
Service Discovery using ontology encoding enhanced by similarity of information
content

Jiuyun Xu, Ruru Zhang, Kunming Xing
School of Computer & Communication Engineering

China University of Petroleum (Eastern China)
Tsingdao, China

jyxu@upc.edu.cn; justdoitupc@163.com;
xkmb4@126.com

Stephan Reiff-Marganiec
Department of Computer Science

University of Leicester
Leicester, UK

srm13@le.ac.uk

Abstract—With the rapid development of web service
standards and technology, the number of web services on
Internet is increasing rapidly. Consequently, discovering the
right service to meet a user’s requirements quickly and
accurately is crucial for the service community. Many web
service discovery methods use web service models with
semantic descriptions based on ontologies, allowing to apply
logical reasoning to the discovery task. However, requiring
logical reasoning can lead to sacrifices in efficiency of web
services discovery. To address this problem, this paper
proposes a combination of ontology encoding with the
similarity of information content approach. We encode the
concepts in the ontology in a binary encoding in order to
improve the discovery efficiency and then we calculate the
semantic similarity of information content between services.
Validation of efficiency of the proposed approach is conducted
through an experiment using the owls-tc2.0 as benchmark test
set. The experimental results show that the proposed method
not only can improve the efficiency of service discovery, but
also can significantly improve the accuracy of service discovery
compared with other discovery methods.

Keywords-Service Discovery; Ontology Encoding;
Information content; Precision and recall

I. INTRODUCTION
Service discovery is one of the key problems in web service
research. It is significant because many other problems in
this area of research, such as service selection and service
composition (see e.g. [19, 20]) are directly based on service
discovery; it is also a crucial part of the basic service
paradigm, namely “find” in the publish-find-bind paradigm.
Web service exist in a dynamic global network with few a-
priori agreed conventions, service discovery based on
conventional approaches such as keyword based matching at
a syntactic level has many limitations. The result of service
discovery will be negatively affected as people will use
terminology as they feel appropriate, which could lead to
incorrect matches and more crucially some possible matches
cannot be identified due to language boundaries and different
terms being used for the same concept. These challenges
necessitate semantic description of web service to obtain
more precise descriptions.

The development of semantic web services aims at
adding this level and hence improving the precision of

service matching. A service matchmaker (or broker) is
commonly tasked to judge whether a web service satisfies
the needs of a service request, usually eased by an
assumption that the service offering and the service request
are expressed using the same service description language.
Many semantic approaches have been proposed for service
discovery, such as OWLS-UDDI matchmaker [15], RACER
[10], MAMA [3], WSMO-MX [8], OWLS-MX [6], or
OWL-S Discovery [1]. These approaches often fail to
identify concepts with similar meaning which are not in a
parent-child relation in the concept ontology. A further and
crucial shortcoming is that many of these approaches rely
heavily on ontology reasoning to unify concepts and hence
are relatively slow.

 In common with existing work on semantic web
services, we use OWL-S to describe web services. OWL-S
uses OWL (the Web Ontology Language) to build an upper
ontology and describe the properties, capabilities and
execution structures related to a web service.
 However, our approach improves on efficiency and
accuracy of matching by using the following novel
contributions:

1. Binary-encoding is used to encode the ontology
concepts to support efficient service discovery based on the
service functional input and output (IO).

2. Semantic similarity of concepts based on Information
Content is used to increase the accuracy of service matching.

The remainder of this paper is arranged as follows: In
section 2 related work is introduced. Section 3 provides the
overview of the proposed approach and section 4 details the
service discovery tool which was implemented; in section 5
we discuss the experimental result and analysis of our
method. Finally, we conclude and provide an outline of
further research.

II. RELATED WORK
As alluded to earlier, many researchers have proposed web
service discovery methods based on semantic web
techniques – to present a comprehensive list would be like
including a survey paper so we focus on some representative
samples. OWLS-MX [6] utilizes a hybrid approach that
combines logic based reasoning with approximate matching
based on syntactic information retrieval (IR) based similarity
computations. Web services are described by OWLS and

mailto:jyxu@upc.edu.cn
mailto:justdoitupc@163.com
mailto:xkmb4@126.com
mailto:srm13@le.ac.uk

semantic reasoning exploits OWLS-DL. During IO semantic
matching, it applies five different filters: Exact, Plug-in,
Subsumes, Subsumed-by and Nearest-neighbor. Information
retrieval (IR) [17] based matching is used when semantic
matching fails. [1] presents a new approach combining
functional and structural matching for service discovery. The
first four filters are using semantic matching techniques , the
IR based matching using a structural analysis algorithm will
be used if semantic matching fails as fifth filter.

In [21], DAML-S is used as description language for web
services. Inheritance relationships between ontology
concepts are mainly exploited to realize the IO matching of
web services. The result of the matching has been classified
to Exact, Plug-in, Subsume, Fail. In [18], authors describe
the idea of extracting constraints from the text of natural
language description to allow for better matching.

Binary encoding has been very successfully employed in
the field of data mining, e.g. [2]. Our use of binary encoding
is inspired by the success of this work but presents to the best
of our knowledge the first use of the technique in the field of
service discovery and selection,

III. THE APPROACH
We will now introduce our approach by first of all providing
an overview of the Functional Matching approach – while
this is quite similar with existing work, we will use the
contributions of the paper (the binary encoding and concept
similarity) to refine some steps to increase accuracy and
efficiency. The section conlcudes with details of the
respective algorithms.

A. Service Functional（IO）Matching
Finding a service to satisfy a user’s requirements means at
the most basic level that the input and output parameters
need to be matched – usually this is referred to as service
“functional matching” or “IO matching” and can be on a
syntactic or semantic level. We are interested in semantic
level matches as they are richer as explained earlier. The
assumption is that all input and output parameters are
mapped to appropriate concepts belonging to a suitable
domain ontology. The relationship between service
parameters and request attributes will then be determined by
the relationship among the concepts in the domain ontology.
A simple ontology is shown in Figure 1.

Figure 1: Ontology Concepts

The matches that we consider of interest here are matches
between input and output parameters of the service and the

respective user requirements. We will need to match the
input parameter of the service to the input provided by the
request and the output parameter of the service to the output
required by the request.

1. Exact match. An exact match represents the best
case: the service needs the exact input offered and
provides the exact output required. Considering
this in terms of the ontology, the ontology concepts
for the input and output map to the same node as
those of the requirements. For example, with
reference to the ontology in Figure 1, if the request
parameters match to adult and male, the Service
parameters must also be adult and male.

2. Plug-in match. A Plug-in match substitutes a
descendant in the ontology for a parent, thus
providing something more specific than the exact
match, but possibly including some options. For
example, if the service’s output parameter is boy,
the request could need male or person.

3. Subsumes match. A Subsumes match is using the
inheritance tree in the opposite direction of a Plug-
in match – it attempts to substitute an ancestor
rather than a descendant.

4. Fail match. A so-called Fail match occurs if none
of the three levels above lead to a successful match.

B. Functional(IO) Ontology Coding of Service
As we have seen in the previous section, the relationship
between two parameters will be decided by the relation of
their related concepts in the ontology. Typically methods
such as LSC (least specific concept) and LGC (least generic
concept) [6] are used to decide the association (ancestor-
child, child-ancestor) of two concepts. Due to the number of
checks in the ontology hierarchy that need to be made, these
methods result in a large overhead and hence inefficient
service discovery. Our approach uses a binary-encoding to
increase efficiency as all that is needed are some precise
matches and then structural relations, binary encodings have
been proposed e.g. in [4]. Specifically, we used Binary-
encoding to increase efficiency. An overview of Binary-
encoding is shown in Figure 2, building on the person
ontology from Figure 1.The main gain to be made using bit
encoding is in hierarchical comparisons – which are
fundamental to Plug-in and Subsumes matches. We can
differentiate 3 scenarios for the respective relations of
ontology concepts for two services’ IO parameters, S1 and
S2:

1. the concepts exist in the same domain ontology and
the relation is an ancestor--child relation – that is
the two concepts exist on a path in the tree (e.g.
boy and person).

2. the concepts exist in the same ontology, but are
siblings – such as male and female.

3. the concepts do not exist in the same ontology.

The Binary-encoding follows a topological sort over the
ontological domain space starting from the root concepts to
the leaf concepts and assigns binary values to the nodes,
reflecting the association among the nodes. Thus, in Figure
2 , person, a root node is coded 000001 while all children
will be coded 000011, 000101 and 000111, from right to left,
the least significant bit string being the same as the parent to
capture inheritance. Ancestral relations can now be
computed by fast Boolean operation on the binary strings
using OR and AND to efficiently determine Plug-in and
Subsumes Matches. For example, to check whether boy is a
child node of male, the bit strings are composed with AND
and the result should match the suspected parent coding:
000101 (male) and 001101 (boy) will indeed be shown as
parent and child as expected. OR will allow to check for a
child – the resulting string will match the suspected child’s
encoding if the relation is indeed a child relation. . If the two
strings satisfy neither of the parent child relations tested
using AND and OR, they will be sibling nodes (assuming
that we are comparing values from the same ontology).
[Note that by combining parents’ encodings using OR this
can also express multiple inheritance].

Figure 2: Binary encoding

We will see in the evaluation that the binary encoding
allows for very fast comparisons of ancestral relations while
also allowing to detect possible sibling relations. However,
sibling relations will produce a Fail Match in the
classification shown in the previous A. We will attempt to
resolve some of the fail matches using our second
contribution, the calculation of the similarity of Information
concepts.

C. Calculation of Semantic Similarity of Concepts Based
On Information Content

Semantic similarity is commonly used to measure the
similarity among documents and terms. It is widely used in
research domains such as information retrieval and natural
language processing. Here we will apply it to compute the
similarity between two concepts to improve on service
selection.

We use the Information Content (IC) computational
model [5], which is not only concerned with subsets of
nodes, but also the distance of concepts to ensuring that we
obtain suitably precise IC. Such as formula (1.1):

max

max

() (1 lg(() 1) / lg())
(1)(lg(()) / lg())

IC w k hypc w node
k deep w deep
= − +

+ −
 (1.1)

Formula 1.1 determines the IC of a specific concept w.
hypc(w) provides the number of sub-concept of a given
concept w, deep(w) returns the depth of concept w in the
ontology, nodemax denotes the total number of concepts in
the ontology, deepmax is the maximal depth of the ontology,
k is a factor used to adjust the relation between weights and
depth -- we use equal weights, hence k=0.5 in this paper.
[21] presented an approach to calculate similarity. Both
information content and the position of two concepts in the
ontology are taken into consideration as follows:

1 2 1 2

1 2 1 2

si (,) 1 lg((,)) /
lg(2 max(())) (1)
(() () 2 ((,))) / 2

m w w k len w w
depth w k

IC w IC w IC lso w w

= − ×
× − − ×

+ − ×
 (1.2)

1w and 2w are two different concepts, 1 2(,)len w w is the

distance between 1w and 2w , k is a weight factor,
which can be adapted manually, we are using 0.5 here.

1 2(,)len w w denotes the least common parent node of 1w
and 2w . max(())w ontodepth w ⊂ is the maximal depth in the
ontology.

As we have coded concepts in the ontology using
Binary-encoding, the values of ()deep w , maxdeep ,

1 2(,)lso w w , 1 2(,)len w w and max(())w ontodepth w ⊂ can be
obtained using OR and AND operations and the analysis
of concept coding (0-1). ()hypc w has been calculated
during encoding (to know the number of bits required for
encoding concepts at a specific level one needs to know
how many sibling nodes exist at that level).Overall, the
type of calculations that need to be performed is
computationally simple and hence the complexity of the
calculation has been decreased to increase efficiency of
service discovery.

We can further improve efficiency by considering
what we know about concepts from the earlier analysis of
concept matching:

1. If two concepts 1w and 2w are the same, then the
value of 1()IC w and 2()IC w will be the same.

1 2(,)len w w will obviously be 0, and 1 2(,)sim w w
will equal 1. As these observations will always
hold for identical concepts, there is no need to
perform calculations for information content and

similarity and hence we check this case before
engaging in calculations. The result is that no IC
or similarity calculation will be undertaken for
identical concepts.

2. Similarly, If concept 1w and 2w are in different

domains (that is occur in different reference
ontologies) and are not the same then their
similarity is 0 and we will again not undertake
IC calculations.

So, in conclusion we will only compute similarity
measures if we have convinced ourselves that concept 1w
and concept 2w are in the same domain but differ..

D. The Algorithms
The algorithms encode the diverse aspects of our approach,
mainly the functional matching, the encoding and the
calculation of semantic similarity based on IC. Overall the
approach is guided by a user set threshold that controls that
only services scoring higher than the threshold will be
returned.
__
Algorithm 1: Function(IO) Ontology Coding of Service
__
1 function IOEncoding()
2 int countConceptsNode [] = countNodes();
3 ArrayList sortConcepts = topologicalSort();
4 HashMap conceptCoding =
 Encoding(countConceptNode, sortConcepts);
5 end function
__

Algorithm 1 handles the binary encoding. Algorithm 2
encodes the matching itself: it is controlled by a set of
service request (requestSet) and the threshold value (a).
The set of services available is available as serviceSet,
result will be collected in resultsSet – which will
includes the services matching the requirements based on
our approach.

Algorithm 2: Matching Services to requirements.

1 function match(set requestSet, a)
2 set resultSet , failSet
3 HashMap serviceSet = readConceptCoding();
4 for(int i=0;i< serviceSet.length;i++) do
5 for(int j=0;j< requestSet.length;j++) do
6 filterI = matchIO(serviceSet.get(i).getInput,
requestSet.get(j).getInput)
7 filterO=matchIO(serviceSet.get(i).getOutput,
requestSet.get(j).getOutput)
8 If(judgetypes(requestSet.get(j), filterI,
FilterO)) then
9 resultSet.add(serviceSet.get(i))
10 else
11 simI = SimIC(serviceSet.get(i).getInput,
requestSet.get(j).getInput)
12 simO = SimIC(serviceSet.get(i).getOutput,
requestSet.get(j).getOutput)

13 if(simI>=a and simO>=a) then
14 resultSet.add(serviceSet.get(i))
15 else
16 failset.add(serviceSet.get(i))
17 end if
18 end if
19 end for
20end for
21end function
__

Algorithms 3 and 4 deal with functional IO matching and IC
matching respectively.
__
Algorithm 3 : Functional IO Matching
__
1 function matchIO(Service s, Service r)
2 if(exactMatch(r,s)) then //exact
matching
3 return exact;
4 else if(plug-inMatch(r,s)) then
//plug-in matching
5 return plug-in;
6 else if(subsumes(r,s)) then
//subsumes matching
7 return subsumes;
8 else
9 return false;
8 end if
9 end function
__
__
Algorithm 4: Calculation of the similarity of concept
semantic based on IC
__
1 function matchIC(Service s,Service r)
2 if(identifyConcept(s,r)) then
3 sim(s,r) = 1.0
4 else if(!hasSameField(s,r)) then
5 sim(s,r) = 0.0
6 else sim=calculateSim(s,r) then
7 end if
8 return sim
9 calculateSim(r,s)
10 hypcr = calculatehypc(r);
11 hypcs = calculatehypc(s);
12 deepr = calculateDeepr(r);
13 deeps = calculateDeeps(s);
14 maxnode = calculateMaxNode();
15 len = calculateLen(r,s);
16 maxDept=calculateMaxdept();
17 sim=
countSim(r,s,hypcr,hypcs,deepr,deeps,maxnode,len,m
axdept);
18 return sim;
19 end calculateSim
20 end function

IV. SERVICE DISCOVERY TOOL
To illustrate the functionality of our method, we have
implemented a prototype as a service discovery tool. Users
can describe service using an OWLS file, the tool accepts
the requirements file in the "request" textbox (either by
typing or through a more interactive dialogue triggered by
"add request"). In the Figure 3 the request
“book_price_service.owls” has been added. The other field

in the tool accepts a file with service descriptions.. Users
can control which types of matches (Exact, plug-in,
subsumes and sibling) are considered – ideally one
considers all of course. Once matching (functional and IC
based) are completed, result are shown as in Figure 4. The
format of the result is <service name, level of semantic
matching> or <service name, similarity>, such as for
example:
Book_authorprice_service.owls(Exact)
Monograph_price_service.owls(SUBSUMES)
Book_taxedpriceprice_service.owls:0.93704654689298
89

Figure 3: Input for a service request

Figure 4: Output of the matching results

I. EXPERIMENTAL RESULT AND ANALYSIS
Our implementation was completed in Java 1.6. We used
the API (http://www.mindswap.org/2004/owl-s) for deve-
loped by University of Maryland was for our analysis. And
Xampp®(http://en.wikipedia.org/wiki/XAMPP) was used
as local service host. We used OWLS-TC as test set and the
services come from seven different areas: education,
medical, care, food, travel, communication, economy, and
weaponry.

We analyzed three aspects: precision, recall and average
response time to gain an insight into the accuracy and
efficiency of the approach. Considering why these three
form good evaluation criteria, we can say that fast responses
are obviously desirable, precision captures how good the
match of the found services is with respect to the user’s
needs (or very informally how many bad candidates are
selected) and recall shows how many of the services that
should have been identified were actually found (or very
informally how many good candidates were missed out).

Given a service request (,)Q Inputs Outputs to which
there are n relevant services related to, our prototype will
retrieve m services for the query result, but only k of them
retrieved which is related to the service query

(,)Q Inputs Outputs (k n≤).
 Service Discovery Precision (P) is the fraction of the k
service retrieved that are relevant to the number m of the
user’s service need. The formula is as follows:

 | { e _ } { e _ } |
| { e _ } |

r levant Services r trieved Services kP
r trieved Services m

∩
= =

Service Discovery Recall (R) is the fraction of the services
that are relevant to the query that are successfully retrieved.
The formula is as follows:

 | { _ } { e _ } |
| { e _ } |

relevant Services r trieved Services kR
r levant Services n

∩
= =

Figure 5: Comparison of average reply time between IC-
discovery and other discovery methods

Figure 6: Comparison of Precision and Recall between IC-
discovery and discovery methods

Figure 5 and Figure 6 illustrate the average response
time, precision and recall for different service discovery
matchers using the same test set. In these two figures, M0-
M4 are using mixed semantic methods in OWLS-MX [6].
Specifically, M0 is only using an I/O based matching
method, M4 is the best available matching method in

OWLS-MX. OWLS-Discovery [1] adapts a combined IO
semantic match and structural analysis which first matches
based on I/O and if this fails, structural analysis based on a
synonyms dictionary is used to improve accuracy. Our novel
IC-Discovery method presented in this paper provides
significantly improved results in terms of response time and
hence will scale much better for larger numbers of services.
The main reason for this significant improvement is that the
binary encoding used to judge relation between two
concepts using AND and OR presents a very significant
improvement over reasoning based approaches.

We also find that our IC-Discovery method is presenting
better results than OWLS-MX and OWLS-Discovery (as
shown in Figure 6). Single semantics-based web service
discovery is not working well, as expected, for example M4
will identify some services which M0 cannot find using
simple similarity-based methods. OWLS-Discovery will
find more services as it can reduce the Fail Match cases by
applying the synonyms dictionary. Since our method uses
IC-based similarity it produces a more comprehensive
comparison of concepts and hence allows us to achieve
better results – and thanks to the Binary encoding this does
not come at a cost to the efficiency.

I. CONCLUSION AND FUTURE WORK
This paper proposes a hybrid approach for web service
discovery based on functional service aspects that uses a
combination a binary encoding of ontology concepts and
calculation of semantic similarity based on Information
Content (IC). Experimental evaluation confirms that this
allows for very significantly faster service discovery with a
higher accuracy.

In future work, we will consider a more fine grained
approach to matching service parameters to client
requirements to evaluate the approach against more complex
service interfaces and demands. We will also explore
extending the encoding and information content calculations
to non-functional properties of services.

A further piece of future work will include a comparison
to tree –based encoding techniques (e.g. [9, 13, 16]) and a
more detailed study of the advantages and disadvantages of
IC (e.g. [14]) vs. reasoning based encoding techniques (e.g.
[7, 12].

REFERENCES
[1] Amorim, R., Claro, D. B., Lopes, D., Albers, P., Andrade, A.

Improving Web service discovery by a functional and structural
approach, Web Services (ICWS), 2011 IEEE International
Conference on . pp. 411-418 , 2011.

[2] Ayres, J., Gehrke, J., Yiu, T. and Flannick, J. “Sequential Pattern
Mining using A Bitmap Representation”, Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 429-435, ACM, 2002.

[3] Colucci, S., Noia, T. D., Sciascio, E. D., Mongiello, M., Donini, F.
M.. Concept abduction and contraction for semantic-based discovery
of matches and negotiation spaces in an e-marketplace , In Proc. 6th
Int Conference on Electronic Commerce (ICEC 2004), pp. 41-
50.ACM Press, 2004.

[4] Dasgupta, S., Bhat, S., Lee, Y. Taxonomic Clustering and Query
Matching for Efficient Service Discovery. Web Services (ICWS),
2011 IEEE International Conference on .pp. 363-370 , 2011

[5] Jay, J., Conrath, D. W. Semantic Similarity Based on Corpus
Statistics and Lexical Taxonomy, Proceedings of International
Conference Research on Computational Linguistics, pp:19-33, 1997.

[6] Klusch, M., Fries, B., Sycara, K. Automated semantic web service
discovery with OWLS-MX, Proceedings of the fifth international
joint conference on Autonomous agents and multiagent systems. pp.
915-922. ACM, 2006.

[7] Klusch, M., Fries, B., and Sycara, K.. OWLS-MX: A hybrid semantic
Web service matchmaker for OWL-S services. Journal of Web
Semantics, 7(2):121-133, 2009.

[8] Klusch, M., Kapahnke, P., Kaufer, F. Evaluation of wsml service
retrieval with wsmo-mx , IEEE Computer Society, pp. 401–408,
2008.

[9] Krall, A., Vitek, J. and Horspool, N. “Near Optimal Hierarchical
Encoding of Types,” Proc. 11th European Conf. Object Oriented
Programming, pp. 128—145, Springer, 1997.

[10] Li, L., Horrocks, I. A software framework for matchmaking Based on
semantic web technology . In: International Journal of Electronic
Commerce , pp. 39-60 , 2003.

[11] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D.,
McIlraith, S., ... Sycara, K. OWL-S:Semantic Markup for Web
Services, available: http://www.daml.org/services/owls/1.0/owl-
s.html , November 2003.

[12] Paolucci, M., Kawamura, T., Payne, T. R., Sycara, K. Semantic
Matching of Web Services Capabilities, The Semantic Web
Conference (ISWC 2002). pp. 333-347, 2002.

[13] Preuveneers, D. and Berbers, Y. Prime Numbers Considered Useful:
Ontology Encoding for Efficient Subsumption Testing tech. report
CW464, Dept. of Computer Science, Katholieke Univ. Leuven, 2006.

[14] Preuveneers, D. and Berbers, Y. "Encoding Semantic Awareness in
Resource-Constrained Devices," IEEE Intelligent Systems, vol. 23,
no. 2, pp. 26-33, March/April, 2008.

[15] Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N. Automated
discovery, interaction and composition of Semantic Web services.
Web Semantics: Science, Services and Agents on the World Wide
Web, 2003. 1(1): p. 27-46.

[16] van Bommel, M.F. and Beck, T.J. “Incremental Encoding of Multiple
Inheritance Hierarchies,” Proc. 8th Int’l Conf. Information and
Knowledge Management (CIKM 99), 1999.

[17] van Rijsbergen, C. J. Information Retrieval, 1979.
[18] Wei, D., Wang, T., Wang, J., Chen, Y. Extracting Semantic

Constraint from Description Text for Semantic Web Service
Discovery, Proceedings of the 7th International Conference on The
Semantic Web2008, Springer-Verlag: Karlsruhe, Germany. p. 146-
161.

[19] Xu, J., Chen, K., Reiff-Marganiec, S. Using Markov Decision Process
Model with Logic Scoring of Prefence Model to Optimize HTN Web
Service Composition, International Journal of Web Service Research
8(2): 53-73 (2011).

[20] Yu, H. Q., Reiff-Marganiec, S. Automated Context-Aware Service
Selection for Collaborative Systems, in Proceedings of the 21st
International Conference on Advanced Information Systems
Engineering 2009, Springer-Verlag: Amsterdam, The Netherlands. P.
261-274.

[21] Zhou, Z., Wang, Y., Gu, J. A Novel Method of Extracting Domain
Ontology Based on WordNet , In Computer Science and Software
Engineering, 2008 International Conference on . Vol. 4, pp. 376-
381,2008

http://www.daml.org/services/owls/1.0/owl-s.html
http://www.daml.org/services/owls/1.0/owl-s.html

	I. Introduction
	II. Related work
	III. The Approach
	We will now introduce our approach by first of all providing an overview of the Functional Matching approach – while this is quite similar with existing work, we will use the contributions of the paper (the binary encoding and concept similarity) to ...
	A. Service Functional（IO）Matching
	B. Functional(IO) Ontology Coding of Service
	C. Calculation of Semantic Similarity of Concepts Based On Information Content
	D. The Algorithms

	IV. Service Discovery Tool
	I. Experimental Result and Analysis
	I. Conclusion and Future work
	References

