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Abstract—The Internet of Things aims to digitize everyday
physical objects by connecting them to the internet. As a
result, cyber-physical environments of multiple sizes emerge,
imposing new requirements on applications and software systems
in regards support to heterogeneity and volatility. A challenging
stage in the engineering of these systems is the validation.
Although, there have been significant efforts to offer shared
real-world testbeds, the simulations platforms are required to
make the validation process cost and time effective. Existing
simulation approaches only offer partial coverage to the key
IoT environment characteristics, focus on communication or are
specific for particular use cases and domains. In this paper, we
propose a novel agent-based model that enables the simulation
of the IoT systems with the key characteristics of an IoT
environment. This model is designed to be flexible and adaptable
to different experiments. Our approach introduces events in IoT
environments as stochastic processes, enabling the evaluation of
IoT systems under different conditions that otherwise would
be time consuming and costly. We present the results of our
experiments for evaluation of our model. These show that our
proposal is a practical solution for the validation of IoT software
systems, complementary to the real-world tests.

Index Terms—IoT Simulation; Agent Based Modelling; IoT
services; Smart Objects; Internet of Things Modelling.

I. INTRODUCTION

The Internet of Things (IoT) [1] has become one of the most
active areas in computer science and beyond in both research
and business contexts. Although the existing internet is already
diverse, IoT environments are more heterogeneous, connecting
simple IoT devices and more advanced Smart Objects (SOs)
with several hardware architectures, resources, software plat-
forms, communication protocols, message formats and data
repositories among others. It is expected that by 2020, there
will be around 50 billion or more devices connected to the
internet [2], [3].

The engineering of software systems and applications for
IoT environments reveal a number of open challenges in the
area. Particularly, the validation of such systems is complex
because of three key differential characteristics of the IoT
environments: the heterogeneity, volatility and the size variety.
In order to validate software solutions, researchers use one
or a combination of the techniques that include real-world
and simulations. Standard simulation techniques cover partial
characteristics of these systems at individual or network level
e.g. [4]. Other IoT test-beds such as SmartSantander [5]
provide a real infrastructure for operation and management

of the cyber-physical devices with a defined architecture and
approach for software development model, offering limited
interaction over the base software of the involved devices.
Multiple methods for validation of IoT applications have been
used, highlighting particular aspects of IoT environments.
Rarely, these approaches enable the incorporation of hetero-
geneity, instability and large quantities of IoT devices in order
to validate scalability and adaptation of the middleware and
specific SO software, at individual and collective level.

The definition of a simulation model that considers het-
erogeneity, volatility and medium/large scenarios are still to
be proposed. Ideally, this model must enable the repetition
of experiments and support the definition of decentralized
architectures while enabling experimentation with the different
combination of services offered by every IoT device.

In this paper, we propose a novel agent-based model that
enables the simulation of the operation of an IoT system,
focusing primarily on the collective behaviour and the charac-
teristics of the SOs in ecosystems with large numbers of SOs.
This model enables:

1) repeatable simulation of multiple SOs that communicate
and cooperate as part of a system,

2) easy definition of multiple metrics to be monitored, and
3) definition of several types of random events that are

incorporated to the IoT simulated environments.
The remaining is organized as follows, see section number

in parenthesis: we continue with a background on validation
and IoT systems (II), then we describe the FABIoT model (III)
and its architecture (IV). Next, we show the process of using
FABIoT (V) and present the experimental setup (VI), results
(VII) and discussion (VIII). Finally, we describe related work
(IX) and draw conclusions (X).

II. BACKGROUND

A. IoT Validation

Validation in real-world testbeds is always preferred as
they enable to replicate the cyber-physical conditions that are
present in production environments. The major drawback is
the cost. Despite the low cost of hardware platforms for IoT
devices, not all researchers have access to a real testbed with
a sufficient number of IoT devices. Besides, the configuration,
management and running of the platforms supporting the test
environments, is also time consuming. Therefore, usually, the



real-world settings are constrained and scenarios lack of some
or all of the key differential characteristics of IoT , namely: the
heterogeneity, volatility and medium/large size.

In the last years, a number of IoT experimental research
facilities with support to medium/large number of devices have
appeared, offering an infrastructure for evaluating solutions
atop of the offered services. These platforms offer services
that reduce the effort required to evaluate a particular solu-
tion, however, the price is that application developers must
conform to a particular development and operation model. e.g.
IoT devices are merely data feeders and cloud infrastructure
concentrates data storage and processing. In case of evaluating
decentralized architectures that require edge processing the
usefulness of these platforms is reduced. This is a problem
since the IoT research agenda includes the development of
decentralized solutions able to run in a combination of fog,
edge and cloud contexts and environments for evaluating these
solutions are required.

Besides, simulations enable validation under multiple con-
ditions, defining a model that offers a partial representation of
the real-world. From the literature reviewed (See section IX),
the approaches for simulation and the models used, focus on
a reduced number of characteristics of the IoT environments.
One of the most common uses of simulations is to validate
systems’ scalability to medium/large number of IoT devices,
however other characteristics of heterogeneity of IoT devices
and volatility e.g. IoT device mobility and network topology
changes, among others; are barely considered.

B. Smart Objects, Agents and Services

One of the approaches for building the IoT vision is based
on the concept of Smart Object (SO). In this approach, the SOs
are the individual augmented things that together combine as a
system to make IoT scenarios possible. Although the concept
comes from the first decade of the century and the basis for the
Smart Object-based IoT (SOb-IoT) might be from the work
by Kortuem, Kawsar et al. [6] back in 2010, nowadays the
SOb-IoT and the SO as a concept are still under construction.
The agent paradigm provides powerful abstractions with direct
mapping to the SO characteristics. An agent is defined by
Wooldridge as ”a computer system that is situated in some
environment, and that is capable of autonomous action in
order to meet its delegated objectives” [7]. It is clear from this
definition that the agent involves a software system that works
autonomously towards some objectives. In order to meet these
objectives, agents sense the environment, react to it, take the
initiative to carry out actions, interact and work with others.

Service and Agent computing paradigms have proven to
be powerful and useful software building blocks in multiple
contexts. For IoT, this is not an exception. On the one hand,
Web services are particularly suitable for web application
development as they provide inherent interoperability and
reusability. On the other hand, agents and Multi-agent Systems
(MAS) are instrumental in the development of autonomous and
cooperating systems that are able to reason and proactively
take actions. Inter-operability, autonomy and cooperation are

fundamental to achieving the SOb-IoT vision. However, it
is a challenge to ensure these paradigms are used together
effectively, enhancing each other and taking advantage the
existing common grounds.

III. FABIoT MODEL OVERVIEW

FABIoT is an Agent-based model (ABM) that mimics the
operation of different scale IoT systems over the time. FABIoT
offers the toolkit for the definition of IoT environments and
event-driven scenarios. The aim of FABIoT is to enable eval-
uation of distributed software systems that are intended to be
installed in IoT devices. These systems include, for example,
a collection of algorithms, services, middleware or a protocol.

Thus, FABIoT enables to create IoT spaces with multiple
heterogeneous, distributed and connected IoT devices. These
IoT devices are linked to a software library containing the
implemented system to evaluate. Having the IoT space and the
system to evaluate, FABIoT enables to simulate different and
many scenarios incorporating not only stable but also volatile
situations that, if done in real-world settings, would be a time
consuming and costly effort.

In ABM, there are three fundamental elements: agents,
environment and relationships [8]. The agents are embedded in
the environment where they work autonomously during a time
frame which is measured in ticks. In FABIoT , agents represent
IoT devices, Smart Objects, cyber physical infrastructure and
humans interacting with them. SOs are IoT devices with
autonomous behaviour. In our case, the environment represents
a physical setting where agents are placed, it could be a
residential building, a factory, a school or a neighbourhood.
Evaluations using FABIoT consider several characteristics of
the IoT devices that can be defined as parameters or variables
in every particular evaluation scenario.

The key characteristics that make FABIoT advantageous for
evaluation of IoT solutions are indicated below. Note that
some of these are inherited from the standard Agent-based
modelling.

• Flexibility: The model is not individually designed to test
one solution but to mimic common characteristics of the
IoT scenarios.

• Scalability: It allows for the representation of small,
medium and large scale scenarios.

• Heterogeneity-friendly: It enables to setup scenarios
where the IoT devices can have different hardware plat-
forms, capabilities and hosted services.

• Volatility-friendly: It enables simulate scenarios where
the IoT devices are mobile, consume (and use-up) re-
sources —e.g. battery, storage— or can change the ser-
vices offered.

• Event and Data-driven: The model enables the defi-
nition of a series of events that can be triggered by a
simulation cycle.

• Micro and macro levels: The model provides temporal
data about the resources consumed and the task executed
by every individual IoT device as well as the results of
the interactions and behaviour of the whole system.



Figure. 1: FABIoT Model Architecture

• Abstraction levels: Software solutions can be evaluated
at different abstraction levels. e.g. software and network
infrastructure as well as applications.

IV. FABIoT MODEL ARCHITECTURE

In this section, we describe the key elements of the model
architecture as presented in Figure 1. The main type of
agent in FABIoT is the SimDevice that represents an IoT
device. The Algorithm 1 shows a high level view of the
main operation of a SimDevice. This agent has a hardware
and software platform and is able to sense/actuate from/on
the environment. The SimDevice carries out tasks which are
executed using its available hardware resources. The Hardware
Resource Abstraction (HRA) component enables the definition
of a different mix of resources including CPU, RAM, storage,
battery, sensors, actuators, embedded interfaces such as dis-
plays or keyboards, among others. The Resource Usage Model
(RUM) determines the way that tasks consume the resources
available in the SimDevice. The Task Scheduler allocates tasks
per time unit based on the hardware resources available for
the device. It enables parametrization of the instructions the
SimDevice runs per tick. Although the scheduling algorithm
is a simplification of the real-world, it is designed to keep
consistency considering the different hardware configurations.
The speed of processing a task by a SimDevice, depends on
the task size as well as on the device’s configuration type. The
more powerful the configuration type and the lower the size of
the task, the quicker the SimDevice is able to process it. Battery
and storage usage patterns are independent of the concrete
tasks being processed. E.g. battery usage might depend on
the hardware characteristics of the SimDevice such as the
presence of a screen; likewise, storage might depend on the
data to store, which might vary for different executions of the
same task. Besides, the Physical Nature component allows for
configuration of a variety of physical properties relevant to the
scenario e.g. location, weight, size, etc.

On top of the SimDevice, another agent, the SimSmartO-
bject, represents an SO. This is an entity that shares the

Algorithm 1 SimDevice’s main function

1: function DOOPERATION(lts) . lts:Last tick state
2: cts.inMsg← receiveMsgs(simNetwork)
3: cts.tickBacklog ← lts.tickBacklog
4: for msg in cts.inMsg do
5: cts.tickBacklog ← processMsg(msg, protocolSpec)
6: cts.hardware← initializeHardware(lts.hardware)
7: while cts.hardware 6= ∅∧ size(cts.tickBacklog) > 0

do
8: nextTask ← pull(cts.Backlog)
9: execution ← schedule(nextTask, cts) . Also

updates hardware resources according to resource model
10: if execution = full then
11: executeTask(newTask, executionSpec)
12: else if execution = partial then
13: pendingTask ← executePartial(newTask, exe-

cutionSpec)
14: cts.Backlog ← push(pendingTask, cts.Backlog)
15: else
16: cts.Backlog ← push(newTask, cts.Backlog)
17: return cts . cts: Current tick state

hardware platform of the SimDevice but combines an au-
tonomous behaviour and a software layer based on services.
This software layer is generally the solution under evaluation.
FABIoT allows for the definition of different mixes of services
in a Service Portfolio. This portfolio determines which services
are deployed in every SO involved in a scenario. Therefore,
the heterogeneity is incorporated in FABIoT at hardware and
software level.

Another type of agent is the SimHumanUser, that represents
the human user. This agent enables the configuration of social
and physical properties of several users, as well as their
behaviour within the environment and in relation to the IoT
devices and SOs. These agents can trigger events or be affected
by the SimDevices and SimSmartObjects. They activate func-
tionalities under evaluation through the simulated interaction.
Another component of FABIoT is the SimInfrastructure that
represents any other computing resources —e.g. cloud or
edge servers— that have powerful and sometimes unlimited
resources with room to allocate and deal with more complex
and resource-consuming tasks. Initially, the focus of FABIoT is
in the behaviour of the IoT devices (micro level) and the whole
system (macro level) rather than the infrastructure operation.
Therefore, the infrastructure is abstracted in terms of services
offered to the SimDevices and SimSmartObjects. The rules
for usage of the available services are defined in the Service
Consumption Model.

The SimEnvironment component of FABIoT defines a Net-
work channel to which SimDevices, SimSmartObjects and
SimInfrastructure have access to. The SimDevices use a
standard request/response mechanism over a shared channel.
The SimDevices can only send/receive messages from others
connected to the same network. The message processing



function, at each end, consumes hardware resources and is
also considered as a task for each SimDevice.

The IoT Sim Engine is the module in charge of articulating
all the components of a scenario and manage its execution
while collecting the relevant data for analysis. This engine pro-
vides a Scenario Parser that gathers the agents, environment
and events for a particular scenario from files with a specific
format e.g. CSV. The Model Configurator sets up every entity
of the model and triggers initialization routines.

Two separate tools ease the generation of the input data
required for the model to operate. The Scenario Generator
produces pseudo random data sets containing entities, agents,
relationships and events. Besides, the Macro-Data Aggregator
offers routines for extraction of data from the time series for
each run of the scenario.

V. EVALUATION OF IoT SOFTWARE SYSTEMS USING
FABIoT

This section presents the process for evaluation of an IoT
software system using FABIoT as depicted in Figure 2. This
is a cycle inspired by the Montecarlo methods, which are
useful for predicting variability of complex systems [9]. The
rationale is that the behaviour of the different elements of an
IoT system can be modelled as a stochastic process. The
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Figure. 2: ABM Process for validation of IoT software systems

randomness comes from the dynamics, heterogeneity and the
flexibility of the IoT devices and the networks they built.
Besides, there are a number of events that happen during the
life cycle of the IoT system, making its response variable to the
specific context conditions. For example, events can be an IoT
device (SimDevice) joining, leaving the network —e.g. it runs
out of battery— or sensing a stimulus from the environment
(SimEnvironment). We define an observation period —i.e. the
time range the FABIoT model runs— during which, several
events can be configured to happen. FABIoT enables to gather
data about the behaviour of the IoT devices, the SOs and a
whole IoT system of them, working with the software system
under evaluation. This is useful to evaluate its performance
and identify potential issues facing unforeseen events.

The process in Figure 2 starts with the adaptation and
configuration of the FABIoT base model. FABIoT works as a
template offering various key elements of the IoT environment
but, minimally, needs to be linked to the software to test.
The result is a tailored model that is then parameterized.
The parameters to configure are common to every scenario
and cover the available hardware resources, the service-task
mapping, the resource usage and the service consumption
model. Although these parameters can be kept stable along dif-
ferent runs, this configuration gives the flexibility to introduce
different behaviours in the SimDevices or SimSmartObjects
as per requirement of the evaluation scenarios. As usual in
ABM models the definition of parameters requires tuning
against real-world subjects. In the case of hardware resources,
references are based on available real configurations and can
be further adjusted with benchmark from real-world small
scale tests.

The process continues with the generation of the input
data for the simulation. The random-generated data covers
mainly the collection of events that will be triggered during
the observation period and the physical, software and hardware
characteristics of the SimDevices and SimSmartObjects. The
data sets for the simulation cycles are generated using the Sce-
nario Generator tool. The data for every event varies slightly,
but includes minimally the event type, the tick it should
happen and the SimDevices or SimSmartObjects involved. The
synthetic data enables to test the software system without the
need of a wide deployment, of the solution under evaluation,
among the various different real IoT devices.

The next stage in the process is to test the tailored model,
with a single small-scale scenario. If required, the model is
re-configured and adjusted until it is ready for the extensive
simulation cycles. This test provides examples of the output
data, in the context of the scenarios and software under
evaluation, that is used for the following step: defining the
metrics relevant to study. Multiple metrics can be defined
for comparing the system performance along different sim-
ulation cycles. Using FABIoT , time series data are obtained at
both micro-level, i.e. the operation of particular SimDevices
or SimSmartObjects, and at macro-level, the whole system
behaviour. At individual level, for example, the number of
resources used for a scenario provide insights about how
the workload is distributed and which IoT devices are par-
ticipating in a workflow. FABIoT also provides data about
how SimSmartObjects manage situations when they, or their
neighbours, consume the available resources. At collective
level, network attributes such as latency and the overall usage
of resources can also be measured. With the metrics, extensive
model tests are performed, simulating the different conditions
as per data generated and changing the relevant controlled
parameters for the software under evaluation. Finally, the
individual and collective data are aggregated and interpreted, if
exit conditions for evaluation of the software are met the cycle
ends, otherwise the model is adjusted and evaluated again
following the same approach.



VI. IMPLEMENTATION & EXPERIMENTS

The aim of the experiments was primarily to determine the
feasibility of FABIoT for the evaluation of an IoT software
system. As per the process described in Section V, we
need a base FABIoT model and a software to evaluate. For
the former, we implemented a prototype of FABIoT using
the Repast1 agent-based simulation platform. This platform
provides general ABM abstractions such as agent, environ-
ment, patches, observer and a tool set for developing ABM
models. We implemented a release of FABIoT including the
SimDevices and SimSmartObjects agent types, the IoT Sim
Engine, SimEnvironment, SimInfrastructure, SimEvent and the
Data Tools (Section IV). For the IoT software system, we
used a middleware solution that we developed in a previous
work [10], [11]. This IoT middleware provides the set of
abstractions for an SO-based software development and a
p2p communication protocol. The main functionality of the
middleware enables the SOs to:

• create overlay networks where they offer, query for and
consume IoT services.

• put together related services offered by a particular SO in
roles representing broader functionalities. The proportion
of services per role indicates how many services a role
is grouping.

• use services for realizing activities of plans that represent
concrete workflows for achieving individual or coopera-
tive goals.

• make decisions about the SOs to cooperate with, based
on the roles they play and the current context.

For demonstrating the feasibility of FABIoT we focus on
showing the performance of the IoT middleware using FABIoT
with these two experiments:

• EX1: Using FABIoT to simulate increasing workload. It
shows how a system of SOs, using the middleware, be-
haves when the workload is increased. We defined a one-
to-one relationship between the activity of a plan and the
service that realizes it. To show the effect of role group-
ing, brought by the middleware, we run the experiment
for two proportions: 1 role grouping 1 service/activity (No
role grouping) and 1 role grouping 5 services/activities.
We generated data for 50 random configurations with a
stable number of SOs (40), different hardware resources
(See table I) and the events to simulate an increasing
workload, in the range from 10 to 90 plans, where each
plan had 7 activities to run within an observation period
of 1000 ticks.

• EX2: Using FABIoT model to simulate departing SOs
and evaluate system adaptation/resilience. It shows how
the system of SOs, using the middleware, adapts when
various SOs depart from the network. To see the effect
of service density —i.e. how many SOs are offering a
particular service— in the system response, we defined a
case in which 10% of the SOs were offering the services

1https://repast.github.io/index.html

TABLE I: Main Model Parameters
Name Description Scope Values Units
Hardware

Processing
Power

Maximun amount (millions) of
instructions the SO is able to
process in a time unit (tick).

Model 1 Mipt

Config type A combination of: No. of Cores,
RAM and Storage, respectively. Model

A (1, 0.5, 2)
B (2, 1, 16)
C (4, 2, 32)
D (4, 4, 64)

Cores: Units
RAM: Gb
Storage: Gb

SO per type Percentage of SOs per Config type Experiment [1-100] %
Battery Battery powered SO type [0, 1] (Discrete)

Network
TTL Time-to-live for messages Model 4 hops

PING Frequency How often SOs PING others Model 30 ticks

(required to complete the scenario) and another case
with 30% of the SOs. We generated data for 50 random
configurations with a variable number of SOs. The IoT
system is initially composed of 40 heterogeneous SOs and
then the simulated events caused the departure of 20% up
to 60% of these initial SOs. In the meantime, the system
of SOs needs to complete a stable workload of 10 plans,
within an observation period of 1000 ticks.

For the configuration of FABIoT we define the values for
parameters presented in Table I. For each parameter, there
are two possible scopes, those that are stable for the whole
model and others that vary according to the experiment. For
example, the four hardware configuration types are defined at
model level, but how many SOs of each type can be defined
per experiment. Some of these parameters come from state-of-
the-art references —e.g. hardware configurations—, in other
cases we came up with the relevant values after individual test
and tuning. Finally, we executed the simulation cycles for each
experiment using the ALICE2 High Performance Computing
Facility at the University of Leicester.

VII. RESULTS

We defined two metrics to measure the performance of the
system of SOs, using the IoT middleware: Mean Query Time
(MQT) and Plan Success Rate (PSR).
MQT is calculated for the plans that the whole system com-
pletes and is an indicator of how quickly the SOs are able to
locate other cooperating SOs available. MQT is a component
of the total execution time of a plan, the rest of the time
depends on the power and workload of each SO. The MQT is
calculated:

MQT =

∑n
i=1 TQTPi

n
, (1)

where TQTPi is the total query time for a plan i of n plans
completed by the system of SOs during the period of analysis.
TQTP is calculated as the sum of the query time of every
activity of the plan.
Plan Success Rate is calculated as follows:

PSR =
CP
TP

, (2)

where CP is the quantity of completed plans and TP is the
quantity of triggered plans during one simulation cycle.
Figure 3 presents the MQT and PSR results of EX1. Each

2http://www2.le.ac.uk/offices/itservices/ithelp/services/hpc/alice/about



proportion of role to service/activity is identified with the
different colours and shapes. The black shape shows the av-
erage in every case. The results show that the MQT decreases
when the number of plans is increased. This is explained as
the middleware enables the SO to cache other SOs, it has
cooperated with, to avoid querying for a service every time the
SO needs to execute an activity of a plan. It is clear that MQT
values for the 1-to-5 proportion are slightly but consistently
lower than the ones with no role grouping. This is explained,
as the middleware enables SOs to reuse query results for
services grouped by the same role, reducing the number of
queries required and therefore the MQT . The Plan Success
Rate results show that the increase in the workload barely
affects the system of SOs for both proportions evaluated.
Figure 4 presents the MQT and PSR results of EX2. Each
service density is identified with the different colours and
shapes. The black shape shows the average in every case.
The MQT results show clearly two different cases when the
service density is 10% and when it is 30%. In the former
case, the system of SOs takes more time to query for services
when the number of SOs departing from the network increases,
showing high sensibility to these changes. The latter case is
less sensible, as the MQT remains almost stable when the
density is 30%. The Plan Success Rate results show that the
system of SOs copes well with departures of SOs when the
density is 30%, keeping the Plan Success Rate higher than
40% and mainly around 70%, even with the 60% of SOs
having departed. With the lower density, the Plan Success Rate
is clearly lower than the previous case. These are expected
results and show the middleware enable SOs to take advantage
of the service offer to mitigate effects of volatility in the
system.

VIII. DISCUSSION

The experiments presented, show how we defined IoT sce-
narios using FABIoT and how we incorporated variability by
increasing workload or removing SOs within these scenarios.
FABIoT enabled us to evaluate the system, determining its
tolerance thresholds and identifying improvements opportuni-
ties. Performing these tests in real-world setting would have
been not only expensive but also time consuming. Being
able to generate synthetic random data enable us to test
the system even in unforeseen situations. with FABIoT we
did not require to deploy the system under evaluation in a
real-world setting to determine how it works. Since FABIoT
represents key hardware and software characteristics of the IoT
devices, it makes it easy to translate real-world configurations
to the simulated environment. It also makes easy to generate
representative situations for evaluation of the software system.
We learned the importance of tuning FABIoT considering
real-world reference parameters (Section V) for obtaining
meaningful results. FABIoT is not intended to replace real-
world test-beds but can be used as a practical complement,
a previous step, in order to reduce effort, time and cost of
evaluation of IoT systems.

IX. RELATED WORK

There are several proposals for validation of IoT systems.
We organize the works reviewed in two groups: real-world
testbeds and simulation approaches. In this review, we explore
a few examples of real-world testbeds and focus on simulation
techniques, specially the existing agent-based approaches.

Real-word testbeds enable the use of a real infrastructure,
usually built from a medium/large number of devices. Authors
in [12] introduce FIT IoT-LAB which is a testbed with a large
number and variety of nodes, distributed among 6 locations.
FIT IoT-LAB enables evaluation and testing of solutions
ranging from lower level protocols to advanced services and
analytics in a large scale IoT environment. This testbed
offers: remote access to gateways, sensors, and nodes via IP
connection; monitoring of each devices power consumption
and evaluation of real-time decision making in the context of
117 mobile robots. They incorporate heterogeneity at hardware
level and provide tools for researchers to develop their own
drivers, operating systems and applications. SmartSantander
[5] is a testbed that also offers a large number of IoT
devices distributed among diverse places, particularly, around
the Santander city. It has a three-tier architecture including IoT
nodes that sense noise and temperature, repeaters, gateways
and sensors. They made possible to get the sensed data from
the different nodes via different communication protocols.
These platforms are robust and actively supported. As natural,
these are shared by multiple researchers and they do not offer
a clear approach for simulation of volatility conditions. In the
real world, this is challenging as remote access and monitoring
services can be compromised as well as other experiments
running on the platform. In fact, FIT IoT-LAB team recognizes
the importance of performing simulations before using their
facilities.

Simulation approaches are wide, in most of the cases offer-
ing partial coverage of the key IoT characteristics identified
in this paper. An agent-based simulation proposal using the
SO concept is presented in [4]. They focus on inter-SO
communication while enabling definition of subnetworks and
recognition of network bottlenecks. The simulation is built
on top of OMNET++ platform and present different scale
scenarios. Since the focus is on communication, it is not clear
the approach for simulating hardware/software heterogeneity,
volatility nor the reuse of the model for other experiments.
Authors of [13] present a simulator enabling visualization of
an architecture for the Social-IoT . Their proposal includes
a GUI where connections can be defined for nodes that are
part of social networks made from device, brokers and human
users agents. The solution is based on a cognitive middleware
offering ontologies, agents and a publish/subscribe pattern
communication. Another proposal is SimpleIoTSimulator [14]
which is a commercial solution where users can create IoT
environments including gateways and sensors. Besides HTTP,
they support some of the popular IoT protocols such as MQTT
and COAP. They enable the creation of scripts with ”error
scenarios”. One of the limitations is the lack of support to



Figure. 3: EX1: Using FABIoT to simulate 50 different random network configurations (one per run) of an IoT system with 40 heterogeneous
SOs facing workload increase (10 to 90 plans). It shows how: a)The MQT is inversely proportional to the workload. There is a slightly lower
MQT for roles grouping five services/activities. b)The number of plans completed is not affected by the workload increase.

Figure. 4: EX2: Using FABIoT to simulate 50 different random network configurations (one per run) of an IoT system with 40 SOs, facing
the departure of the 20% to 60% of the SOs. It shows how: a) The MQT remains stable for a high service/activity density whereas it raises
for low density. b)The number of plans completed is reduced when SOs depart, particularly more sensible for low service/activity density.

SOs that are able to work autonomously and make decisions
within the IoT environment. Authors of [15], present the
concept and design aspects of Sensesim. Their focus is on
simulating heterogeneous and autonomous networks. Sensors
are autonomous agents composed of four classes: SensorLogic,
SimEntity, SensorAPI and middleware. The SensorLogic class
is to modify the sensor’s state, the SimEntity for control-
ling the sensor as a simulation entity, the SensorAPI offers
functions to interact with the sensor —e.g. start, stop, send
messages— and the middleware that controls the execution of
macro programs deployed on the sensor. A simulation platform
and methodology, particularly suitable to test large IoT sys-

tems is proposed in [16]. The simulation supports distributed
devices and enables simulation of IoT nodes with various
network interfaces, mobility and consumption of energy.

Authors of [17] present the simulation of a smart grid
system based on Multi-agent systems. They mainly focused
on the device creation and energy consumption. Every device
acts as an agent, enabling also the interaction with real devices
and other existing agents. The paper in [18] shows an agent-
based simulator built on top of the JADE Agent platform
and employing Devices Profile for Web Services (DPWS).
Every agent represents a SOA-ready device that uses the JADE
infrastructure services to communicate to other agents. This



imposes the constraint on the simulated scenarios that require
a Directory Facilitator (DF) for locating others instead of
using more independent P2P approach. There is a layer that
controls the scenarios called Superordinate logic that the user
needs to perform the simulation. DPWS is also the base of
a simulation toolkit for the design, development and testing
of service-based IoT applications that is presented in [19].
This solution is based on the OASIS standard for DPWS
that enables simulated devices to consume services following
this standard. In this model, devices can be discovered and
their operations invoked, while there is autonomous behaviour
from their side. More recent proposals aim to simulate fog
computing and IoT environments. One of these is iFogSim
[20], which is able to simulate fog nodes and IoT environments
via tuning the capabilities of devices including computational
power, energy consumption, storage and communication.

Two solutions for Wireless Sensor Networks (WSN) simu-
lations are presented in [21] and [22]. The first tool supports
multiple-scale scenarios and an agent deals with events and
devices, while there is an OpenStreetMap module that enables
distribution of sensors, a WiSen Simulator organizes the simu-
lation and a Solver controls the computations required for the
simulation. The second proposal is an event-driven simulation
with support for heterogeneity. It enables simulation of nodes
with diverse energy resources, mobility models, applications
and routing protocols as well as physical event simulation.

The proposals reviewed have made a good impact in
research, however, we observe the lack of simulation tool
addressing heterogeneity (at different levels), volatility, sup-
port to multiple scale scenarios, repeatability or induction of
events, including those causing disruption to the IoT system.
Validation in real-world testbeds without previous simulation
is not cost-efficient and can be complex to implement.

X. CONCLUSION AND FUTURE WORK

This paper presents a novel agent-based model that enables
the simulation of the IoT system operation covering key
characteristics of the IoT environments. This model allows
for simulation of communication and cooperation of multiple
SOs within an IoT system. We presented the architecture of our
model and the simulation approach that includes the definition
of randomly-triggered events that enable evaluation of IoT
systems under different conditions. On top of this model,
multiple metrics can be monitored and defined according to
the experiments to perform. We evaluated our model with a
series of experiments for the validation of an IoT middleware
that is embedded in simulated Smart Objects.

On the basis of the promising findings presented in this
paper, future work will involve simulation of IoT environments
highlighting differences between Fog and Cloud computing
contexts. Besides, we will assess the use of real data sets,
when available. We would like to use data gathering patterns
about device resource usage, e.g. energy consumption.
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