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Abstract

Science Gateways have been widely accepted as an important tool in aca-

demic research, due to their flexibility, simple use and extension. However, such

systems may yield performance traps that delay work progress and cause waste

of resources or generation of poor scientific results. This paper addresses an

investigation on some of the failures in a Galaxy system and analyses of their

impacts. The use case is based on protein structure prediction experiments

performed. A novel science gateway component is proposed towards the def-

inition of the relation between general parameters and capacity of machines.

The machine-learning strategies used appoint the best machine setup in a het-

erogeneous environment and the results show a complete overview of Galaxy, a

diverse platform organization, and the workload behaviour. A Support Vector

Regression (SVR) model generated and based on a historic data-set provided an

excellent learning module and proved a varied platform configuration is valuable

as infrastructure in a science gateway. The results revealed the advantages of

investing in local cluster infrastructures as a base for scientific experiments.
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1. Introduction

Among the many computational systems available for scientific analyses,

in silico experiments offer advanced results and demand higher computational

capacity. Non-specialized users have shown difficulty in using complex compu-

tational solutions, due to their particularities. Therefore, simplicity of use must5

be one of the fundamental characteristics of such systems, once transactions and

computations must be transparent for facilitating access and manipulation of

the available resources.

Science Gateways consist of a set of tools, applications, and data integrated

via a user-friendly portal and their main objective is to enable a larger group10

of users to conduct experiments, even if they are not skilled for dealing with

the details of a computational resource configuration. Typically, they use tools

as workflow management systems, e.g., Galaxy [1], Taverna [2], gUse [3] among

others [4], [5], [6], [7], [8], for reproducibility and simplification of execution

processes [9]. Such systems are integrated with databases for the acquisition of15

workflow steps and input data or storage of the processing results [10]. On the

other hand, Science Gateways may suffer from performance traps. As they offer

a high-level solution, users do not have information about servers location or

installed capacity. Systems for sophisticated computations are expected to of-

fer enough capacity, regardless of the complexity of the processing parameters,20

which is not always true. Hardware limitations can hamper the experiments

performance, slowing the progress or delivering poor results. Protein Struc-

ture Prediction (PSP) tools, designed for discovering the native structure of a

protein based on its amino acid chain [11], are an example of such complex

experiments, once they demand strict controls of computer performance and25

generate intensive data.

Among the Science Gateways challenges are (i) selection of a gateway that is

actively maintained, (ii) discovery of new services, (iii) real-time service monitor-

ing and management, (iv) identification of sufficient computing resources for the

problem complexity, and (v) support from the user’s community [12]. Science30
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Gateways must deal with deadline constraints and paid resources for processing

experiments in constant growth, therefore, the allocation of more computational

resources from cloud computing is a reasonable solution. Limitations on the al-

location of heterogeneous systems include different cloud providers that are not

inter-operable [13] and nonexistence of a module, framework or strategy that35

guides the user towards the definition of an optimized computational resources

configuration for running experiments.

This paper proposes a strategy based on data mining techniques for the

understanding of the relationship between users input data and the behavior

of the system over the execution time. The results showed Scientific Gateways40

require a module to help the decision on the type of resources allocation for the

execution of scientific experiments. The contributions of the approach can be

summarized into:

• an extensive evaluation of Galaxy capacities and shortcomings;

• a comparison of processing PSP in a varied set of machines; and45

• a base module for any Science Gateway to support the computational

resources identification for running experiments.

The remainder of the paper is organized as follows: Sections 2.1 and 2.2

briefly review the Service Oriented Architecture and the concepts of protein

prediction structures, respectively, Section 3 introduces Galaxy framework and50

its mechanisms; the main proposal, materials and algorithms are presented in

Section 4; Section 5 addresses the benchmark setup and the performance eval-

uation of executions in Galaxy environment; Section 6 reports the main works

related to Science Gateways; finally, Section 7 provides the concluding remarks

and suggests some future work.55
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2. Background

This section presents the background for this paper, which includes SOA and

PSP. In both subsections are included some references of each research field.

2.1. Service Oriented Architecture

Research institutions routinely deal with various types of data and coding60

systems, which are fragmented and spread among data repositories and lead to

information loss and increased costs of their systems [14]. Cross-platform in-

tegration can be provided through a Service-oriented architecture (SOA)-based

solutions that support scalability, re-usability, and heterogeneity [15]. There-

fore, web services integrate different repositories and platforms while maintain-65

ing their privacy policies and adaptability [14].

A SOA-based system is comprised of the following three main elements: (i)

service provider, which hosts independent web services to perform procedures;

(ii) service repository, which stores the description of services, location and

accessibility; and (iii) client application, which requests services to a host based70

on its service description [16].

Services can be integrated and distributed by public clouds, dedicated clus-

ters or multi-architecture systems with processing GPUs. Besides those dy-

namic environments delivering high performance computing the requirements

for a dependable architecture involve heterogeneous resources, scalability and75

minimization of communication, among others [17] [18] [19].

Abdul-Wahid et. al. [20] proposed a framework based on Work Queue (WQ)

and python implementation that provides scalability and integrates clusters with

cloud solutions for concurrent processing. Pronk et. al. [21] worked with three

levels of parallelism (SIMD, threads, and message-passing) and provided au-80

tomatic resource allocation. Such studies show the complexity of integrating

resources and technology for research and the ways computation can act.
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2.2. Protein Prediction Structures

This section describes the protein chains and the PSP processes for a bet-

ter understanding of their importance and use as workload. Proteins are linear85

polymer chains that perform fundamental biological functions for the mainte-

nance of life [22], once they regulate most activities within live organisms, as

replication of genetic code and maintenance of cell shape [23]. Proteins are

formed from amino-acid sequences (also known as residues) linked by peptide

bonds. Two amino acids form a peptide bond when they concatenate by releas-90

ing water. The folding process aims at defining the native state of a protein

from an inactive chain [23]. Scientists have focused mainly on two techniques to

define those structures, namely X-ray crystallography and nuclear magnetic res-

onance (NMR). Although precise, the technologies are costly and the processes

are slow, which have motivated the research on PSP, which aims at predicting95

the tertiary structure of a protein based on the amino-acids chain.

The folding process is a physical-chemical method in which any of the strands

displays a functional configuration for a specific 3D structure [24]. Four basic

representations of proteins are defined according to the residues arrange: the

primary structure is the representation of the amino-acid chain; the secondary100

represents the hydrogen bonds and a basic order; the tertiary structure is the

three-dimensional (or native) form, which enables the protein to perform bio-

logical functions. It is energetically stable and can be used in drug design or for

the understanding of behavior of diseases. Finally, the quaternary structure is

a representation of multi-tertiary complexes. Figure 1 shows the four structures105

[24].

The amino-acid chain is informed as input for the PSP processing phase. In

the sequence of the execution, many structures are produced until the best one

has been achieved, which represents the most stable one. The identification is

defined by the structure of lowest energy and can be expressed by the following110

formula: if c ∈ C(s) where c(s) represents the family of valid sequences for a

given set and E(c) is the energy function of the desired structure, the general

formula is defined as min={E(c)|c ∈ C(s)} [25].
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Figure 1: Four types of protein structures [24].

Research on prediction of protein structures has faced obstacles, despite the

evolution of technology [25]. The main objective of researchers is to improve115

the prediction quality, however, they rarely focus on computational efficiency or

reduction of processing time [26].

The impact of similar research on public health is an example of the im-

portance of the field. Over a decade ago, Amato et. al. [27] revealed scien-

tists resorted to distributed systems, which are currently much more advanced.120

Other approaches are presented in [28], [29] and [30]. This field is close to

health-related research, as in [31], [32], [33] and [34]. Reduced prediction er-

ror is presented in [35], and improvements in information on protein structures

can be found in [36], [37] and [38]. Finally [39] describes the I-Tasser frame-

work hosted on servers exclusively for PSP. The majority of improvements are125

protein-related methods.

Many of the above-mentioned studies suffer from performance and compu-

tational provision problems. Cloud Computing is the preferred platform, once

it is powerful; however, it implies cost limitations and third-part management.

The integration of clusters and other platforms can be an important advance130

for ensuring higher computational capacity and reductions in the processing

time. Some of the studies presented must be operated by scientists with little

experience in complex systems. As Science Gateways are systems with tools
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for processing and data analysis while maintaining transparency, they simplify

the access to users. As the PSP experiments are computationally consuming,135

they require a careful infrastructure definition and help for the identification of

limitations of those gateways.
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3. Materials

Galaxy is an open-source and modifiable web platform widely used in re-

search on bioinformatics. Servers are available for free and users access analysis140

tools and mechanisms for running and reproducing workflows. Some algorithms,

methods and analysis tools can be integrated in the framework, which makes it

personalized and adequate to users’ needs [40]. The main goals of Galaxy are

(i) access to complex computational resources from a broad public, (ii) repro-

ducibility of experiments and (iii) collaborative analyses via web [41].145

Galaxy has been built for an easy access by unskilled users. It has a general

purpose and is used in several domains with the same quality. Some of its

principal features include accessibility, reproducibility and transparency. The

Galaxy Project is divided into the following parts:

• Galaxy Server: The Galaxy project1 provides computational resources to150

Bioinformatic experiments. Public servers can be found in other research

pages.

Figure 2: Example of a Galaxy implementation available for use at ICMC servers.

• Galaxy software framework: an open source project that offers customiza-

tion and integration to provide services. This research has been con-

1https://usegalaxy.org
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ducted in an instance developed at the Institute of Mathematical Sciences155

and Computation (ICMC)2 and named Koala3, which provides data man-

agement, PSP predictors, analysis tools and workflow assistance. The

interface is shown in Figure 2 [42].

• Galaxy Tool Shed: space for the sharing of tools, solutions and steps for

configuration and installation. It is available at the project page 4.160

• Galaxy Community: the main part of the project, it is composed of de-

velopers, users and administrators that work together for evolution and

updates. Discussions and collaboration are primordial for any open-source

endeavor [40].

In comparison to other platforms, Galaxy stands out because of its many165

resources and great community [40]. It can be used via web interface, regardless

of its installation and is a considerably easy system for manipulation. Figure

3 shows the process of use of Galaxy Koala architecture. The user inputs the

data, usually collected from a public storage, as PDB. They are informed to

the framework via direct download or upload tools. The user chooses the algo-170

rithms that process the data according to the experiments design. If necessary,

intermediate data (i.e. population files of a genetic algorithm) are produced.

The processing phase starts, the results are generated, and the user decides on

storing or moving the data.

Despite its penetration in scientific fields and its many tools that help re-175

search conduction, several aspects of Galaxy (and also Koala) have not been

optimized. Some important limitations regard monitoring of active processes,

difficulties with large data-sets and lack of information about machine hosts.

The lack of information on computational capacities limits the design of exper-

iments and can cause failures that cannot be avoided by users. The system180

2http://www.icmc.usp.br
3http://koala.lasdpc.icmc.usp.br
4https://usegalaxy.org/toolshed
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Figure 3: Sequence diagram of an experiment in Galaxy Koala.

cannot detect or inform on the problem, and in an attempt to finish an exe-

cution, it can cause a dead lock. The user receives zero notification about the

system or the experiment status and waits for a conclusion that may not be

reached. The access control is also a problem, once only the administrator can

check and fix most faults. Galaxy has been designed for a broad public, includ-185

ing non-skilled users, which is a major drawback in its usability. Once Galaxy

Koala’ hosts cannot be chosen, the user must rely on the instances offered.

A survey into Galaxy Koala components, types of faults and extent of dam-

age based our previous studies and the literature review is shown in Table 1. The

components may be tools offered by Galaxy that report mechanisms or hardware190

devices. Predictors are tools developed for PSP experiments, providers nodes

are the hosts that offer the services and feedback is the mechanism that informs

users on the conclusion of the experiment. Detectability describes the system
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Table 1: Galaxy Koala components and most common failures.

Component Failure Domain Consequences Detectability Frequency

Predictor Crash Content Medium Yes Occasionally

Predictor Input Content Minor Yes Often

Memory Insufficiency Time Major Yes Often

HD Insufficiency Content Fatal No Rare

Feedback Crash Time Minor No Often

Monitoring Nonexistence Content/Time Major No Often

Provider Node Crash Content Major Yes Occasionally

operation and frequency indicates how often faults occur. Such shortcomings in-

dicate the improvements required and that the maintenance of Science Gateways195

must be constant. Users’ needs, technologies available, complexity involved and

possible gains must be accordingly evaluated. Problems similar to the ones in

Koala are found in other Galaxy implementations [1].
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4. Methodology

Critical points of Galaxy Koala were identified in our assessments. The200

modules common to Galaxy and other Science Gateways can be defined after

a careful study, as shown in Figure 4. The portals are accessible through an

interface, usually a web page, for authentication and definition of access levels.

Workflow managers define the sequence of tasks execution, as well as data man-

agement. Management tools, such as schedulers, monitors, and load balance205

comprise the next module. Finally, the execution module forwards the requests

to machines and repositories for execution, storage and retrieval of information.

The extra module in this infrastructure is the Decision Maker proposed here.

This component performs a previous analysis of the user’s needs and indicates

the computational configuration for the execution of an experiment with best210

cost-benefit. It differentiates the best environment for a request and reduces

costs of cloud machines and network traffic.

Decision Maker uses machine learning to process past runs, discover patterns

on a system’s behavior and define the best configuration for each data entry. It

uses this information to toggle the sending of requests between infrastructures215

installed locally in desktop machines, computer clusters, or cloud instances.

According to the parameters, it chooses between running on local servers with

downloaded information or sending the data to remote servers.

4.1. Environment selection

On many occasions, defining the configuration for a processing environment220

towards obtaining the best performance is a hard task. A machine of high capac-

ity can probably process many experiments, but also wastes electric power and

computational resources when dealing with smaller tasks. Modest resources, on

the other hand, may cause delays, wrong answers or process starvation. Another

problem is related to inflexibility in classic workstations, limited by hosts’ ca-225

pacity and difficult update. Clusters combine the capacity of various machines

and are a good option to offer high-demand resources. They are also limited
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Figure 4: Basic common modules of procedural architectures. The Decision Maker module is a

gap in this technology that can help the creation of scientific processes with good performance.

by the number of machines available and create parallel computing complexity

to programmers. The other option is cloud computing, which offers elasticity,

pay-as-you-go models and availability in a range of prices and according to the230

investment. If researchers have to deal with all such options during experiments,

the quality is reduced and errors can occur.

Decision Maker makes decisions over the configuration of the machines that

will execute the experiments. The users’ parameters combined with previous

experiments are used in evaluations for the definition of the best solution to235

each case. The outputs of this module are the best suitable configuration of an
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environment such as a workstation, a VM on cluster or cloud instance. This

study aims at contributing to research on PSP providing an environment in

which experiments yield results in an optimized way, by either cheaper and/or

faster methods. Therefore, Quality of Service (QoS) metrics, usual in SOA, must240

be respected and specific definitions for the research field must be provided. This

article proposes an infrastructure based on multi-environments, selection of the

best configuration for each set of experiments and supply of resources in an

integrated form. Galaxy Koala and its tools can be offered through a diverse

set of machines that work either locally or via the Internet. The following three245

setups were defined and classified by the computational capacity: a desktop

machine, a cluster machine and a cloud machine. The execution of a given

experiment in the proper machine can avoid delays and waste of resources.

Figure 5 shows the heterogeneous environment in a crescent order.

Figure 5: Environments considered for the architecture.

4.1.1. Computational Capacity250

Computational resources may vary regarding capacity. The performance of

desktops has significantly improved, however, the two main resources for scien-
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tific purposes are clusters and cloud computing. Each of them includes advan-

tages and shortcomings for maintaining Service Level Agreements (SLA) [16].

Galaxy Koala can be installed in any of such resources, and the choice will vary255

according to the initial specification and experimental design. When running

in a private cluster, the administrator can choose among many aspects for con-

figuring an environment and deciding on the steps of an experiment. Working

locally is a good choice for researchers who have expensive computers at hand

and are technically skilled to manage the system.260

Clusters are a congregation of machines prepared for parallel computing

and to offer combined capacity. They are usually available in companies and

universities and some of them offer public access. They are a very good option

for running experiments, and, in most cases, although the final user does not

need to deal with the maintenance of hardware and software, the administrator’s265

privileges are lost.

Finally, cloud computing provides resources on demand. It could be the

solution to every capacity problem, however, costs and bandwidth are some of

its limitations. The Internet speed has not grown proportionally to the size

of data generated, which represents a prohibitive aspect in many cases. When270

running experiments exclusively on the cloud the ideal is to allocate virtual

machines closer to the database, for the avoidance of data transportation and

storage the results in disperse repositories. Such aspects brings new concerns

regarding the maintenance and privacy of information.

To work as the computational environment, a diverse set was defined as275

follows: the working machines were divided into three different classes, namely

“desktop”, “cluster” and “cloud” and their different configurations are shown

in Table 2.

4.2. Algorithms

This section introduces the machine learning algorithms used for learning280

from data obtained by previous protein experiments in the Galaxy Koala plat-

form. Each data point is referred to as vector (x, y), in which x = (x1, x2, . . . , xd)
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Table 2: Three Galaxy Instances

Environment Hard Drive CPU RAM Operational S.

Desktop 20 GB 2 Core 8 GB
Linux Ubuntu

14.04.4 LTS
Cluster Node 50 GB 4 Core 16 GB

Cloud VM 200 Gb 8 Core 32 GB

is a d-dimensional vector of input variables (or features) and y is a single output

variable, i.e., the target variable. The objective of a learning algorithm is to pro-

duce a predictor ϕ(), trained by the learning set L = (x1, y1), (x2, y2), . . . , (xn, yn).285

If the produced ϕ() is a good predictor, i. e., if it has learned from data, it can

predict unseen data with a small error, as long as this data point has been

sampled from the same distribution of L.

As the target variable yi of our experiments is a numerical value (the pro-

cessing time), algorithms referred to as prediction modeling were chosen. Three290

different algorithms of linear regression, and one based on Support Vector Ma-

chines (SVMs) were assessed. Different algorithms were chosen for the task

because different machine learning algorithms learn differently from data, i. e.,

depending on the data, some learning algorithms are better to learn than others.

The linear regression method approximates a formula as the one shown295

in Equation 1, in which W = w0, w1, w2, . . . , wd is the vector of coefficients.

Therefore, the obtained predictor is a dot product between input variables X =

(x1,x2, . . . ,xn) and coefficients W estimated by the minimization of squared

error, shown in Equation 2.

yi ≈ w0 + w1 · xi,1 + w2 · xi,2 + . . .+ wd · xi,d,

in which i ∈ 1, 2, . . . , n (1)

O =

n∑
i=1

(W ·Xi − yi)2, in which i ∈ 1, 2, . . . , n (2)
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Smaller coefficients W are desirable, because they reduce overfitting [43].300

The two approaches for linear regression that are more effective for such reduc-

tions are ridge regression and Lasso. In Ridge, an L2-penalty term is summed

to objective function O of Equation 2. Such as a λ||W ||2, where λ > 0, pe-

nalizes the linear regressions with larger coefficients. On the other hand, Lasso

algorithm uses an L1-penalty summed to O, λ
∑d

i=1 |wi|, and obtains sparse305

solutions, i.e., solutions with few nonzero components. Such a characteristic is

specially effective when irrelevant features are present.

SVMs were initially developed for the binary classification of numeric data.

They focus on the optimization of hyper-plane that maximizes the margin be-

tween the two classes, which is proven to generalize well to unseen data as it is310

grounded in the framework of statistical learning theory [43].

An SVM can be used as regression using the method ε-SV regression [44].

Its goal is to find a linear function f(x) = W ·Xi + b, with w ∈ R, and b ∈ R,

that has at most ε deviation from the actually obtained targets yi for all training

data, i. e., if the prediction error is lower than ε, it is not considered. At the315

same time, it seeks small w, a property called flatness. The advantage of the

use of SVMs is they can be coupled to kernels, thus transforming the input

data into another, higher dimensional space, which enables the separation of

nonlinear data.
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Table 3: Andromeda Cluster Details

Cluster Andromeda

Number of Hosts 13

Processor AMD Processor Vishera 4.2 Ghz

RAM 32 GB RAM DDR3 Corsair Vegeance

Hard Drives HD 2TB Seagate Sata III 7200RPM

GPU Video Nvidia GTX 650 1GB

Motherboard Gigabyte 970A-D3

Power Supply ATX 650W Real

Operational System Linux Ubuntu 14.04.4 LTS

5. Results and Discussion320

An elaborated scenario was prepared on the Galaxy Koala Framework for

the collection of results and modeling of data behavior through machine learn-

ing, so that the best computational environment could be properly defined.

Experiments were performed at cluster Andromeda available at the Distributed

Systems and Concurrent Programming Laboratory (LaSDPC)5 (see details in325

Table 3).

Proteins in the last Critical Assessment of protein Structure Prediction

(CASP), hosted in 20166, were studied for the construction of a strong back-

ground. CASP is one of most important events regarding PSP and the data

used by the groups involved are a good point of investigation. Below are two330

histograms with the protein sizes considered Figure 6 shows the target proteins

used as goals and disputed by the groups with the best predictions. Figure 7

displays the Domain Definition proteins and their sizes exhibit a similar fre-

quency.

A diverse set of parameters was defined for the experiments, also varying the335

5http://infra.lasdpc.icmc.usp.br/
6http://predictioncenter.org/
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Figure 6: Histogram of the proteins size processed at the last CASP, in 2016. Those are the

proteins targets.

Figure 7: Histogram of the proteins size processed at the last CASP, in 2016. Those are the

domain definitions.

protein chain sizes. 2PG Mono [42] is the predictor chosen that uses a genetic

algorithm to define the protein objective form. Besides protein size, the two
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Table 4: Proteins and parameters for the experiments.

Protein Chain Size Population Generations

2N0L 12 From 20 to 30 From 10 to 150

1BCV 20 From 20 to 30 From 10 to 150

1AI0 21 From 20 to 500 From 20 to 1000

2ETI 28 From 20 to 200 From 20 to 400

1C94 38 From 20 to 200 From 20 to 1000

5K2L 49 From 20 to 200 From 40 to 800

5HVZ 50 From 20 to 100 From 10 to 400

1B1G 75 From 20 to 50 From 40 to 400

1EOD 100 From 100 to 300 From 200 to 1200

1CM7 100 From 30 to 100 From 30 to 100

1OZ9 150 From 20 to 50 From 30 to 200

4IEU 200 From 50 From 2 to 30

1AGY 200 From 20 to 50 From 30 to 300

2EEK 220 From 20 to 30 From 20 to 200

2R3A 300 From 20 From 60 to 200

2BX6 350 From 20 to 50 From 40 to 150

other parameters are population size and number of generations for the genetic

algorithm. They were chosen without a pattern towards making their prediction

harder. Table 4 shows the respective values.340

In a first approach, the experiment was conducted in a homogeneous set of

machines for a better understanding of the behaviour of the workload and the

differences imposed by the change in the parameters. The results are discussed in

the following charts. Figure 8 shows the overall processing time for all proteins.

The curve displays a growing tendency, according to the parameters input. The345

higher parameters in the last columns show the impact of the larger chains

on the system. Proteins of this size are common in many PSP experiments,

therefore, systems should be prepared for them.
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Figure 8: Processing time results for all scenarios.

For a better perspective on processing time growth, protein 1EOD is not

included in Figure 9, because the load it imposes on the system distorts the350

scale. The chart shows the differences in the processing time of the proteins.

Some may appear more than once in the X axis, as the parameters of population

and generation change.

Figure 10 displays the largest processing time for each protein. The workload

overhead imposed on the infrastructure ranges from minutes to several hours.355

Even smaller initial chain sizes may be in the process for long times, i. e., up

to days.

Three proteins, namely 2N0L (12 amino-acids), 1B1G (75 amino-acids) and

1AGY (200 amino-acids), were chosen for a comparison of samples according to

their sizes. The aim was to present not only the differences between the input360

parameters, but also the way machines of lower capacity can deliver good results

if the workload is suitable. The differences are shown Figure 11.

The information enabled some data evaluations for the definition of a general

model that correctly represents the relations among experimental parameters,

machine capacities and response time. As discussed in sections 4 and 5, lower-365
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Figure 9: Processing time results after the exclusion of protein 1EOD.

Figure 10: Larger processing times recorded.

capacity machines fulfill users’ requirements. Once Galaxy is adaptable to a

variety of computational solutions the working machines were divided into three

different classes, namely desktop computer, cluster machine and private cloud

inside LASDPC. The different configurations for the machines are shown in

Table 2, Section 4.2. The same experimental parameters of Table 4 were used,370

but in this case, different machine classes were chosen according to the input.
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Figure 11: Sample of three PSP calculations. The results may overlap the higher classes,

which hampers the prediction of the system’s service capacity.

The experiments were conducted in Koala, as reported in Section 4, and created

a database of historic executions used for the regression models. The algorithms

chosen for the regression are discussed in Section 4.2.

First, the data were loaded and a target variable was defined. Once, in this375

case, “Processing time” was the target, the best time for the execution of a

protein in a selected machine could be estimated. Some information, such as

protein names and resulting file sizes were discarded from the database because

the regression tests did not use it. The data were then divided into two sets,

namely train and test [45].380

A few trials were necessary for achieving the modeling that suited the type

of data collected. Three linear regression techniques were experimented and

unsatisfactory results were yielded. Each model was tested with four types of

data transformation, namely raw data, normalized data, log and normalized log.

A few transformations in the raw variables, as conversion of strings to numerical385

values and scaling of numerical variables to mean=0 and standard deviation=1,

were required [45].

The first experiment was the basic Linear Regression, however, the error
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Table 5: General results for the linear models over the collected data. Labels: LR (Linear

Regression), LL (Lasso Linear) and RR (Ridge Regression). R Squared: Ideal is closest to 1.

RMSE(Root Mean Squared Error): The less the better.

Model Score Function Raw Normalized Log Normalized Log

LR R Squared 0.48 0.48 0.53 0.53

LR RMSE 932.72 932.72 881.05 881.05

LL R Squared 0.48 0.49 0.53 0.53

LL RMSE 930.74 920.41 880.91 880.32

RR R Squared 0.48 0.49 0.54 0.54

RR RMSE 931.53 924.74 875.63 875.44

rate was unsatisfactory [46]. Least Absolute Shrinkage and Selection Operator

(Lasso) Regression were then tested, with L1 penalty, however, again, the results390

did not fulfill the requirements for a good model [47]. Ridge Regression with L2

Penalty [48] was the third regression to be tested and also yielded inadequate

results. The general results for the models are shown in Table 5.

A non-linear model was applied to the data and results analyzed. Support

Vector Regression (SVR) is a variation of Support Vector Machines (SVM) used395

for classification, regression models and construction of strong models. SVMs

were initially developed for the binary classification of numeric data. They focus

on the optimization of the hyper-plane that maximizes the margin between the

two classes, which is proven to generalize well to unseen data as it is made in the

framework of statistical learning theory [43]. SVR was implemented with the400

train set and its performance was assessed by predicting never seen data using

the same data set. The following score functions were defined for the modeling

of SVR:

1. R2 (R-squared): as close to 1 the output, the better.

2. RMSE (Root Mean Squared Error): the lesser, the better.405

The overall results were superior than those of linear regressions. As shown

in Table 6, SVR achieved R squared results close to the ideal ones and different

RMSE numbers. The best results were provided by the normalized data, with

a small deviation.
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Table 6: Results of the running of SVR model on the collected data. Best results highlighted.

Model Score Raw Normalized Log Normalized Log

SVR R Squared 0.98 0.997020 0.94 0.95

SVR RMSE 174.64 70.505679 312.44 293.05

Figure 12 displays the predicted values obtained by the SVR plotted versus410

true values. The points follow a diagonal line, with few variability, which has

proven that the predictions are very close to the expected values.

Figure 12: Results from SVR learning algorithm. The accuracy is high, with few deviations.

The model generated is now feasible to try the SVR with information not

available in the data-set and have a prediction of the processing time for each

environment. By adding the parameters as any set of the experiment and in-415

forming the three types of machine available, the model estimates the processing

time for each one and indicates the best option. The three environments were

tested with the same parameters below:

• Protein chain size = 72 amino-acids
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• Population size = 80 individuals420

• Generations = 200

Figure 13 shows the results.The desktop environment displayed the worst

results, while cluster and cloud machines exhibited similar response times. The

cluster machine provided a slightly better result than the cloud, which has

proven local environments can properly attend users in some cases. Even in a425

tied result, the use of the cloud must be avoided, due to bandwidth and costs

involved.

Figure 13: Results predicted by the SVR model on never seen data. The best result in this

sample was achieved by the cluster machine.

The model predicts the ideal environment for each PSP experiment defined

in the scenario and Decision Maker can correctly determine the workload that

fits a machine configuration. Considering the complete data-set, the best type430

of machine according to the workload is observed in the Figure 14. The almost

equal job distribution and the less powerful machine (desktop) chosen in 41%

of the experiments show the necessity of an evaluation of each case for the

avoidance of waste of resources and computing capacity.
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Figure 14: Division of jobs according to proteins workload for the corresponding machine

capacity.

According to the results, best fits can be defined for experiments with no435

overload of a machine’s capacity and the purchase of over qualified (and ex-

pensive) hardware is not necessary for the running of experiments. Moreover,

investments in local hardware, either independent hosts or clusters, are advan-

tageous for the development of research. Cloud computing has many conve-

niences, but does not work best to every case. We consider local management,440

setup freedom and avoidance of bandwidth limitations are a strong defense of

the installation of local systems and enable remote access, when necessary. Pay-

ing for cloud solutions on a long term may be a wrong choice, as that requires

high investments.
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6. Related Work445

Performance and user’s experience have been addressed in scientific plat-

forms, both on structural level and software implementations. Techniques that

improve quality and reduce limitations involve diverse experimentation aspects.

Moreno et al. [49] developed a library for the processing of long protein

sequences. The experiments revealed the bioinformatics bottleneck had changed450

from data acquisition to data interpretation.

Thaman and Singh [50] reviewed the services offered in distributed architec-

tures and the task scheduling was identified as the most influential factor for the

extraction of computational resources performance. Shagwan and Kumar [51]

conducted an extensive review of scheduling algorithms for clouds. Both studies455

support our decision of applying machine learning on the Decision Maker.

Bianchi et al. [52] introduced a workflow management system to address Next

Generation Sequencing (NGS). However, the authors did not consider cluster

and cloud infrastructures for running the experiments and the solution is closed

and not adaptable to other applications. Akos et al. [53] proposed a generic460

Science Gateway where applications can be uploaded as black box components.

Althought it can be used as a basis for new portals, it is not an optimized

solution and might lead to poor performance. Kacsuk [54] described a portal

for the integration of tools that use grid systems for the execution of tasks.

Although it is no longer available, it could be used for evaluation purposes.465

Stitz et al. [55] proposed a solution to deal with the lack of patterns on

virtualized nodes. It is a visualization system that supports the arrangement

of the computational resources offered. However, the study did not address the

methods appropriately used and failed to consider a variety of machines. Liu

et al. [56] integrated Galaxy with Globus Transfer for a reliable data moving.470

The resources are provisioned on-demand, however, they cover exclusively paid

cloud machines and do not fit any user. The issues addressed by such studies

are common in distributed systems. Different technologies and strategies are

tested to solve scalability, scheduling, monitoring, and heterogeneous platforms
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problems.475

Sandes et al. [9] reviewed the architectures from FPGAs to GPU applied to

bioinformatics and compared solutions that best fitted each architecture. The

study showed the necessity of highly parallel solutions and platform variations.

Mrozek et al. [57] introduced Cloud4PSP, a solution that adopts a scalability

model to run ab initio proteins in clouds. It is based on the pay-as-you-go model480

and relies on horizontal and vertical scalability for enhancing the performance

of the predictions. However, it is a closed solution strictly tied to a company.

Karoczkai et al. [58] presented a meta-broker for science gateways for schedul-

ing jobs to heterogeneous machines. It creates a layer on the gUSE gateway to

set job priorities and distributes them according to the distance from of the485

service providers. Although it can be a solution to load balancing, it does not

fit the workload in available resources, which might impair its performance.

Sandes et al. [59] filled this gap proposing an implementation that considers the

user’s expertise to provide wavefront balancing for a multinode arrangement.

The solution maintains fair job shares, depending on the amount of data trans-490

fer and communication, and could be useful in applications that require less

computational power.

Sandes et al. [19] proposed an extension of CUDAlign [31]. It consists of a

multi-platform implementation for sequence alignment (MASA) that considers

processing on GPU, FPGA, and CellBe architectures. It applies an optimization495

for reducing the number of cells calculated without losing precision and uses

heterogenous environments; however, it addresses smaller workloads.

Macedo et al. [60] proposed an allocation policy based on master/slave strat-

egy for heterogeneous multi-core clusters. Their study showed a proper place-

ment of master nodes can reduce processing time. The experiments were limited500

by the cluster capacities and did not consider scaling down of the machines for

smaller requirements.

Science gateways are multi-tenant systems that can benefit from specific

provision policies. Peng et al. [61] described issues related to the maintenance

of multi-tenant systems and introduced a knowledge-based resource allocation505

29



Table 7: Evaluation of Related Works.

Work Platform Scalable Reproducibly Flexible Economy

Akos et al. [53] Grid Yes No No Yes

Liu et al. [56] Cloud Yes Yes No No

Peng et al. [61] Cloud No No Yes Yes

Ying and Lei [62] Cloud Yes No No Yes

Bianchi et al. [52] Cloud No Yes No No

Karoczkai et al. [58] Multi Yes Yes No No

Sandes et al. [19] Multi No No Yes Yes

Sandes et al. [9] Multi No No Yes No

Garza et al. [18] Multi Yes Yes Yes No

manager. The results showed reasonable execution time, however, the manager

module produces additional costs.

Ying and Lei [62] designed a dynamic scheduler for multi-tenant systems that

uses a mechanism based on preconditions for improving scheduling and reducing

execution time. However, the approach must be tested in wider systems under510

harder conditions.

Garza et al. [18] introduced a set of tools for workflow scheduling. The idea

is to distribute small workflow tasks to heterogeneous machines. It has opened

up a new perspective for the design and execution of workflows, however, it does

not consider the workload influence and its relation to the computing capacity.515

This section has addressed the gaps on Scientific Gateways and integration

research. Table 7 summarizes the aspects and differences among the related

works and our novel solution for comparison purposes. Decision Maker is a so-

lution based on execution history for properly modeling workload, according to

users’ claims and the literature. It suggests a scalable and flexible environment520

for workflow execution considering reproducibility and budget. To the best of

our knowledge, Decision Maker is a good contribution to those systems and

could be a powerful tool for improving the execution and provision of computa-

tional resources.
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7. Conclusions525

Scientific Gateways have become a handy tool to support researchers regard-

ing experiment execution, data storage, and dissemination of results. However,

in many cases systems show limitations, such as low processing capacity, storage

space and response time. Such problems configure capacity bottlenecks, which

compromise the efficiency of the systems.530

Based on Galaxy experiments, we evaluated the retrieved information and

extracted a general model from the data by using different regression techniques.

We have proposed a decision module for improving the flexibility of execution

environments and offering a smooth transition between multiple environments.

The solution can also adapt to independent user’s investment capabilities and535

avoid waste of resources. The module and its unique machine learning ap-

plication is the differential component of infrastructure that supports current

environments.

The SVR model showed high accuracy in predicting the proper machine to

execute the workflow based on user’s parameters definition and a good estima-540

tion of the processing time. A varied environment can be the best solution, once

it includes cloud computing and offers other types of machines.

As future work, we intend to model an architecture on WorkflowSim for a

complete view of the science gateway capacity, considering the whole network,

connections and modules involved. Decision Maker is on the core of the archi-545

tecture, towards aiding the definition of the best machine capacity to scientific

experiments.
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