
Towards a Task-Oriented, Policy-Driven
Business Requirements Specification

for Web Services

Stephen Gorton and Stephan Reiff-Marganiec

Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{smg24, srm13}@le.ac.uk

Abstract. Dynamic assembly of complex software is possible through
automated composition of web services. Coordination scripts identify
and orchestrate a number of services to fulfil a user or business goal.
There exists a need for expressing high level business requirements in
such a way that is accessible by businesses. Current solutions fail to in-
clude specifications at the appropriate level of abstraction. Our approach
defines a graphical notation to depict a business goal in terms of objec-
tives, which are refined by tasks. The specifics of each task as well as
overarching business constraints are expressed by policies.

1 Motivation

The advent of Service-oriented Architecture (SoA) makes software “on demand”
a distinct possibility. The relatively recent introduction of web services means
that automated composition of services can be achieved. Solutions already exist
for service discovery and description, though these may be far from complete.
Composition solutions also exist, with the Business Process Execution Language
(BPEL1) the de facto standard.

Attempts to bridge the gap between the business domain and the service
domain are often made by expressing business logic through composition or
other technologies, but there is a distinct lack of tools which can express precise
requirements specifications at the business level. While existing solutions tackle
aspects such as functionality and sequencing of business activities, none are
complete to encompass all information required at the business level.

The problem that we address in this paper regards business process modelling
and analysis, and our goal is to develop a modelling language to accurately
express a complete set of business requirements, through the use of policies, in
terms of web service usage. One particular aspect is that the notation should be
suitable for use by business users (not IT experts) and that it should be simple
to use to encourage changes when demand arises.

1 http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

S. Dustdar, J.L. Fiadeiro, and A. Sheth (Eds.): BPM 2006, LNCS 4102, pp. 465–470, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

466 S. Gorton and S. Reiff-Marganiec

2 Background

Service-oriented Architecture, and its implementation as Web Services, make the
vision of just-in-time assembly of applications a distinct possibility. SoA refers to
a system architecture where a number of independent services can be composed
at runtime into larger applications in order to respond to immediate business
needs or goals. For details about SoA we refer to Alonso et al. [1]. The automatic
composition (i.e. identifying plans for composing services such that they fulfil
some desirable goal) and ways for end-users to express these goals (requirements)
are two aspects that still must be addressed. In this paper we concentrate on
the latter.

We consider the flow of the business process and the description of the business
policies as parts of the requirements specification. Task flow is usually captured
in a way that describes the operative nature of the business by using task maps
or work flow languages. Task flow is obtained through business modelling as
this requires a certain understanding of the business processes involved. Exist-
ing composition technologies such as BPEL can express sequence logic in service
usage, but they are aimed at the IT level. The Business Process Modeling No-
tation (BPMN) [2] addresses the problem of expressing business requirements.
However, the BPMN specification [2] states that it was “constrained to sup-
port only the concepts of modelling that are applicable to business processes”,
thus not supporting organisational structures and resources, functional break-
downs, data and informational models, strategy and business rules. We believe
that BPMN has too many shortcomings to be considered as a complete business
solution for expressing business requirements for a web service-based applica-
tion. In particular, we note that BPMN does not support the expression of
non-functional business requirements.

Business policies on the other hand express rules that are of a more generic
nature; often they do not apply to a specific business process but rather to spe-
cific tasks or the way that the business operates overall. Policies are descriptive
in their nature. Policy description languages [3] have been used to express quality
of service constraints or access control, that is to describe very low level prop-
erties of systems. The Appel policy language [4] has been defined to express
end-user rules in telecommunications systems and we are extending this in our
ongoing work to interact with the task maps discussed in this paper.

Our approach builds on the conceptual ideas of BPMN by using a simpler
graphical notation, but adding policies to express precise business requirements.

3 Overview of Approach

Our graphical notation is intended to act as a modelling agent for businesses who
choose to use web services. The process of requirements elicitation begins with
the specification of the business goal. This goal is broken down into objectives
that are fulfilled by tasks, which represent atomic business activities. The goal is
then expressed in terms of a task map and policies. Now there exists an accurate
model for the business requirements.

Towards a Task-Oriented, Policy-Driven Business Requirements 467

service

data in

data outerror

compensation side effect
(world change)

(a) Service as a computational entity

task
service

control data

control data

ext in error
data

dataerror

compensate side
effect

(b) Services map to tasks

Fig. 1. Services

The task map (and policies) are read by a parsing engine, which searches
Internet directories for web services that satisfy the requirements. Once all ser-
vices have been located, their descriptions are returned. A coordination engine
generates a coordination script according to the descriptions and flows in the
task map.

To define the goal, the business must define the objectives that would satisfy
it and the tasks required to satisfy each objective, along with the execution
sequences of the tasks. A business goal is likely to be defined at a very high
level and thus cannot be easily formalised. Functionality is the core requirement
for each task. Functionality can usually be more accurately expressed at the
atomic task level, whereas non-functional requirements may be expressed at the
composite task level, such that they can propagate through to any subtask. Our
approach uses policies to encode rules describing the operation of the business
as well as the constraints that apply to certain tasks.

A service is a computational entity that maps input data to output data,
respects certain non-functional properties, might change a world condition and
has a compensation action (e.g. undo as in [5]). In Fig. 1(a), we see how a
service is graphically represented, and in Fig. 1(b) how a service maps to a
task (or composite task). Note that the service may be of a composite nature
(i.e. composed of other services).

4 Graphical Modelling Constructs

A task is a business activity that contributes to an objective and thus the wider
business goal. Each task fulfils a functional requirement. Each task must have
a control input and a control output. It has external inputs representing a pol-
icy that affects this particular task. Once control has reached a task’s input,
the task’s triggers are activated. On completion of the task, the control leaves
through its output channel. Composite tasks are task sub-maps, enabling the
designers to separate concerns over aspects of the business goal.

A flow is a sequence of entities (tasks or operators) in the task map and can
either be a control flow or a data flow. All tasks inside a task map are subject to
policies that are centrally specified by the consuming business or governing law
that either restrict the service selection or change the shape of the task map.
An example of the former is that a corporate policy may state that the use of

468 S. Gorton and S. Reiff-Marganiec

control data

ext in
task

control data

(a) Simple task

task
service

control data

control data

ext in error
data

dataerror

compensate side
effect

(b) Composite task

Fig. 2. Tasks

fx.1 fx.2 fx.4 fx.5

fx

fx.3

(a) Flow Split

fx

fx.1 fx.2 fx.4fx.3

n

(b) Conditional Merge

fx

fx.1 fx.2

test

(c) Flow Junction

p1tp.1 tp.2 tp.3

error

(d) Strict Preference

c1tc.1 tc.2 tc.3

error

(e) Random Choice

fx.1 fx.2 fx.4 fx.5

fx

fx.3

(f) Flow Merge

Fig. 3. Operators

a direct competitor’s services is forbidden. An example of the latter is a policy
that requires the obtaining of at least 3 quotes before a purchase can be made.
Note that data and control flow can be independent and we can have partial
data flows.

In addition to tasks and flows, which can express simple sequencing, we define
operators that are functions on control flows. These further enable a business to
accurately model their business goal.

Flow Split. The flow split operator takes a control flow input and produces
a set of control flow outputs. In Fig. 3, the operator is pictured with one in-
put and five output flows. When the active control flow reaches the operator,
control is distributed amongst the outgoing flows such that each flow progresses
simultaneously. For example, in a typical customer-supplier-warehouse example,
a product dispatch may involve simultaneously notifying the customer of the
dispatch whilst ordering a stock replacement.

Conditional Merge. The conditional merge operator takes a set of active input
control flows and, subject to business-defined constraints, merges them with syn-
chronisation to a single output flow. We allow to specify mandatory and optional
flows (the filled or empty circles in the graphical notation). Also, the notation
allows to specify the number of flows that must reach the operator before pro-
ceeding. For example, when looking for airline ticket quotes, one might request

Towards a Task-Oriented, Policy-Driven Business Requirements 469

quotes from three suppliers, including the preferred supplier. Before booking, we
might say that we must have a quote from the preferred supplier, plus one more.

Flow Junction. A flow junction operator diverts the control flow down one of
two possible output routes according to a binary test.

Strict Preference. A strict preference operator attempts to execute a series
of tasks in a defined order, progressing when one of the tasks is completed. The
task with highest priority is attempted first. Each task in the operator specifies
its own output flow which is followed when its parent task is completed.

Random Choice. Choice is similar to preference, but without priorities at-
tached to included tasks. When control reaches this operator, all tasks may be
attempted simultaneously. When a first task reaches a commit stage all others
are cancelled.

Flow Merge. Flow merge is an operator that takes a set of control flow inputs
and maps to a single output flow. In order to preserve synchronisation, we say
that only one flow of the incoming set must be active, with all others inactive.
This may be the result of a prior junction, preference or choice operator.

5 Evaluation

Our approach has been to simplify the requirements specification process for
non-IT experts working in the business domain. Despite the existence of other
methods, we believe that our method has the following advantages when applied
at the business level:

– Expressiveness: Our language is able to express as many or as few require-
ments as is deemed necessary by the business. Task maps are an easy method
to understand and, with the aid of a wizard, policies are easy to construct.
Despite being at a higher level of abstraction, the task map can be automat-
ically mapped into service coordination scripts. We also include operators in
our notation that are non-existent in current notations, e.g. preference, thus
increasing the expressiveness for end users.

– No Binding: All tasks are expressed without the knowledge of services that
are available. The job of matching services to tasks is performed automati-
cally by a search engine, based on ontologies and richer semantic descriptions
of web services, which is out of the scope of this paper (there is active re-
search in this area which has led to some preliminary results; most ideas are
centred around planning algorithms).

– Change: If some aspect of the business goal needs changing to cater for a new or
changed business requirement, it can be done with relative ease by altering the
task map or underlying policies. The service coordination script is generated
automatically, which is subject to any changes made to the specification.

– Technology Compatibility: Though not an immediate aspect of business ver-
satility, our solution is able to take advantage of current solutions that exist,
e.g. BPEL as the coordination script. In this respect, a business always has
the option of altering their executable coordination script before proceeding.

470 S. Gorton and S. Reiff-Marganiec

– Composition Views: We add that our solution can generate different views
that are customized to different stakeholders. In particular, a project man-
ager may be more interested in (composite) task requirements whereas the
IT director may be more interested in the global or business-wide constraints.
Further low level views include control flow views and data flow views.

– Workflows: Our notation is able to support many of the workflow patterns
as described in [6].

The conciseness of this paper does not allow to present details on the issues
of cancellation, negotiation and how standard workflow patterns are supported.

6 Conclusions and Further Work

We have presented a notation for describing business requirements at an abstract
level. A business goal is defined in terms of objectives which are further refined by
tasks. Tasks are organised into a task map. Policies define complete requirements
and specifications for tasks, and are more generic in that they can be used
throughout the task map, providing information to many parts of a business
goal, and even across multiple goals. We firmly believe that this solution is able
to fill the gap between service levels and business levels.

Our further work includes refinement of the ideas presented on policies, based
on the APPEL policy language [4]. We also propose that a workbench be de-
signed to enable designing of task maps and policies through the use of a graph-
ical user interface.

Acknowledgements

This work is funded by the IST-FET IST-2005-16004 project SENSORIA (Soft-
ware Engineering for Service-Oriented Overlay Computers). Further thanks to
Marie-Claude Gaudel for her advice on cancellation and undoing.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraiu, V.: Web Services: Concepts, Architec-
tures and Applications. Springer (2004)

2. Object Management Group (OMG): Business Process Modeling Notation (BPMN)
Specification. (2006)

3. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Trans. Software Eng. 25(6) (1999) 852–869

4. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland,
J.: Policy support for call control. Computer Standards and Interfaces (2005)

5. Gaudel, M.C.: Toward undoing in composite web services. LRI, Paris-Sud University
and CNRS, Orsay, France (2004)

6. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Work-
flow patterns. Technical Report FIT-TR-2002-03, Queensland University of Tech-
nology, Brisbane (2002)

	Motivation
	Background
	Overview of Approach
	Graphical Modelling Constructs
	Evaluation
	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

