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Summary Agent-based Evolutionary Search (AES) has attracted a growing interest from the evolu-
tionary computation community in recent years due to its robust ability in solving large scale problems,
ranging from online trading, disaster response, modeling social structures to financial investment plan-
ning. In order to solve these problems, a great variety of intelligent techniques have been developed to
improve the framework and efficiency of AES. This chapter investigates an agent based evolutionary
search algorithm in which the agents are updated and co-evolve to track dynamic optimum by imitat-
ing the exhibited feature of living organism. In the proposed algorithm, all agents live in a lattice like
environment, where each agent is fixed on a lattice point. In order to increase the predefined energy
function, individual agent can compete with its neighbors and also can acquire knowledge through
cumulative information. For the purpose of maintaining the diversity of the population, random im-
migrants and adaptive primal dual mapping schemes are incorporated. Simulation experiments on a
set of dynamic benchmark problems show the proposed AES algorithm can yield a better performance
on dynamic optimization problems (DOPs) in comparison with several peer algorithms.

1 Introduction

Agent based system which is composed of multiple interacting agents has generated lots of excite-
ment in recent years because it has been suggested as a promising technique for conceptualizing and
solving various optimization problems [12, 17, 22, 21, 28]. This promising technique is particularly
attractive for solving operational problems in business and logistics environments, such as the produc-
tion planning problems, transportation and distribution problems, and resource allocation problems
[10, 10, 18, 23]. Zhong et al. [40] integrated agent systems with Genetic Algorithms(GAs) to form a
new algorithm for solving the global numerical optimization problem.

In recent years, AES has been applied widely to solve stationary optimization problems where the
fitness curve or the objective function maintain unchanged during the searching process of AES. How-
ever most real-world optimization problems are dynamic since the objective function, environmental
parameter and/or constraint conditions maybe change over time. For example, in job scheduling
production systems, re-scheduling of the jobs is often required due to change of the specification
of jobs or malfunction of the machines. For these DOPs, the goal of an algorithm is no longer to
find an optimal solution but to track the moving optima in the search space. In order to enhance
the performance of Evolutionary Algorithms (EAs) on DOPs, many researchers have developed a
number of approaches, including diversity-increasing methods [8], diversity-keeping methods [2, 15],
memory-based approaches [4], and multi-population approaches [3, 5].

In this chapter, a hybrid Agent-based Evolutionary Search algorithm is proposed. In the proposed
AES, a population of agents that represent potential solutions are located in a lattice like environment
and accomplish their update via competing in a local neighborhood or learning strategy based on the
statistical feedback information of the whole system. Similar to other EAs, AES may gradually
converge in the search space during the run, especially when the environment has been stationary
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for some time. In order to address such problem, two diversity maintaining, random immigrants and
adaptive dual mapping, are introduced into our AES to improve its performance for DOPs.

The rest of this chapter is organized as follows. Section 2 describes the AES algorithm in details. In
Section 3, the dynamic testing suite is presented. Section 4 reports the experimental results. Finally,
Section V concludes this chapter.

2 Proposed Agent based Evolutionary Search Algorithm

2.1 The Framework of AES

Multi-agent system, also called ‘self organized system’ is a computational system in which multiple
interacting intelligent agents work together to solve difficult problems which may be impossible for an
individual agent. In a nutshell, the agent in a multi-agent system is a physical or virtual entity which
has several important characteristics. According to [21], four elements should be defined before an
agent-based system is used to solve problem:

• First, it is able to live and act in the environment.

• Second, it is able to sense its local environment.

• Third, it is driven by certain purposes.

• Fourth, it has some reactive behaviors.

As can be seen, the meaning of an agent is quite comprehensive, and what an agent represents is
different from each other for specific optimization problems. In this chapter, an AES based algorithm
is proposed to investigate the dynamic 0-1 optimization problems. Obviously, each agent is a 0-1
array, which represents a candidate solution. The energy value of an agent may be equal to the value
of the objective function. More detailed definitions can be described as follows:

Definition 1: An agent L represents a candidate solution to the optimization problem in hand,
and can be expressed as a 0-1 array:

L = (L1, L2, · · · , Ln), Li = 0 or 1, 1 ≤ i ≤ n, (1)

where n represents the scale of the problem. The value of its energy E(L) is equal to the value of the
objective function f(L), that is, E(L) = f(L).

In order to realize the local perceptivity of agents conveniently, the environment is organized as
a ring-shaped lattice-like structure. All agents live in a lattice-like environment, which is called an
agent lattice LL. The size of environment is Lsize × Lsize.

Each agent is fixed on a lattice-point and only interacts with its neighbors. Suppose that the agent
located at (i, j) is represented as Li,j . And the agents which interact with Li,j could be decided by
the apperceive range Rs. Thus, the neighbor agents of Li,j could be calculated as follows:

Lk,l, i−Rs ≤ k ≤ i + Rs, j −Rs ≤ l ≤ j + Rs. (2)

Due to the ring-shaped lattice structure, if k < 1, then k = k+Lsize; if k > Lsize, then k = k−Lsize;
if l < 1, then l = l + Lsize; if l > Lsize, then l = l − Lsize. The agents that interact with Li,j are
called its neighbor Ni,j .

Therefore, the agent lattice can be represented as the one in Fig. 1. Each lattice represents an
agent, the data in a circle represents its position in the lattice, and two agents can interact with each
other if and only if there is a line connecting them. In traditional genetic algorithms (GAs), those
individuals that will generate offspring are usually selected from all individuals according to their
fitness. Therefore, the global fitness distribution of a population must be determined. But in nature,
a global selection does not exist, and the global fitness distribution cannot be determined either.

In fact, the natural selection in real world only occurs in a local environment, and each individual
can only interact with those around it. That is, in some phases, the natural evolution is just a kind
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Figure 1: Model of the agent lattice

of local phenomenon. The information can be shared globally only after a process of diffusion. In
the agent lattice, in order to achieve their purposes, agents will compete or cooperate with each other
so that they can gain more resources. Since each agent can only sense its local environment, its
behaviors of competition and cooperation can only take place among the agent and its neighbors.
Simultaneously, the feedback of the best agent can usually influence the behavior of the agents. An
agent interacts with its neighbors so that information is transferred to them, and the information
feedback from the Lattice can help agents to learn. In such a manner, the information is diffused
to the whole agent lattice. As can be seen, the model of the agent lattice is more close to the real
evolutionary mechanism in nature than the model of the population in traditional GAs. In summary,
the general AES algorithm can be illustrated in Fig. 2.

Procedure general AES algorithm

initialize all the parameters
t := 0
initialize a Lsize × Lsize agent lattice LL(0)
evaluate every agent in LL(0)
repeat

for each agent Lij in LL(t) do
execute one behavior to Lij

t := t + 1
until a termination condition is met

Figure 2: Pseudocode for general AES

2.2 Behaviors of Agents

In the proposed AES algorithm, all the agents update and co-evolve by executing a certain
behavior. And the ideology of the behaviors is generated by imitating the character of local competitive
and learning mechanism of the living organisms.
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In nature, several organisms always work together to achieve a common goal. And many algorithm
are formulated by simulating these natural phenomena.

In recent years, there has been an increasing concern from the evolution computation community
on a class of hybrid EAs, named as memetic algorithms (MAs), which hybridizes local search (LS)
methods to refine solution quality with EAs. The term MA is now widely used as a synergy of evo-
lutionary or any population-based approach with separate individual learning or local improvement
procedures for problem search. So far, MAs are extensively used for solving many optimization prob-
lems, such as scheduling problems [20], [1], travel salesman problems [27], combinatorial optimization
problems [13], quadratic assignment problems [24] and other applications [6], [16].

Here, competitive and learning behaviors are defined. For each agent, if its energy is not the
best, then it will execute the competitive behavior; if there’s no better agent, the statistics-based
learning behavior is executed by using the information feedback from the whole multi-agent system.
The detailed discussion is given as follows.

2.2.1 Competitive Behavior

The apperceive range of each agent is 1, and the neighbor agents are called competitive neighbor-
hood. Therefore, there are 8 agents in the competitive neighborhood of each agent. For an agent
Li,j , it will compare its energy with the agents in its neighborhood. If its energy is no less than any
agent in its neighborhood, then it can live; else, it will extinct and its position will be replaced by the
offspring of the best agent. The details are discussed further as follows.

Assume Li,j = L1
i,j , L

2
i,j , · · · , Ln

i,j , Lmax = L1
max, L2

max, · · · , Ln
max, and ∀L ∈ Ni,j , E(L) < E(Lmax).

If E(Li,j) < E(Lmax), then Lmax is used to generate an offspring L′i,j = L′1i,j , L
′2
i,j , · · · , L′ni,j to replace

Li,j . There are two kinds of generating methods.
In the first competitive method [40], the information of Li,j and Lmax is utilized together to

generate an offspring L′i,j . It randomly chooses some position that Li,j differs from Lmax to alter the
corresponding position in Li,j .

L′ki,j =
{

Lk
max, k 6∈ D or (k ∈ D and random(2) = 0)

1− Lk
max, otherwise, (3)

where k = 1, 2, · · · , n, set D record the sequence number of the position that Li,j differs from Li,j .
Namely, D = {k|Lk

i,j 6= Lk
max, k = 1, · · · , n, }. random(2) means to generate 0 or 1 randomly.

The second competitive method is the position based mutation, which is often used in evolutionary
computation.

L′ki,j =
{

Lk
max, rand() > 1

n
1− Lk

max, otherwise, (4)

where k = 1, 2, · · · , n, and rand() means to generate a real number between 0.0 and 1.0.
The number of elements in set D actually equals to the Hamming distance between Li,j and Lmax.

When |D| is small, it means the Hamming distance between Li,j and Lmax is small, and the two
agents are similar. Then the probability of using the first competitive pattern to generate better
agent is minor, thus we introduce a parameter Dk ∈ (0, 1) to determine which pattern should be used
to generate L′i,j : If |D|/n > Dk, then the first method is adopted; or else the second.

2.2.2 Statistics Based Learning Behavior

The purpose of the learning behavior is to enhance the energy of an agent by statistics based
adaptive non-uniform mutation (SANUM) [35] or statistics based adaptive non-uniform crossover
(SANUX) [34] with the elite (the best agent in the current generation). Because the resource is
limited in the environment, only when the energy of an agent is no less than any of the agents in its
neighborhood, it can get a chance to learn. The first learning scheme is statistics based mutation and
the second is statistics based crossover with the elite agent. The schemes are described as follows.

First of all, we decide how to calculate the uniform crossover or mutation probability of a locus
by using a statistics-based approach. A global information-based statistics, which has been proved to
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be effective in enhancing the exploration capability of GAs by Yang [34, 35], is introduced here. Let
p(i) denote the crossover or mutation probability of the locus i, fki denote the frequency of k′s in the
gene locus i over all the past generations, where i = 1, 2, · · · , n and k is the allele value for the gene
locus. Then, in the binary encoding space, we have f1i + f0i = 1, 0 ≤ f0i, f1i ≤ 1, and f1i can be
regarded as the tendency to ‘1’ for the locus i over all the past populations. SANUM and SANUX
make use of this convergence information as feedback to control mutation and crossover by adjusting
the probability of each locus. Thus the one-dimension statistic vector F1 = {f11, f12, · · · , f1n} can
express the convergence degree of the population from the gene level. Then, p(i) can be calculated
from f1i as follows:

p(i) = pmax − 2× |f1i − 0.5| × (pmax − pmin), (5)

where |y| denotes the absolute value of y, pmin and pmax denote the minimum and maximum allowable
mutation or crossover probability for a locus respectively. For example, for the mutation probability,
let pmin = 10−4 and pmax = 1

n , and for the crossover probability, let pmin = 0.0 and pmax = 0.5.
Firstly, we calculate the distribution of 1’s f1(i) for each locus i over the lattice, and the crossover and
mutation probability p(i) for that gene locus can be obtained. For the global statistics based method,
the learning behavior can be adjusted by the convergence degree of the population.

The first learning scheme is the statistics based adaptive non-uniform mutation (SANUM). If L
gets a chance to learn, then L is mutated to generate L′. If E(L′) > E(L), then agent L is replaced
by L′.

Both SANUM and SANUX belong to the class of adaptive mechanisms that occur at the bottom
level of mutation and crossover. Traditional bit mutation and crossover keep a constant probability
over all the loci. In fact, as the population converges, fewer and fewer offsprings generated by mutating
and crossover will survive in the next generation. That is, many operations are wasted on those
converged loci. Most of these wasted operations and hence wasted fitness evaluations are saved by
SANUM and SANUX through adaptively decreasing p(i) to pmin for those converged loci.

We introduce a population index ξ [26] in order to measure its diversity and it can be calculated
as follows:

ξ =
Ebest − Eave

Ebest
, (6)

where Ebest and Eave are respectively the best and average energy among the energy values of the
agents. Obviously, the index ξ can measure the state of agents via the energy calculation. When ξ
decreases from 1 to 0, it means that the agents lose the diversity gradually.

The criterion of selecting a learning scheme is based on the value of ξ as follows.

• If ξ ≤ 0.1, the first statistics based mutation learning scheme is applied considering the mutation
operation can help a converging population to jump from a local optimum.

• If ξ ≥ 0.9, the second statistics based crossover learning scheme is applied since the crossover
operation can accelerate the exploitation to a diversifying population.

• If 0.1 < ξ < 0.9, one of the two learning schemes is chosen randomly. Random means to generate
a real number between 0 and 1. If rand() < 0.5, the first learning scheme is selected; else, the
second one is chosen.

2.3 Two Schemes to Maintain the Diversity of Agents

In dynamic environments, the fitness landscape could change over time, that is, the current op-
timum point may become a local optimum and the past local optimum maybe become a new global
optimum point. Since a spread-out population can adapt to these changes more easily, two diversity-
keeping methods, namely random immigrants (RI) and adaptive dual mapping (ADM), will be intro-
duced into our algorithm framework of AES algorithm to address DOPs.
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2.3.1 Random Immigrants Method (RI)

Among the approaches developed for GAs to address DOPs, the random immigrants scheme has
been proved to be a beneficial one for many DOPs. The random immigrants scheme aims to maintain
the diversity of the population by replacing worst or randomly selected individuals from the population
with randomly created individuals [41]. Here, we always choose the worst energy agents to be replaced
by randomly generated individuals every generation. In order to avoid that random immigrants disrupt
the ongoing search progress too much, especially during the period when the environment does not
change, the ratio of the number of random immigrants to the population size is usually set to a small
value, e.g., 0.1.

2.3.2 Adaptive Dual Mapping Method(ADM)

Dualism and complementarity are quite common in nature, such as the double-stranded structure
in DNA molecules. Inspired by the complementarity mechanism in nature, a primal-dual genetic
algorithm has been proposed and applied for DOPs [36]. Elitist is the currently-best solutions in sub-
sequent generation. It preserves currently-best solutions from one generation to the next. The concept
of elitism has been introduced into several EAs. Elitism has been considered an effective method for
improving the efficiency of an EA[7][19][30]. Effective manipulation of the elite can contribute to
better performance of EAs.

In this chapter, we investigate the application of the combination of dualism and elitism into AES.
For the convenience of description, we first introduce the definition of dual agent here. Given an agent
L, its dual agent is defined as L′, where L′k = 1 − Lk, k = 1, · · · , n. With this definition, an agent
elite is to evaluate its dual agent (elite′) firstly before executing statistics based learning. If its dual
agent is evaluated to have more energy, that is, E(elite′) > E(elite), then elite is replaced by elite′.

Given the above discussion, the proposed AES incorporate two diversity maintaining techniques
(RI and ADM) is illustrated in Fig. 3.

3 The Dynamic Testing Suite

3.1 Stationary Test Problems

A set of well studied stationary problems, forming a range of difficulty levels for EAs, are selected as
the experimental functions to compare the performance of AES with traditional standard GA (SGA),
the Primal-Dual GA (PDGA) [36], and the GA with RI (RIGA), where the worst 10% individuals
are replaced with random individuals every generation. In this chapter, dynamic test problems will
be constructed from these stationary problems by a dynamic problem generator, which is called the
XOR generator.

3.1.1 One-Max Function

This problem simply aims to maximize ones in a binary string. The fitness of a string is the number
of ones it contains. A string length of 100 bits will be used for this study. And the unique optimum
solution has a fitness of 100.

3.1.2 Royal Road Function

This function was proposed by Michel, Forrest and Holland [25]. It is defined on a 64 bit string
consisting of eight contiguous building-blocks (BBs) and each BB has 8 adjacent bits. The fitness of
this function is defined as follows:

f(x) =
8∑

i=1

ciδi(x), (7)

where ci = 8 and δi = {1, if x ∈ S; 0, otherwise}. The optimal for this function is given as
f(111 . . . 1) = 64.
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3.1.3 Deceptive Function

Deceptive functions are a family of functions where there exists low-order BBs that do not combine
to form the higher-order BBs. In this study, a deceptive function is constructed, which consists of 10
copies of the order-4 fully deceptive function DF2 [33] and has an optimum fitness value of 300. DF2
is defined as follows:

f(0000)=28 f(0001)=26 f(0010)=24 f(0011)=18
f(0100)=22 f(0101)=6 f(0110)=14 f(0111)=0
f(1000)=20 f(1001)=12 f(1010)=10 f(1011)=2
f(1100)=8 f(1101)=4 f(1110)=6 f(1111)=30

Procedure proposed AES algorithm

initialize all the parameters
t := 0
initialize a Lsize × Lsize agent lattice LL(0)
evaluate every agent in LL(0)
calculate crossover and mapping prob. p(i), i = 1, · · · , n
repeat

for each agent Li,j in LL(t) do
if there exists an agent Lmax ∈ Ni,j with

E(Lmax) > E(Li,j) then
calculate |D|/n, where |D| is the Hamming

distance between Lmax and Li,j

if |D|/n > Dh then
select the first competitive scheme

else Select the second competitive scheme
else

L′i,j := Dual(Li,j)
if (E(L′i,j) > E(Li,j)) then

Li,j := L′i,j
if (ξ < 0.1) then

select the first learning scheme to mutate Li,j

else if (ξ > 0.9) then
select the second learning scheme to crossover

Li,j with elite, which is the best agent so far
else

randomly select the first or second learning
scheme and execute it for Li,j

calculate ξ
t := t + 1

until a termination condition is met

Figure 3: Pseudocode for the proposed AES algorithm.
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3.1.4 Double Deceptive Function

A six rank bipolar Double (Strongly Interrelated) Deceptive function [14] discussed here consists
of 10 copies of 6 rank bipolar deceptive function DF1.

f(a) =
n/6∑

i=1

fbipolar6(a6i−5, a6i−4, a6i−3, a6i−2, a6i−1, a6i) (8)

DF1 is designed as follows:

fbipolar6(a1, a2, a3, a4, a5, a6) =





0.9, if u = 3
0.8, if u = 2 or 4
0, if u = 1 or 5
1, if u = 0 or 6

where u is the number of 1s in the variable. The strongly interrelated deceptive function has an
optimum fitness of 10.

3.2 Generating Dynamic Test Problems

In this chapter, the dynamic test environments are constructed based on the above stationary
functions by using an “XOR” operator [37, 39]. Suppose that the environment is periodically changed
every τ generations, the environmental dynamics can be formulated as follows:

f(x, t) = f(x⊕M(k)), (9)

where k = dt/τe is the period index, t is the generation counter, and M(k) is the XOR mask for
period k. Given a value for parameter ρ, M(k) can be incrementally generated as follows:

M(k) = M(k − 1)⊕ T (k), (10)

where T (k) is an intermediate binary template randomly created for period k containing ρ× n ones.
For the period k = 1, M(1) is initialized to be a zero vector.

The advantage od this operator is the fitness landscape can still keep the certain properties in the
original landscape after a change occurs, e.g., the total number of optima and fitness values of optima
though their locations shifted. For example, if we apply a template T = 11111 to a 5-bit One-Max
function, the original optimal point x∗ = 11111 becomes the least fit point while the original worst
point x = 00000 becomes the new optimal point in the changed landscape, but the optimal fitness
value (i.e., 5) and the uniqueness of optimum remain invariant.

In this chapter, we have constructed dynamic versions of above stationary problems. In our
experiment, the change severity ρ is set to 0.1, 0.5 and 0.9, which is used to examine the algorithms’
performance in the changing environments with different severities respectively: from very slight
change (ρ = 0.1) to moderate variation (ρ = 0.5) to intense change (ρ = 0.9).

Another dynamics parameter considered is the change frequency, i.e. how often the environment
changes. In our experiment the frequency parameter τ is set to 20, 50 and 100 respectively because all
algorithms are at quite early searching stage at generation 20, at medium searching stage at generation
50, and at late stage or converged at generation 100. By setting τ to these values, we can inspect the
capability of the algorithms adapting to dynamic environment under different level of searching stage.

Thus, we construct a series of 9 different dynamic problems from each stationary test problem.
The dynamics parameter settings are summarized in Table 1.

4 Experimental Study

4.1 Experimental Setting

For AES algorithm, Lsize = 10. When the mutation probability is computed, pmin is set to be
10−4, pmax is 1/n. And pmin = 0.0 and pmax = 0.5 are set for crossover probability computation.
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Table 1: The index table for dynamic parameter setting.

τ Environmental Dynamics Index
20 1 2 3
50 4 5 6
100 7 8 9
ρ → 0.1 0.5 0.9

For SGA, RIGA and PDGA, parameters are set as follows: the population size pop size is set to
100, one-point crossover with a fixed probability pc = 0.6, bit mutation with the mutation probability
pm = 0.001, and fitness proportionate selection with commonly used roulette wheel mechanism. The
best N chromosomes among all the parents and children are always transferred to the next generation
population. For every generation, the best-of-generation fitness was recorded. And for each run of an
algorithm on a dynamic problem, 10 periods of environmental changes are allowed. Each experimental
result is averaged over 100 runs with different random seeds.

For dynamic optimization problems, the optimal solution is not unique. Hence, it is not sufficient to
compare only optimal solution obtained at last. It is extremely important to compare the performance
of algorithms at every generation. The overall offline performance of an algorithm on a DOP is defined
as:

FBOG =
1
G

G∑

i=1

(
1

100

100∑

j=1

FBOGij
), (11)

where G = 10τ is the total number of generations for a run and FBOGij
is the best-of generation fitness

of generation i of run j. The off-line performance FBOG is the best-of-generation fitness averaged
over 100 runs and then averaged over the data gathering period.

4.2 Experimental Results on DOPs

The experimental results with respect to the mean best-of-generation fitness against evaluations
of four EAs on the dynamic test problems are plotted in Fig. 4 to Fig.7 respectively.

The overall offline performance is presented in Fig.8. The corresponding statistical results of
comparing algorithms by the one-tailed t-test with 38 degrees of freedom at a 0.05 level of significance
are given in Table 2. In Table 2, the t-test result regarding Alg. 1 - Alg. 2 is shown as “s+”,“s-”, “+”,
“-” or “∼” when Alg. 1 is significantly better than, significantly worse than, insignificantly better
than, insignificantly worse than, or statistically equivalent to Alg. 2 respectively. From these tables
and figures several results can be observed.

First, when the environment shifted, AES can always outperform other peer EAs on almost all the
problems, which has been indicated by the relevant t-test results in Table 2. AES can converge faster,
and simultaneously it can trace the optimal solution better in dynamic environments. This result shows
the efficiency of our proposed behaviors of the agents in dynamic environments. The competitive and
learning behaviors of the agents, and the diversity maintaining schemes help the algorithm adapt well
to the most changing environment. When the environment shifts slightly (ρ = 0.1), AES significantly
perform better over other EAs for the changing periods. Both PDGA and RIGA perform better than
SGA, because the primal dual and RI operators can help them adapt to the new environments. But
for One Max problem, when the environment changes slightly, the AES can be beaten by SGA and
PDGA; When the shift severity is moderate (ρ = 0.5), AES keeps performing perfectly well with the
best-of-generation fitness staying in the optimum over all dynamic periods. SGA always maintains a
lower fitness level than RIGA, PDGA, and AES can do for all environmental periods on all dynamic
problems; when ρ = 0.9, both AES and PDGA perform much better than SGA and RIGA. It can
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Figure 4: Dynamic performance of EAs on Dynamic One-Max Problems

10



τ = 20, ρ = 0.1 τ = 20, ρ = 0.5 τ = 20, ρ = 0.9

0 50 100 150 200
10

20

30

40

50

60

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

0 50 100 150 200
10

15

20

25

30

35

40

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

0 50 100 150 200
10

20

30

40

50

Generation
M

e
a

n
 B

e
s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

τ = 50, ρ = 0.1 τ = 50, ρ = 0.5 τ = 50, ρ = 0.9

0 100 200 300 400 500
10

20

30

40

50

60

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

0 100 200 300 400 500
10

20

30

40

50

60

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

0 100 200 300 400 500
10

20

30

40

50

60

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

τ = 100, ρ = 0.1 τ = 100, ρ = 0.5 τ = 100, ρ = 0.9

0 200 400 600 800 1000
10

20

30

40

50

60

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

0 200 400 600 800 1000
10

20

30

40

50

60

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 

AES
SGA
PDGA
RIGA

0 200 400 600 800 1000
10

20

30

40

50

60

Generation

M
e

a
n

 B
e

s
t−

O
f−

G
e

n
e

ra
ti
o

n
 F

it
n

e
s
s

 

 
AES
SGA
PDGA
RIGA

Figure 5: Dynamic performance of EAs on Dynamic Royal Road Problems
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Figure 6: Dynamic performance of EAs on Dynamic Deceptive Problems
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Figure 7: Dynamic performance of EAs on Dynamic Double Deceptive Problems
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Figure 8: Overall Offline performance of EAs

Table 2: Statistical results of algorithms on dynamic problems (Alg.1−Alg. 4 denotes AES, SGA,
PDGA and RIGA respectively).

t-test Result One Max Royal Road Deceptive Double Deceptive
τ = 20, ρ → 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
Alg.1-Alg.2 + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.1-Alg.3 ∼ s+ ∼ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.1-Alg.4 ∼ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.2-Alg.3 − s− s− − s− s− − s− s− − s− s−
Alg.2-Alg.4 ∼ − s− − ∼ − ∼ − − ∼ s− −
Alg.3-Alg.4 ∼ + s+ + + s+ + s+ s+ + ∼ s+
τ = 50, ρ → 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
Alg.1-Alg.2 + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.1-Alg.3 ∼ s+ ∼ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.1-Alg.4 ∼ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.2-Alg.3 − s− s− − s− s− − s− s− − s− s−
Alg.2-Alg.4 − − s− − − − − − s− − − −
Alg.3-Alg.4 ∼ + s+ + + s+ + s+ s+ + s+ s+

τ = 100, ρ → 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9 0.1 0.5 0.9
Alg.1-Alg.2 + s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.1-Alg.3 ∼ s+ ∼ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.1-Alg.4 ∼ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+ s+
Alg.2-Alg.3 − s− s− − s− s− − s− s− s− s− s−
Alg.2-Alg.4 ∼ − s− − ∼ − ∼ − s− s− − −
Alg.3-Alg.4 ∼ + s+ + + s+ + s+ s+ ∼ ∼ s+

14



be shown from the figures that both AES and PDGA can converge fast and make good performance
when intense shift happened.

Second, AES algorithm has a more quickly and robust converge capability than SGA, PDGA and
RIGA. On the One-Max problem, when the environment shifts slightly, AES performs as well as
SGA, PDGA and RIGA; when ρ = 0.5, AES keeps performing well with the best-of-generation fitness
staying in the optimum over all dynamic periods; when ρ = 0.9, both AES and PDGA perform much
better than SGA and RIGA, and also when change took place, it can be seen from the figures that both
AESF and PDGA can converge fast and track the optimum when intense shift happens. On the Royal
Road Problem and Deceptive Problem, when ρ = 0.1 and ρ = 0.9, AES outperforms SGA, PDGA
and RIGA; and when the environment half shift, both AES and PDGA perform well. The mean best-
of-generation fitness first drops a little when changes occur, then rises up quickly to near optimum
value. It is because the complementary and dominance mechanisms embedded in AES work perfectly
under the condition of extreme environment change. On the the Strongly Interrelated Deceptive
problem, AES outperforms SGA, PDGA and RIGA for all periods in all the shifting environments. For
AES, whenever the fitness function changes, the statistics based mechanism and diversity maintaining
mechanisms in AES rapidly draw back the best individuals in the last generation of previous period.
And the lattice construction also helps to suit the new environment. And also, it can be seen from
the figures, for all the DOPs, especially when the change is intense, that PDGA has the ability to
track the optimal faster than SGA and RIGA. This lies in that dual mapping operator help PDGA
adapt to the new environment quickly, maintain enough diversity, and therefore effectively track the
new optimum after moderate and intense changes.

Third, the competitive and learning behaviors in AES algorithm make AES have a better exploita-
tion ability than GAs. All the agents accomplish their update via competing in a local neighborhood
or learning based on the statistical feedback information of the whole system, so AES algorithm has
a rapid convergence capability.

Fourth, the combination of the two diversity maintaining schemes RI and ADM improves the
adaptability of AES algorithm in non-stationary environments. The information of the former gener-
ation is reserved and the diversity is increased, therefore, AES algorithm with reserved information
and multiplex diversity can adapt to the dynamic environment due to effectiveness of the combined
maintaining scheme of RI and ADM.

Finally, the environmental parameters affect the performance of algorithms. The performance of
all algorithms can be increased when the value of τ arises from 20 to 50 to 100. It is easy to understand
since algorithms have more time to find better solutions before the next change with the increment of
the value of τ . The effect of the changing severity parameter ρ is different. For example, if ρ is fixed,
the performance curve of AES is always lower when the environment changes with a middle severity
degree than that when ρ = 0.1 and ρ = 0.9.

5 Conclusions

This chapter investigates the application of an agent-based evolutionary search algorithm (AES)
for binary coded problems. Two special behaviors of agents, competing and learning, are proposed.
Two diversity schemes, random immigrants and adaptive dual mapping scheme, are integrated into
AES in order to improve its performance in dynamic environments. Based on the XOR dynamic
problem generator, a series of dynamic test problems were constructed systematically, in the mean
time, the proposed AES algorithm is used to solve the dynamic test problems.

From the experimental results, we can draw the following conclusions. First, the competitive and
learning behaviors of agents can always help AES algorithm obtain a better performance than the
peer GAs can do. Second, both random immigrants scheme and dual mapping method can help
increase the population diversity of EAs. Combining them together also improves the performance
of AES algorithm in dynamic environments efficiently. Third, some dynamic characteristics of the
environments may affect the performance of algorithms.

Generally speaking, the experimental results indicate that the AES algorithm with the random
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immigrants and adaptive dual mapping schemes exhibits better performance in dynamic environments.
AES algorithm combining some diversity schemes seems to be a good choice to address DOPs.

The work studied in this chapter can be extended in several ways. It is interesting to hybridize
AES algorithm with other advanced diversity schemes, e.g., hybrid memory schemes [32, 38]. An-
other interesting work is to further investigate the idea of AES algorithm to solve other optimization
problems with sequential and real encodings in non-stationary environments.
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