
An Analysis of Metaheuristic to SLA

Establishment in Cloud Computing

Leonildo J. de M. de Azevedo1, Julio C. Estrella1, Claudio F. M. Toledo1 and
Stephan Reiff-Marganiec2

1 Institute of Mathematics and Computer Sciences, University of Sao Paulo, SP, Brazil

leonildo.azevedo@usp.br, {jcezar, claudio }@icmc.usp.br
2 University of Leicester, Leicester, UK

srm13@leicester.ac.uk

Abstract. Nowadays the access to a cloud computing environment is

provided on-demand offering transparent services to customers. Although

the cloud allows an abstraction of the behavior of the service providers

in the infrastructure (involving logical and physical resources), it remains

a challenge to fully comply with the Service Level Agreements (SLAs),

because, depending on the service demand and system configuration, the

providers may not be able to meet the requirements of the customers.

This paper proposes algorithms to address the need for optimization when

handling computational resources before establishment the SLA.

Keywords: Cloud computing, SLA, optimization, IaaS

1 Introduction

In recent years, cloud computing has been one of the most widely discussed areas
of Information Technology (IT). Cloud computing can also be regarded as an
extension of other paradigms such as standard grade and utilitarian computing;
this enables business applications to be viewed as sophisticated services which
can be accessed by means of a network (the Internet) [5].

Cloud Computing is conceptually divided between three basic services models:
Software as a Service (SaaS), Platform as a Service (PaaS), and Infras-

tructure as a Service (IaaS). These models set out the capacities of the cloud
services and how such services can be rendered to clients. This approach can be
viewed as a division of rendered services in abstract layers [5].

Cloud Computing is a vast and complex computing paradigm that is closely
bound up with the business dealings of its clients. It has always been a challenging
task to provide clients with a suitable infrastructure for rendering services.
Different clients require different resources depending on their hosted applications
or demands made by users for these applications. For example, a particular
client may have a CPU-Bound application while another client has a Memory-
Bound application. One client might have an application with a large number of
simultaneous accesses, whereas another client might have an application with
only a few random accesses.



2 Leonildo J. M. A. et al.

The Cloud providers generally offer several configurations of virtualized re-
sources (combinations of CPU, Memory and Disc space based on Virtual Machines
(VMs)). Some configurations of virtual machines are predefined. Providers such
as Amazon EC2 and Microsoft Azure employ a methodology in which the clients
themselves are responsible for giving a precise estimate of the necessary resources
and selecting the VM to be contracted [8].

It should be remembered that the users do not always have the technical
knowledge to handle the provisioning of resources, not to mention the fact that
this task can be burdensome for them. Therefore, the application of some kind
of optimization technique for the provisioning of resources can make this an
automated task. This can ensure the maximum use of computational resources
and hence, the user need not to pay for more than she/he really needs. They will
pay a fair price for the contracted service.

In this paper, our concern is with the IaaS service model and thus we have set
out to create and evaluate optimization algorithms that fully comply with SLAs.
We propose two optimization algorithms aimed at overcome the highlighted chal-
lenges, however, it is not a business evaluations. First, we describe a deterministic
algorithm that is able to search exhaustively the problem solution space. Next, a
micro-Genetic Algorithm (µGA) is proposed aiming to search more efficiently
the solution space.

The paper presents two algorithms providing novel solutions for automating
resource allocation in cloud computing and initial results of their performance.

2 Related Work

The cloud is a highly scalable environment in which the demand for services
can change unexpectedly. Thus, the automatic allocation of resources to meet
this demand is becoming an issue of great interest in both the academic and
industrial world.

Correct provisioning allows for a better use of available computational re-
sources and the whole infrastructure which comprises cloud, since it carries out a
more efficient mapping between the loading and resources [2]. For example, the
task of providing more computational resources to a client becomes more feasible
and it can be made available more easily since the resources are virtualized.
Moreover, while from the standpoint of the clients, the resources can be regarded
as unlimited, it should be remembered that the allocation of more resources has
an influence on the final cost. This cost has to be passed on to the client and it
requires effective mechanisms on the the provider side.

There are several studies that analyze mechanisms for managing resources in a
cloud environment. The suggestion of Amazon, that there should be an automatic
reconfiguration of the infrastructure of the clients, is based on monitoring by
means of Cloud-Watch Alarms and Scaling Policies. The scaling of Amazon Web
Services (AWS) can be carried out by employing metrics which are generally
based on the consumption of CPU time or on policies that are essentially divided
between Manual Scaling, Dynamic Scaling and Scheduled Scaling [1].



An Analysis of Metaheuristic to SLA Establishment in Cloud Computing 3

In [11], a ”central load balancer” is proposed for a large-scale cloud computing
environment. However, there was a need to investigate how to implement other
algorithms to spread the load in accordance with the use of resources, obtaining
a more dynamic and robust load distribution. [12] proposes a scaling model of
virtual resources based on the selection of a Non-dominated Sorting Genetic
Algorithm (NSGA II). However, it is not evaluated failures found in a real
environment, the needs of the client as opposed to those of the SLA and the
available resources, or the costs incurred by the client.

There are many complex problems within the area of cloud computing that
can be addressed by solutions that are found through optimization. For example,
a) the problems of allocating virtual machines in a real machine [10]; b) energy
saving [3]; c) scaling and load balancing of applications in virtual machines [9]; d)
the use of resources aimed at reducing costs, while still guaranteeing a satisfactory
performance [6]; and e) ensuring the QoS is in compliance with the SLA.

All these problems require optimal or sub-optimal solutions which can be
achieved through techniques that are conceptualized within the area of optimiza-
tion. This study seeks to tackle the problem of allocating resources in a suitable
way by employing a heuristic and a meta-heuristic.

3 Methods

Some experiments were conducted and carried out in the CloudSim Simulator
3.0.3 3 version 3, with the aid of a computer with an AMD Phenom(tm) II
X6 1090T Processor, with 16 GB of RAM memory, 1.5 TB of disc storage
and the Ubuntu 14.04.3 LTS operational system with a kernel version 3.13.0.
CloudSim was configured for the execution of three types of VM requests based
on m3.medium, m3.large and m3.xlarge from Amazon EC24.

When the experiments were conducted, an SLA was stipulated for a particular
client, the QoS attributes consisting of Capacity (Cc), Time (T c), Availability (Ac)
and Cost/hour (C/hc). The simulation involves executing the client application in
the capacity described in the SLA. As a result of the execution, the response time,
availability and cost/h returned by CloudSim are obtained. If the parameters
returned by the CloudSim are not compatible with the descriptions in the SLA, a
meta-heuristic is applied to find a solution (Capacity (C∗), Time (T ∗), Availability
(A∗) of cost/h (C/h∗)) which can be best adapted to the requirements of the
client. Thus, the proposed method will try to define for the provider the best
arrangement of VMs (s∗, m∗, l∗).

Two algorithms were designed to solve this problem: a deterministic algorithm
(vide Algorithm 1) and a µGA (vide Algorithm 2). These methods will optimize
the number of virtual machines contracted by the client. Thus, the representation
of the solution (encoding) is defined by (s, m, l), which are the number of Virtual
Machines (VMs) of type Small, Medium and Large, respectively, that will better
satisfy client requests.
3 http://www.cloudbus.org/cloudsim/
4 https://aws.amazon.com/pt/ec2/instance-types/



4 Leonildo J. M. A. et al.

The representation of solutions (s, m, l) are evaluated by CloudSim Simulator
3.0.3 3 version, that is configured for the execution of three types of VMs. As a
result of its execution, the capacity (C∗), response time (T ∗), availability (A∗)
and cost/h (C/h∗) returned by CloudSim are obtained. If these parameter values
are not compatible with those defined in the SLA (Cc, T c, Ac, C/hc), another
representation of solution (s′, m′, l′) must be evaluated. This compatibility is
estimated by Equation(1).

f(P [i]) =
∣∣∣ C∗ − Cc

Cc

∣∣∣ +
∣∣∣ T ∗ − T c

T c

∣∣∣ +
∣∣∣ A∗ − Ac

Ac

∣∣∣ +
∣∣∣ C/h∗ − C/hc

C/hc

∣∣∣ (1)

The Manhattan Distance [4] is employed to estimate how close the solution
is to the values stipulated in the SLA. There are four objectives with scale of
values, so a standardized system is necessary based on Gap values.

The search space is defined from the number of machines adjusted by the
client, where an amount 50% above or below the desired number of VMs are
evaluated. For example, if the client contracted 50 VMs, the possible interval to
explore remains between 25 and 75 VMs. In this case, representation of solutions
as (s, m, l)=(1, 20, 4) or (s, m, l)=(0, 0, 75) are allowed since 25 ≤ (s+m+l) ≤ 75.
Thus, all possible combinations of VMs within this range of 50% are evaluated
aiming to obtain the best value for Equation (1).

Algorithm 1 describes the deterministic algorithm, where all possible com-
binations for (s, m, l) are exhaustively evaluated and the best one is returned.
Algorithm 2 shows the proposed µGA. This method is a genetic algorithm (GA)
version which operates with a smaller-sized population and employs a convergence
criterion that allows reinitialization.

Algorithm 1: Determinis-
tic algorithm

Input: SLA: Cc, T c, Ac, C/hc

1 //2. Sweep all the search space
2 repeat
3 //generate a capacity to be

evaluated
4 Generate(s, m, l)
5 Evaluate(s, m, l)
6 until Until all (s, m, l)

possibilities within the interval

have been tested;
7 //return a better configuration

found to satisfy the SLA of the
client

8 return SLA∗ : C∗, T ∗, A∗, C/h∗

Algorithm 2: µGA algorithm
Input: SLA: Cc, T c, Ac, C/hc

1 //1. Generate a population with 5 individuals
2 InitializePopulation(P)
3 //Assess the fitness of each individual in the

population
4 Evalutate(P)
5 repeat
6 Selection(P)
7 Crossover(P)
8 Mutation(P)
9 Evaluate(P)

10 if the best individual is not updated after

10 iterations then
11 Reinitialize(P)
12 end
13 until time limit has been reached;
14 //return the best individual
15 return SLA∗ : C∗, T ∗, A∗, C/h∗

The population was adjusted until it settled at only 5 individuals, each of which
represents a possible VM configuration (s, m, l) for the client. The initialization
generates randomly individuals (s, m, l) such as min ≤ (s + m + l) ≤ max, where
the possible range is defined by [min, max].

A tournament is applied to select between two individuals one to take part
in crossover. The BlX-α crossover [7] is applied to generate new individuals.
However, if (s + m + l) ≤ min or max ≤ (s + m + l) for the new individual,



An Analysis of Metaheuristic to SLA Establishment in Cloud Computing 5

the necessary amount is added or deduced from the last position (l). If it is not
enough, the amount can be also reduced from position m.

4 Computational Results

The computational tests were divided into 10 scenarios compounded by different
number of VMs available in a data center as shown in Table 1. We report the range
to explore solutions [min, max], the Execution Time spent to both algorithms
and the total Number of combination evaluated by the deterministic algorithm
for each scenario.

For a data center with 10 VMs, it was assumed that the client requested 5
VMS, so the range to be explored is [2, 8] in this case. It can be observed that for
20 VMs, a fairly high execution time is already obtained in a scale of minutes
(2.19 minutes). The time increases exponentially for the others scenarios as a
result of the large number of VMs. The execution takes longer than 20 minutes
for V Ms > 50. The deterministic algorithm is able to find the optimal solution
for this problem once it explores completely the solution space. However, these
results indicates that the method is not viable for practical purposes even for a
small number of VMs.

The µGA was executed 100 times for each scenario with 3 minutes as stop
criterion by execution. It was assumed that 3 minutes is a reasonable time to
reply a client request. After all executions, the success rate achieved by µGA
was estimated by comparing the best solution of µGA with the optimal solution
found by the deterministic algorithm. A success is computed if µGA finds the
optimal solution in some run. The proposed µGA was able to find the optimal
solutions for all scenarios in all 1000 executions. Table 1 reports the average
Time with standard deviations to find the optimal solution.

This correctness rate was obtained in less than 1 minute for all scenarios by
µGA, in contrast with the deterministic method that took more than 1 minute
in all cases, except by VMs=10. The mean of µGA time was computed based on
100 executions. The standard deviation in some cases is greater than the average,
due the significative discrepancy among the data.

Table 1. Response time to the µGA and Deterministic model of 10 scenarios scenario

from 10 until 100 available VMs.

Number Execution Time Time µGA Number of
of VMs [min, max] (minutes) (minutes) combinations

10 [2, 8] 0.35 0.13 ± 0.15 63
20 [5, 15] 2.19 0.54 ± 0.32 342
30 [7, 22] 6.28 0.19 ± 0.19 1330
40 [10, 30] 14.83 0.32 ± 0.21 2743
50 [12, 37] 27.08 0.56 ± 0.24 4912
60 [15, 45] 47.53 0.17 ± 0.19 9260
70 [17, 52] 72.38 0.14 ± 0.17 13823
80 [20, 60] 108.56 0.17 ± 0.20 19682
90 [22, 67] 150.25 0.19 ± 0.21 29790
100 [25, 75] 213.86 0.16 ± 0.16 39303



6 Leonildo J. M. A. et al.

5 Conclusion

It is not a trivial task to provide a cloud computing user with an efficient
infrastructure, that respects the SLA and its QoS attributes, while at the same
time seeking to reduce costs. Within the domain of cloud computing, the most
wide-ranging problems can be mapped out in solutions that generally involve
optimization based on their complexity and the large number of resources that
can be scalable.

This article addresses one of these challenges which was to provide the client
with a self-manageable infrastructure with the provision of SLA agreed between
the client and provider. Our proposal mapped some of the QoS attributes that
determine the criteria for the SLA and we also designed and analyzed algorithms
that allow an optimized reconfiguration of the infrastructure based on these
criteria. The results provide evidence that the µGA algorithm is efficient and
applicable to the solution of the problem.

In future work, we intend to carry out new tests with a bigger number of VMs
and clients. We are also going to design new meta-heuristic algorithms so that
a comparison can be made between them, and at the monitoring phase. Other
QoS attributes will be added to the SLA and new constraints to the problem
such as defining a maximum cost threshold that the client is able to afford.

Acknowledgments The authors thank CNPq, CAPES and FAPESP (processes
IDs: 16/14219-2 and 15/11623-4) for the financial support funding this research
work.

References

1. Amazon: Scaling the size of your auto scaling group (2015), available at: http://

docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/scaling_plan.html. Last

Access: 01/20/2015

2. Batista, B.G., Estrella, J.C., Ferreira, C.H.G., Leite Filho, D.M., Nakamura, L.H.V.,

Reiff-Marganiec, S., Santana, M.J., Santana, R.H.C.: Performance evaluation of

resource management in cloud computing environments. PloS one 10(11), 21 (2015)

3. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics

for efficient management of data centers for cloud computing. Future Generation

Computer Systems 28(5), 755 – 768 (2012), http://www.sciencedirect.com/science/

article/pii/S0167739X11000689, special Section: Energy efficiency in large-scale

distributed systems

4. Black, P.E.: Manhattan distance. Dictionary of Algorithms and Data Structures 18,

2012 (2006)

5. Buyya, R., Broberg, J., Goscinski, A.M.: Cloud Computing Principles and

Paradigms. Wiley Publishing (2011)

6. Byun, E.K., Kee, Y.S., Kim, J.S., Maeng, S.: Cost optimized provisioning of elastic re-

sources for application workflows. Future Generation Computer Systems 27(8), 1011 –

1026 (2011), http://www.sciencedirect.com/science/article/pii/S0167739X11000744

http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/scaling_plan.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/scaling_plan.html
http://www.sciencedirect.com/science/article/pii/S0167739X11000689
http://www.sciencedirect.com/science/article/pii/S0167739X11000689
http://www.sciencedirect.com/science/article/pii/S0167739X11000744


An Analysis of Metaheuristic to SLA Establishment in Cloud Computing 7

7. Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Natural Computing

Series, Springer Berlin Heidelberg (2007), https://books.google.com.br/books?id=

7IOE5VIpFpwC

8. Huu, T.T., Montagnat, J.: Virtual resources allocation for workflow-based applica-

tions distribution on a cloud infrastructure. In: Cluster, Cloud and Grid Computing

(CCGrid), 2010 10th IEEE/ACM International Conference on. pp. 612–617. IEEE

(2010)

9. L.D., D.B., Krishna, P.V.: Honey bee behavior inspired load balancing of tasks

in cloud computing environments. Applied Soft Computing 13(5), 2292 – 2303

(2013), http://www.sciencedirect.com/science/article/pii/S1568494613000446

10. Masdari, M., Nabavi, S.S., Ahmadi, V.: An overview of virtual machine placement

schemes in cloud computing. Journal of Network and Computer Applications pp. –

(2016), http://www.sciencedirect.com/science/article/pii/S1084804516000291

11. Soni, G., Kalra, M.: A novel approach for load balancing in cloud data center. In:

Advance Computing Conference (IACC), 2014 IEEE International. pp. 807–812.

IEEE (2014)

12. Zhao, J., Zeng, W., Liu, M., Li, G.: Multi-objective optimization model of virtual

resources scheduling under cloud computing and it’s solution. In: Cloud and Service

Computing (CSC), 2011 International Conference on. pp. 185–190. IEEE (2011)

https://books.google.com.br/books?id=7IOE5VIpFpwC
https://books.google.com.br/books?id=7IOE5VIpFpwC
http://www.sciencedirect.com/science/article/pii/S1568494613000446
http://www.sciencedirect.com/science/article/pii/S1084804516000291

