavy applications, in both the vertical and horizontal environments. In the case of vertical
environments, the increase in vCPUs resulted in a rise in costs of approximately 8% (Medium)
and 116% (Heavy), and reductions in the execution mean times of 49% for Medium and 73%
for Heavy applications. In the case of horizontal environments, the rise in costs was approxi-
mately 100% (Medium) and 300% (Heavy), while the reduction of the execution mean times
was 49% for Medium and 70% for Heavy applications.

With regard to m3.2xlarge instances, the Low application EMT using a Common environ-
ment was lower than in an environment in which the vertical scalability was used (47.5 and
90.5 seconds, respectively). Although this execution mean time in a Common environment
was approximately 47% lower, the SLA was not complied with. For this reason, the ReMM
reduced the number of vCPUs by 50% (from 8 to 4), plus the cost by 4% (Fig 12d), to ensure
compliance with the SLA (Fig 11). The best alternative for running a Low application in
approximately 100 seconds is the allocation of a m3.xlarge instance rather than a m3.2xlarge.
In a m3.xlarge instance, changes in the amount of resources are not necessary and there is a
reduction in costs of approximately 50%, from $ 0.8775 (m3.2xlarge) to $ 0.4387 (m3.xlarge).

In Figs 11 and 12d, the amount of available resources in m3.2xlarge instances for the execu-
tion of Medium applications was sufficient in all the environments. This meant that, no

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 18/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

Instance
500

400

300

200

100 .

500 Scalability

400

Execution Mean Time (s)

300

200

100

Vertical Horizontal

(a) Execution Mean Time

Medium Large xLarge 2darge

Resource Used

Low

ReMM

10

Medium

Vertical

Workload - Instance Workload
4,5
30
15 >
.
g : .
S 00
Medium Heavy z Medium Large xlarge 2xlarge Low Medium Heavy
Environment 3 Scalability T " Environment
s 60
. 45
30
15
0,0
T Vertical Horizontal ReMM Common
(b) Mean Cost
Instance | Workload
.
.
y .
.
Large xLarge 2xLarge Low Medium Heavy
Scalability I Environment
- .
.
Horizontal ReMM Common

(c) Mean Resource Use

Fig 13. Factors analysis. As the power of the instance increased, the EMT was reduced. This behavior has a direct bearing on the cost and the amount of

resources that are used.

doi:10.1371/journal.pone.0141914.9013

changes were made in the number of vCPUs and instances, resulting in the same values for the
execution mean times and costs. On the other hand, the application change, from Medium to
Heavy, required an increase of 100% in the resources in the vertical and horizontal environ-
ments, resulting in a reduction of approximately 49% in the execution mean time and an
increase of 100% in the cost.

In Fig 13 it is possible to analyse the behavior of the response variables while taking account
of environmental factors. In the ReMM, the change in the cost when vertical scalability is used
is proportional to the change in the number of vCPUs, while in the case of horizontal scalabil-
ity, the scalability type that most providers use, the change in the cost is proportional to the
number of instances. Although the numbers of vCPUs in both vertical and horizontal scalabil-
ity are the same, apart from the exceptions discussed in this section, the number of allocated
instances has a strong influence on costs. For this reason, the cost when horizontal scalability
was used, was higher in all the cases when the amount of resources was changed.

Conclusion and Future Work

This paper has outlined a performance evaluation of resource management in a cloud environ-
ment. We proposed ReMM, which is a dynamic and self-managed module that aims to ensure
the QoS that is contracted by a client and to use the available resources efficiently. For reason,

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 19/21

@’PLOS ‘ ONE

ReMM: A Resource Management Module

it changes the available resources on-the-fly, using both horizontal and vertical scalability with
an appropriate adjustment to the price, when necessary.

Some experiments were carried out with the aim of measuring the computational resources
and the amount of these resources that have to be allocated to a specific client to maximize the
resource utilisation and make improvements in performance.

In the results, changes in the memory capacity, disk size and network type did not have a
significant impact on the response variable. On the other hand, it was found to be more effi-
cient to increase the number of vCPUs rather than the number of VMs. However, as shown in
Fig 9, this increased rate should take account of the number of available physical cores. In an
environment in which the number of vCPUs exceeded the physical CPU cores, the environ-
mental performance was impaired, since the competition for physical resources was greater.

After these analyses had been conducted, new experiments were carried out with the aim of
analysing performance behavior in a system using ReMM. The results showed that ReMM
effectively changed the available resources during the execution time, ensured compliance with
the SLA and the efficient use of resources at a fair price.

The next stages will entail analysing and formulating policies and methodologies for the
admission control (where different priorities of clients can be considered); workload predic-
tion, load balancing and optimization metrics. A testbed will be examined in the next analysis
with different workloads.

Acknowledgments

The authors would like to acknowledge FAPESP (process number 2011/17201-3) and the
researchers involved in the projects under development at the Distributed System and Concur-
rent Program, group of the Computer Systems Department at ICMC-USP. Part of this study
was conducted while Bruno G. Batista was on a research exchange at the University of Leices-
ter, generously supported by the Brazilian Science without Borders program. A part of this
work was conducted while Dr Reiff-Marganiec was on study leave supported by the University
of Leicester.

Author Contributions

Conceived and designed the experiments: BGB JCE CHGF DMLF LHVN SRM MJS RHCS.
Performed the experiments: BGB. Analyzed the data: BGB JCE CHGF DMLF LHVN SRM M]JS
RHCS. Contributed reagents/materials/analysis tools: BGB JCE CHGF DMLF LHVN SRM
MJS RHCS. Wrote the paper: BGB JCE CHGF DMLF LHVN SRM MJS RHCS.

References
1. Mell P, Grance T. The NIST definition of cloud computing (draft). NIST special publication. 2011; 800
(145):1-7.

2. Ferguson P, Huston G. Quality of service: delivering QoS on the Internet and in corporate networks.
Wiley New York, NY. 1998; 1:1 -120.

Vegesna S. IP quality of service. Cisco Press. 2001; 1:1-232.

4. DingS, XiaC, Cai Q, Zhou K, Yang S. QoS-aware resource matching and recommendation for cloud
computing systems. Applied Mathematics and Computation. 2014; 247:941-950. Available from: http://
www.sciencedirect.com/science/article/pii/S0096300314012831. doi: 10.1016/j.amc.2014.09.058

5. DingS,YangS, ZhangY, Liang C, Xia C. Combining QoS prediction and customer satisfaction estima-
tion to solve cloud service trustworthiness evaluation problems. Knowledge-Based Systems. 2014; 56
(1):216-225. doi: 10.1016/j.knosys.2013.11.014

6. DingS, Xia CY, Zhou KL, Yang SL, Shang JS. Decision Support for Personalized Cloud Service Selec-
tion through Multi-Attribute Trustworthiness Evaluation. PLoS ONE. 2014 06; 9(6):€97762. Available

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 20/21

http://www.sciencedirect.com/science/article/pii/S0096300314012831
http://www.sciencedirect.com/science/article/pii/S0096300314012831
http://dx.doi.org/10.1016/j.amc.2014.09.058
http://dx.doi.org/10.1016/j.knosys.2013.11.014

@’PLOS ‘ ONE

ReMM: A Resource Management Module

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

from: http://dx.doi.org/10.1371%2Fjournal.pone.0097762. doi: 10.1371/journal.pone.0097762 PMID:
24972237

Huu TT, Montagnat J. Virtual resources allocation for workflow-based applications distribution on a
cloud infrastructure. In: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM Interna-
tional Conference on. IEEE; 2010. p. 612-617.

Calheiros RN, Ranjan R, Buyya R; IEEE. Virtual machine provisioning based on analytical performance
and qos in cloud computing environments. 2011;p. 295-304.

CloudSim: A Framework For Modeling And Simulation Of Cloud Computing Infrastructures And Ser-
vices;. Accessed: 2015-09-03. Available from: http://www.cloudbus.org/cloudsim/.

Hussain H, Malik SUR, Hameed A, Khan SU, Bickler G, Min-Allah N, et al. A survey on resource alloca-
tion in high performance distributed computing systems. Parallel Computing. 2013; 39(11):709-736.
doi: 10.1016/j.parco.2013.09.009

Abu Sharkh M, Jammal M, Shami A, Ouda A. Resource allocation in a network-based cloud computing
environment: design challenges. Communications Magazine, IEEE. 2013; 51(11):46-52. doi: 10.1109/
MCOM.2013.6658651

Manvi SS, Shyam GK. Resource management for Infrastructure as a Service (laaS) in cloud comput-
ing: A survey. Journal of Network and Computer Applications. 2014; 41:424—440. doi: 10.1016/j.jnca.
2013.10.004

Anuradha V, Sumathi D. A survey on resource allocation strategies in cloud computing. In: Information
Communication and Embedded Systems (ICICES), 2014 International Conference on. IEEE; 2014.

p. 1-7.

Igbal W, Dailey MN, Ali |, Janecek P, Carrera D. Adaptive resource allocation for Back-end Mashup
applications on a heterogeneous private cloud. In: Electrical Engineering/Electronics Computer Tele-
communications and Information Technology (ECTI-CON), 2010 International Conference on. IEEE;
2010. p. 317-321.

Inomata A, Morikawa T, lkebe M, Okamoto Y, Noguchi S, Fujikawa K, et al. Proposal and evaluation of
a dynamic resource allocation method based on the load of VMs on laaS. In: New Technologies, Mobil-
ity and Security (NTMS), 2011 4th IFIP International Conference on. IEEE; 2011. p. 1-6.

Wu L, Garg SK, Buyya R. Sla-based resource allocation for software as a service provider (saas) in
cloud computing environments. In: Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM
International Symposium on. IEEE; 2011. p. 195-204.

Caron E, Rodero-Merino L, Desprez F, Muresan A. Auto-Scaling, Load Balancing and Monitoring in
Commercial and Open-Source Clouds. INRIA; 2012. RR-7857.

Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R. CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of resource provisioning algorithms. Soft-
ware: Practice and Experience. 2011; 41(1):23-50.

Jain R. The art of computer systems performance analysis. John Wiley & Sons Chichester. 1991;
182:274-281.

Apache Benchmarking;. Accessed: 2015-09-03. Available from: https://openbenchmarking.org/test/
pts/apache.

Smallpt Benchmarking;. Accessed: 2015-09-03. Available from: https://openbenchmarking.org/test/
pts/smallpt.

Cherkasova L, Gupta D, Vahdat A. Comparison of the three CPU schedulers in Xen. SIGMETRICS
Performance Evaluation Review. 2007; 35(2):42-51. doi: 10.1145/1330555.1330556

Amazon Instance Types;. Accessed: 2015-09-03. Available from: https://aws.amazon.com/ec2/
instance-types/.

PLOS ONE | DOI:10.1371/journal.pone.0141914 November 10, 2015 21/21

http://dx.doi.org/10.1371%2Fjournal.pone.0097762
http://dx.doi.org/10.1371/journal.pone.0097762
http://www.ncbi.nlm.nih.gov/pubmed/24972237
http://www.cloudbus.org/cloudsim/
http://dx.doi.org/10.1016/j.parco.2013.09.009
http://dx.doi.org/10.1109/MCOM.2013.6658651
http://dx.doi.org/10.1109/MCOM.2013.6658651
http://dx.doi.org/10.1016/j.jnca.2013.10.004
http://dx.doi.org/10.1016/j.jnca.2013.10.004
https://openbenchmarking.org/test/pts/apache
https://openbenchmarking.org/test/pts/apache
https://openbenchmarking.org/test/pts/smallpt
https://openbenchmarking.org/test/pts/smallpt
http://dx.doi.org/10.1145/1330555.1330556
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

