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A B S T R A C T

In this paper, we propose an integrated Quality of Service (QoS) routing algorithm for optical networks.

Given a QoS multicast request and the delay interval specified by users, the proposed algorithm can find a

flexible-QoS-based cost suboptimal routing tree. The algorithm first constructs the multicast tree based

on the multipopulation parallel genetic simulated annealing algorithm, and then assigns wavelengths to

the tree based on the wavelength graph. In the algorithm, routing and wavelength assignment are

integrated into a single process. For routing, the objective is to find a cost suboptimal multicast tree. For

wavelength assignment, the objective is to minimize the delay of the multicast tree, which is achieved by

minimizing the number of wavelength conversion. Thus both the cost of multicast tree and the user QoS

satisfaction degree can approach the optimal. Our algorithm also considers load balance. Simulation

results show that the proposed algorithm is feasible and effective. We also discuss the practical

realization mechanisms of the algorithm.
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1. Introduction

Optical networks [1] have emerged as a promising candidate for
next-generation networks providing high-channel bandwidth and
low-communication latency. It is the essential requirement for
next-generation networks to provide Quality of Service (QoS) [2]
and multicast [3] capabilities. Hence, we need to address the issue
of QoS multicast in optical networks. It means to develop efficient
multicast routing algorithms, which can find the cost suboptimal
multicast tree and assign wavelengths to it. It has been proved that
finding such a tree is NP-hard [4].

A single population genetic algorithm [5] is powerful and per-
forms well on a broad class of problems. However, better results
can be achieved by introducing multiple populations (i.e.,
subpopulations). Every subpopulation evolves for a few genera-
tions independently (just like the single population genetic
algorithm), and then one or more chromosomes are exchanged
between these subpopulations. The multipopulation parallel
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genetic algorithm [6] models the evolution of a species in a way
more similar to nature than the single population genetic
algorithm. There are three different models for parallel genetic
algorithms, i.e., the global model, the diffusion model and the
migration model.

In this paper, the proposed algorithm is based on the migration
model. The migration model divides the population into multiple
subpopulations. These subpopulations evolve independently
from each other for a certain number of generations (isolation
time). After the isolation time a number of chromosomes are
exchanged between the subpopulations (migration). The number
of exchanged chromosomes (migration rate), the selection method
of the chromosomes for migration and the scheme of migra-
tion determine how much genetic diversity can occur in the
subpopulations and the exchange of information between sub-
populations.

Multipopulation parallel genetic algorithm and simulated
annealing algorithm [7] are two standard techniques for hard
combinatorial optimization problems. A new algorithm is
developed by combining them together, which is named multi-
population parallel genetic simulated annealing algorithm
(MPGSAA) [8–11]. Our proposed algorithm generates the cost

mailto:hc118@le.ac.uk
mailto:mcshcheng@googlemail.com
http://www.sciencedirect.com/science/journal/15684946
http://dx.doi.org/10.1016/j.asoc.2008.09.008


H. Cheng et al. / Applied Soft Computing 9 (2009) 677–684678
suboptimal multicast tree based on MPGSAA, and then assigns
wavelengths to the tree. The wavelength assignment algorithm
is based on the basic idea of the wavelength graph proposed by
Chlamtac et al. [12]. The objective of wavelength assignment is
to minimize the delay of the multicast tree, which is an
important QoS parameter and decides the user QoS satisfaction
degree. We integrate the algorithm for wavelength assignment
into the process of the construction of the multicast tree. Thus
we avoid that no wavelength can be assigned or the assign-
ment result leads to a multicast tree with poor QoS performance.
Therefore, the cost of the multicast tree can approach the
optimal, and the user QoS requirement is also satisfied simul-
taneously.

The rest of this paper is organized as follows. Section 2
introduces the related work. Section 3 describes the network
model and mathematical model. Section 4 describes the proposed
algorithm and Section 5 discusses its practical implementation.
Simulation results are presented in Section 6. We conclude the
paper in Section 7.

2. Related work

In recent years, there are a few papers published in the area of
multicast in WDM optical network. They can be divided into two
types. The first type reports deterministic algorithms [13–17] and
the second type reports GA-based non-deterministic algorithms
[18–20]. Our proposed algorithm belongs to the non-deterministic
algorithm. In the following, we review both deterministic and non-
deterministic algorithms.

In [13], two integrated QoS multicast algorithms for routing
and wavelength assignment were proposed. Both algorithms
utilize minimum spanning tree (MST) to construct low-cost
multicast trees. During the tree construction process, the case
that the multicast end-to-end delay from the source to a des-
tination exceeds the pre-specified upper bound is dealt with. The
wavelength assignment is based on the greedy strategy, i.e., trying
the best to assign a currently used wavelength to the multicast
tree.

In [14], the objective of the QoS multicast algorithms is to
minimize the number of used wavelengths. For a given set of
multicast requests with bounded delay, the algorithms can
construct trees and assign wavelengths. Two basic algorithms A
and B were firstly proposed. Then two optimization algorithms C
and D were proposed to further minimize the number of
wavelengths over the results produced by A and B. Algorithm C
and D integrate routing and wavelength assignment by using
rerouting and reassigning techniques.

In [15], an algorithm was proposed, which consists of a heuristic
multicast algorithm and an optimal wavelength assignment
algorithm. It defines four kinds of costs related with the WDM
multicast. The multicast tree is generated by combining the
optimal unicast lightpaths and aims at minimizing the total cost of
the multicast session. The objective of the wavelength assignment
algorithm is to minimize the wavelength conversion cost of the
multicast trees.

In addition, in [16], three low-cost, delay-bounded heuristic
multicast algorithms LDR, ILDR and LDF were proposed. In [17], a
distributed and sender-initiative routing and wavelength assign-
ment algorithm was proposed for the establishment of a real-time
multicast connection in WDM networks.

In [18], it considers the optimal multiple multicast problem on
WDM ring networks without wavelength conversion. Given a set of
multicast requests, it proposed several genetic algorithms to select
a suitable path(s) and wavelength(s) for each request to minimize
the used wavelengths. Since there is no wavelength conversion,
there is a constraint that not any paths using the same wavelength
pass through the same link. In [19], the multicast routing under
delay constraint problem was considered in a WDM network with
different light splitting. It firstly reduces the problem to the MST
problem. Then it solves the problem by well-designed genetic
algorithms.

In [13–17,19,20], the delay requirement is bounded by a fixed
value and in [18] the delay is not considered. However, it is not
enough for multicast applications where the users have flexible
QoS requirements. The algorithms in [13,14,18] are only applicable
to single-hop WDM networks, i.e., there is no wavelength
conversion in networks. Hence, they pose a limitation that all
the links in a tree can only use the same wavelength. The algorithm
in [15] separates routing and wavelength assignment. As a result,
it is possible that there are no available wavelengths for the
multicast tree or the wavelength assignment result leads to poor
QoS performance.

3. Model description

3.1. Network model

An optical network can be modeled by a directed and connected
graph G(V, E), where V is the set of nodes representing optical nodes
and E is the set of edges representing optical fibers that connect the
nodes. Each edge carries two oppositely directed fibers for data
transmission in the two directions of the edge. Each directed fiber
is called a link.

Every node vi 2V has multicast capability by equipping an
optical splitter [21]. We assume an optical signal can be split into
an arbitrary number of optical signals at a splitter. Since the all-
optical wavelength converter is still in its early development
stage and the optoelectronic conversion not only is very
expensive but also has limited performance, we assume only
partial nodes are equipped with full-range wavelength converter
[21] in the network. The full-range wavelength converter is able
to convert optical signal on one wavelength into any other
wavelengths. The wavelength conversion also introduces addi-
tional processing and control delay called wavelength conversion
delay. Without loss of generality, we assume the conversion
between any two different wavelengths has the same delay at
any optical node with the wavelength converter, i.e., tðviÞ� t. If
there is no wavelength conversion at an intermediate node vi, we
set tðviÞ ¼ 0.

Each link ei j ¼ ðvi; v jÞ 2 E is associated with three parameters:
� L
(eij), the set of available wavelengths. L(eij) � {l1, l2, . . ., lw},
L is the set of wavelengths supported by each link in the
network.

� d
(eij), the transmission delay. Here, d(eij) = d(eji).

� c
(eij), the link cost.

3.2. Mathematical model

In graph G(V, E), we consider a multicast request for multicast
connection setup, R(s, D, D), where s is the source node, D is
the set of destinations. Different from the previous literatures
[13–17,19,20], we define D as the delay requirement interval
specified by the user. It is more practical to represent the delay
requirement by an interval than by a single value because in
practice the network information is inaccurate and the user QoS
requirement is often flexible [22]. The lower bound and the upper
bound of the delay interval are determined by the user and the
application.
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The route of the multicast connection is represented by a tree
T = (XT, FT), XT � V, FT � E. The total cost of T is defined as

CostðTÞ ¼
X

ei j 2 FT

cðei jÞ: (1)

The communication delay on a path consists of two
components, i.e., link transmission delay and wavelength
conversion delay. Let P(s, di) denote the path from source node
s to any destination node di in T and let Dsdi

denote the path delay.
We have

Dsdi
¼

X
vi 2 Pðs;diÞ

tðviÞ þ
X

ei j 2 Pðs;diÞ
dðei jÞ

2
4

3
5: (2)

The delay of T is defined as

DelayðTÞ ¼maxfDsdi
; 8di 2Dg; (3)

which is the maximum delay between the source node and all the
destination nodes. We set D = [Dlow, Dhigh] and then the user QoS
satisfaction degree is defined as

DegreeðQoSÞ ¼

100% DelayðTÞ �Dlow

Dhigh � DelayðTÞ
Dhigh �Dlow

Dlow <DelayðTÞ<Dhigh

0% DelayðTÞ�Dhigh

8>><
>>:

(4)

The algorithm should select the links with more available
wavelengths to balance the network load and thereby reduce
the call blocking probability. The load on a link is defined as
the number of channels over that link. We can adjust it by
defining proper link cost functions. For example, by defining
heuristic cost functions, for the link with more available
wavelengths, the cost takes smaller value. In the proposed
algorithm, we define

cðei jÞ ¼ w� jLðei jÞj: (5)

The key optimization objective considered in this paper is to
minimize the tree cost while the user QoS satisfaction degree is still
high. In addition, the end-to-end delay of tree T* should not exceed
the upper bound of the delay interval. Otherwise the user cannot
accept it due to the poor QoS performance. Furthermore, for any link
on tree T*, there should exit at least one available wavelength.
Otherwise, the multicast connection cannot be set up. We use T to
denote any multicast tree spanning s and D in G(V, E). Therefore, we
solve the problem of QoS multicast in the optical network by finding
an optimal multicast tree T�ðXT� ; FT� Þ; fsg[D�XT� ; FT� � E, which
minimizes

CostðT�Þ ¼min
T
fCostðTÞg; (6)

subject to

DelayðT�Þ �Dhigh; (7)

8 ei j 2 FT� ; jLðei jÞj �1: (8)

4. The proposed algorithm

4.1. Expression of the solution

We denote the solution by binary coding. Each bit of binary
string corresponds to a different network node. The graph
corresponding to the solution S is G0(V0, E0). Let the function bit(S,
i) denotes the ith bit of S. If and only if bit(S, i) = 1, then vi 2V 0. For
our problem, every solution S corresponds to a tree T 0iðX

0
i; F
0
iÞ, which
is the minimum cost spanning tree of G0. T 0i spans the source node
and all the destination nodes.

Another problem is that G0 may be unconnected. Thus, every
subgraph of G0 has a minimum cost spanning tree, the solution S

corresponds to a minimum cost spanning forest, which is also
denoted by T 0iðX

0
i; F
0
iÞ. If G0 is unconnected, we add penalty value to

the cost and give smaller Degree(QoS) to the solution. Thus, every
solution S corresponds to a graph G0, which corresponds to a
minimum cost spanning forest T 0i (a forest can have only one
tree). After pruning, we obtain the forest T 0i, which corresponds to
solution S.

4.2. The algorithm for wavelength assignment

If Ti is a tree, we assign wavelengths to it. The objective of the
proposed wavelength assignment algorithm is to minimize the
delay of the tree by minimizing the number of wavelength
conversion. Thus the user can get a high-QoS satisfaction degree.

The proposed algorithm is based on the idea of wavelength
graph [12]. First we construct wavelength graph WG for the tree Ti

(Xi, Fi). The construction method is stated as follows:
(1) N
 = jXij, w ¼
S

ei j 2 Fi
Lðei jÞ

��� ���. In WG, we create N*w number of
nodes, namely vi j, for i ¼ 1;2; . . . ;w and j = 1, 2, . . ., N. All the
nodes are arranged into a matrix with w rows and N columns.
Row i represents the corresponding wavelength l0i and each
column j represents a node v0j in Ti. A mapping table is created
to record the corresponding relationship between i and l0i, and
another is created to record the relationship between j and v0j.
The two tables will help reversely map the paths in WG back to
the paths and wavelengths in Ti.
(2) F
or i ¼ 1;2; . . . ;w, in the ith row, we add a horizontal
directional link ðvi j; vihÞ between column j and column h if
there exists a link e0jh ¼ ðv0j; v0hÞ in Ti from node v0j to node v0h and
the wavelength l0i is available on this link. We assign the
transmission delay dðe0jhÞ as its weight.
(3) F
or j = 1, 2, . . ., N, in the jth column, for 8i1, i2, i1 6¼ i2, we add a
vertical bidirectional link ðvi1 j; vi2 jÞ between row i1 and row i2 if
node v0j in Ti has the wavelength conversion capability. We
assign the wavelength conversion delay t as its weight.

Using the above steps the wavelength graph WG is constructed.
A vertical link in WG represents a wavelength conversion at a node
and a horizontal link in WG represents an actual link in Ti. For
convenience, we denote the nodes in WG by sequential node
number 1 	 N*w. The sequential node number for the node in the
ith row and jth column in WG is

x ¼ ði� 1Þ � N þ j: (9)

We treat the wavelength graph WG as an ordinary network
topology graph and run the following wavelength assignment
algorithm.

Fig. 1 illustrates an example of constructing the wavelength
graph. Fig. 1(a) is the physical network topology G where v1 to v6
represent the optical nodes. In the bracket near a link, w1 and/or
w2 represent that wavelength 1 and/or wavelength 2 are
available on that link. Node v3 is an optical node with
wavelength conversion capability. Fig. 1(b) is the generated
wavelength graph corresponding to the physical network
topology.

Wavelength Assignment Algorithm
Input: the wavelength graph WG where the source node and all

the destination nodes correspond to the column numbers in the
matrix, i.e., js; jd1

; jd2
; . . . ; jdm

.



Fig. 1. The illustration of the construction of a wavelength graph: (a) physical

network topology; (b) the corresponding wavelength graph.
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Output: the wavelength assignment result for tree Ti.
P(x, yk) is the shortest path from source node s to destination
node dk in WG. We have

i ¼ ðx� 1Þ
N þ 1

; (10)

j ¼ ðx� 1Þ%N þ 1: (11)

Using the above two expressions and the two mapping tables
created in step 1, we can reversely map the paths consisting of the
sequential node numbers back to the links and wavelengths in Ti

conveniently. Thus the wavelength assignment is completed.
The time complexity of the above wavelength assignment

algorithm is OðmN2w4Þ, where m is the number of destination
nodes, N is the number of nodes in Ti, w is the number of
wavelengths which are available on at least one link in Ti. We can
see that they all take small integer values. In addition, all the
wavelength assignments for solutions except the final solution will
not be used as the final wavelength assignment result. Hence, the
algorithm need not store lots of data and has a low-space
complexity.

4.3. Fitness function

After assigning wavelengths to Ti, the delay of Ti is determined
and thereby Degree(QoS) is determined. The fitness of solution S is
obtained by computing the following fitness function:

f ðSÞ ¼ CostðTiÞ þ ½countðTiÞ � 1
 � r
DegreeðQoSÞ

¼
P

ei j 2 FTi
cðei jÞ þ ½countðTiÞ � 1
 � r

DegreeðQoSÞ ; (12)

where count(Ti) is the number of trees in the forest Ti, r is a
constant. We can see that a smaller f(S) corresponds to a better
solution.

4.4. Setting the initial temperature

We set the initial temperature t0 = Kd, where K is a sufficiently
large number, and

d ¼maxf f ð jÞj j2 S pg �minf f ð jÞj j2 S pg; (13)

where Sp denotes the solution space. d can be estimated simply as
follows. Since max{f(j)jj 2 Sp} � Cgraph (i.e., the total cost of the
current network topology), and min{f(j)jj 2 Sp} � Cs[D (i.e., the cost
of the minimum spanning tree covering s and D), we have

d ¼ Cgra ph � Cs[D: (14)

Due to the use of the penalty value, the cost of the solution may
be larger than Cgraph after the penalty value is added. To satisfy
max{f(j)jj 2 Sp} � Cgraph, we let f(S) = Cgraph when f(S) > Cgraph.

4.5. Formal description of the algorithm

We first initialize the control parameters including the
subpopulations number M, the size for every subpopulation np,
the predefined maximum generation number MAX_GN, the
individual generation number nG, the crossover probability rc(i)
for subpopulation i (1 � i �M), the mutation probability rm(i) for
subpopulation i (1 � i �M), the coefficient of decreasing tempera-
ture a, the initial temperature t0(i) for subpopulation i (1 � i �M):
(1) In
itialize M random subpopulations. Set GN = 0, where GN

denotes the generation number that the subpopulation has
evolved so far. Set k = 0, where k denotes the number of
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temperature decrease. Set f(Sop) =1, where Sop denotes the
global optimal solution. Set Loop = 0, where Loop is a counter
variant.
(2) If
 Loop < nG, go to step 3; otherwise, go to step 5.

(3) F
or subpopulation i (1 � i �M), perform the following opera-

tions to generate an offspring subpopulation.
(a) Evaluate the fitness of every chromosome: f(Sj), j = 1, 2, . . .,

np;
(b) Select the chromosomes Sj, Sk(j 6¼ k) randomly and generate

a random number num 2 [0, 1]. If num > rc(i), Sj, Sk are
accepted for offspring subpopulation directly; otherwise,
perform the crossover operation to generate two new
chromosomes S0j; S

0
k.

(c) Evaluate the fitness f ðS0jÞ; f ðS0kÞ. We define D f 0 ¼
f ðS0jÞ � f ðS jÞ. If Df0 < 0, accept S0j for offspring subpopula-

tion; if Df0 > 0, then accept S0j for offspring subpopulation at
the probability exp(Df0/tk(i)). We have D f 0 ¼ f ðS0kÞ � f ðSkÞ.
If Df0 < 0, accept S0k for offspring subpopulation; if Df0 > 0,
then accept S0k for offspring subpopulation at the prob-
ability exp(Df0/tk(i)). If S0j; S

0
k are not accepted, Sj, Sk are

accepted for offspring subpopulation directly. Repeat (b)
and (c) np/2 times, and get the offspring subpopulation i0.

(d) For every chromosome Sj in i0, generate a random number
num 2 [0, 1]. If num > rm(i), Sj, is accepted for offspring
subpopulation directly; otherwise, perform the mutation
operation to generate a new chromosome S0j. Using the
above method mentioned in (c) to decide whether or not to
accept S0j for offspring subpopulation. If not, Sj is accepted
for offspring subpopulation directly. After this operation,
denote the offspring subpopulation as subpopulation i.
(4) G
N = GN + 1, Loop = Loop + 1, go to step 2.

(5) F
irst find the optimal chromosome in each subpopulation, and

we get M chromosomes. Then find the optimal one S among the
M chromosomes. Replace the worst chromosome of every
subpopulation using S. If f(S) < f(Sop), Sop S (i.e., replace Sop

using S).

(6) If
 GN = MAX_GN, the algorithm stops; otherwise, modify the

annealing temperature for each subpopulation, i.e.,
tk+1(i) = atk(i) (k � 0, 0 < a < 1, 1 � i �M). k = k + 1, Loop = 0.
Go to step 2.

When the algorithm terminates, Sop is output as the final
solution.

5. Discussion on the algorithm implementation

Parallel algorithms are developed to speed up the computation
by harnessing the power of parallel computers or multiple
processors computer. During the parallel evolution process of
the multiple subpopulations, each subpopulation evolves inde-
pendently from each other for a certain number of generations
(isolation time). After the isolation time the optimal solution
(chromosome) is exchanged between all the subpopulations.

We assume that the population size of each subpopulation is
the same and that the crossover probability, mutation probability
and temperature control parameters of each subpopulation may be
different. This is a synchronous parallel algorithm. The imple-
mentation of the algorithm should adopt the multiple instruction
stream multiple data stream (MIMD) computer architecture [23].
The number of processors should be the same as the number of
subpopulations, and each processor processes the evolution of a
subpopulation independently.

The synchronization mechanism is needed among different
processes operating on different processors, i.e., after one proce-
ssor finishes its isolation time, it stops to judge if the other ones
have finished their isolation time. If there exists one processor
which has not finished yet, all the others which have finished must
wait till all the processors finish their isolation time.

There are two kinds of realization mechanisms for MPGSAA.
One is to establish the shared memory and the other is to designate
the control processor. The first method will establish a shared
memory for all the subpopulations. Thus all the subpopulations
communicate through a global shared variant. The present global
optimal solution is also exchanged among all the subpopulations
through the global shared variant. Since the global shared variant is
a type of critical resource, the lock mechanism should apply to it.
Each processor should create its own critical region for the global
shared variant to realize the synchronization among all the
processors. Fig. 2(a) illustrates the shared memory method. The
second method designates a new processor as the control
processor. The control processor can also be designated by election
from all the processors used to process the subpopulations. The
control processor is responsible for the distribution of the present
global optimal solution and the synchronization among all the
processors. Fig. 2(b) illustrates the control processor method.

6. Performance evaluation

Due to hardware constraint, our simulation experiments are
conducted on a single processor computer, and the parallel
algorithm is implemented in a serial manner (pseudo-parallel). The
following performance evaluation is based on NSFNET network
topology [24]. Since the optimization objective of the proposed
algorithm is to minimize the tree cost while the user QoS
satisfaction degree is high, there is a tradeoff between the tree cost
and delay. Hence, we evaluate the algorithm in two aspects, i.e., the
cost and the delay of the final multicast tree. Since single
population GA has been widely used to solve the QoS multicast
problem in WDM optical network [18–20], we compare our
algorithm with it to show the performance improvements.

Referring to the simulation model established in [17], we set the
transmission delay on each link to be a small integer in [1,10],
which is also in direct proportion to the length of the link. We set
the wavelength conversion delay to be a constant integer in [1,10].
We choose the 50% of all the nodes which have higher node degrees
to be equipped with wavelength converters. We set jLj = 20 and
10 � jL(eij)j � 15.

If the fitness values of some chromosomes are too large, the
difference between other chromosomes will be shielded. To avoid
it, when Degree(QoS) is less than a small value val, we take
Degree(QoS) = val in the fitness calculation. If the solution
corresponding to the chromosome is unfeasible, we also take
Degree(QoS) = val. By running extensive simulation experiments,
we have chosen the appropriate values for the parameters of
MPGSAA.

6.1. The evaluation on the tree cost

Both single population GA and the proposed MPGSAA algorithm
are run to obtain the multicast trees. We run each algorithm 100
times and get 100 final solutions for each multicast session. We
compare them with the optimal multicast tree, which is obtained
by exhaustive search. The results are shown in Tables 1 and 2,
respectively.

In both Tables 1 and 2, �1% means that the ratio of the cost
deviation of the final solution (i.e., the difference between the cost
of the final solution and the cost of the optimal solution) to the cost
of the optimal solution is�1%.�2% means that the ratio is>1% and
�2%. Similar meanings apply to other ratio intervals. The value



Fig. 2. Two possible realization mechanisms for MPGSAA: (a) the shared memory mechanism; (b) the control processor mechanism.
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under each ratio interval means the percentage of the final
solutions whose cost deviation ratios fall into this interval.

These multicast session nodes are chosen randomly from sparse
mode [25] to dense mode [26]. From these two tables we can get
that for the actual topology like NSFNET, the quality of the final
solutions obtained by the proposed MPGSAA algorithm is very
good in terms of the cost. To show the performance improvement
of the proposed MPGSAA algorithm over the single population GA,
we plot Fig. 3 to compare their percentage values of the solutions
falling into the ratio interval �1%.

6.2. The evaluation on the delay

We define the concept of the user QoS satisfaction degree and
consider the QoS performance of chromosomes when the fitness
values are calculated in MPGSAA. Hence, we evaluate both the cost
and the maximum end-to-end delay when choosing chromosomes.
The use of the user QoS satisfaction degree helps to make an ideal
tradeoff between the cost and the delay of the multicast trees.
Table 1
The cost comparison results between the final solutions obtained by GA and the corre

Ratio of multicast

nodes in the network

Delay interval Running times Optimal

fitness valu

21.4% (15, 30) 100 33

28.6% (15, 30) 100 39

35.7% (15, 30) 100 38

42.9% (15, 30) 100 48

50.0% (15, 30) 100 46

57.1% (15, 30) 100 50

64.3% (20, 40) 100 50

71.4% (20, 40) 100 64

78.6% (20, 40) 100 69

92.9% (20, 40) 100 73

Table 2
The cost comparison results between the final solutions obtained by the proposed MP

Ratio of multicast

nodes in the network

Delay interval Running times Optimal

fitness valu

21.4% (15, 30) 100 33

28.6% (15, 30) 100 39

35.7% (15, 30) 100 38

42.9% (15, 30) 100 48

50.0% (15, 30) 100 46

57.1% (15, 30) 100 50

64.3% (20, 40) 100 50

71.4% (20, 40) 100 64

78.6% (20, 40) 100 69

92.9% (20, 40) 100 73
To evaluate the performance improvement made by using the
user QoS satisfaction degree, we also run both GA and MPGSAA
under the scenario that QoS (i.e., the user QoS satisfaction degree)
is not considered. Then we compare the delay of the multicast trees
obtained by the algorithms considering QoS and the one obtained
by the algorithms without considering QoS. The results are shown
in Tables 3 and 4, respectively.

From Tables 3 and 4, we can see that the delay of the multicast
trees obtained by the algorithm considering QoS is less than the
one without considering QoS. It proves that with the use of the user
QoS satisfaction degree, we can achieve the multicast trees with a
better QoS performance. We plot Fig. 4 to compare the maximum
average end-to-end delay of the multicast trees obtained by the
proposed MPGSAA algorithm and the single population GA.

From Figs. 3 and 4, we can see that the proposed MPGSAA
algorithm performs better than GA in terms of both the tree cost
and the end-to-end delay. Furthermore, the MPGSAA algorithm
overcomes the drawback of premature convergence of the tradi-
tional GA and has better stability. What the MPGSAA has paid
sponding optimal solutions.

e

�1% �2% �5% �10% �20% >20%

0.78 0.00 0.08 0.00 0.04 0.10

0.90 0.00 0.00 0.00 0.08 0.02

0.86 0.00 0.00 0.00 0.00 0.14

0.33 0.00 0.00 0.54 0.13 0.00

0.80 0.00 0.00 0.07 0.09 0.04

0.66 0.10 0.00 0.00 0.00 0.24

1.00 0.00 0.00 0.00 0.00 0.00

0.53 0.16 0.00 0.25 0.06 0.00

1.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00

GSAA algorithm and the corresponding optimal solutions.

e

�1% �2% �5% �10% �20% >20%

0.88 0.00 0.06 0.00 0.02 0.04

0.89 0.00 0.00 0.00 0.11 0.00

0.96 0.00 0.00 0.00 0.00 0.04

0.80 0.00 0.00 0.13 0.07 0.00

0.98 0.00 0.00 0.00 0.02 0.00

0.96 0.02 0.00 0.00 0.00 0.02

1.00 0.00 0.00 0.00 0.00 0.00

0.85 0.05 0.00 0.10 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00



Fig. 3. The comparison between GA and MPGSAA in terms of their percentage values

of the solutions falling into the ratio interval �1%.
Fig. 4. The comparison between GA and MPGSAA in terms of the maximum average

end-to-end delay.
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for the performance improvements is larger memory storage space
and more powerful hardware.

6.3. The theoretical comparison on the time consumption

We now theoretically compare the time consumption of single
population GA with that of MPGSAA. Since the predefined
maximum generation number of MPGSAA is MAX_GN and the
individual generation number is nG, the times that the global
optimal solution needs to be exchanged are ½MAX GN=nG
. Since we
have M subpopulations in MPGSAA, the maximum generation
number of GA is M*MAX_GN. We assume that the average time
Table 3
The delay comparison results between GA considering QoS and GA without considerin

Ratio of multicast

nodes in the network

Delay interval Running times

21.4% (15, 30) 5

28.6% (15, 30) 5

35.7% (15, 30) 5

42.9% (15, 30) 5

50.0% (15, 30) 5

57.1% (15, 30) 5

64.3% (20, 40) 5

71.4% (20, 40) 5

78.6% (20, 40) 5

92.9% (20, 40) 5

Table 4
The delay comparison results between MPGSAA considering QoS and MPGSAA withou

Ratio of multicast

nodes in the network

Delay interval Running times

21.4% (15, 30) 5

28.6% (15, 30) 5

35.7% (15, 30) 5

42.9% (15, 30) 5

50.0% (15, 30) 5

57.1% (15, 30) 5

64.3% (20, 40) 5

71.4% (20, 40) 5

78.6% (20, 40) 5

92.9% (20, 40) 5
consumption, the average maximum time consumption, and the
average minimum time consumption of each isolated evolution are
TG, TMax

G , and TMin
G , separately. We have

TMin
G < TG < TMax

G : (15)

We assume that in MPGSAA the average time consumption to
determine the global optimal solution is TDeter , and the average
time consumption to exchange the global optimal solution is TExcha.
We use Tsync to denote the average synchronization time after the
isolated evolution of all the subpopulations. We have

Tsync ¼ TDeter þ TExcha: (16)
g QoS.

Maximum average

end-to-end delay when

QoS is not considered

Maximum average

end-to-end delay when

QoS is considered

18.6 16.2

16.8 15.8

22.6 16.6

26.4 19.4

22.2 19.2

25.4 20.0

33.0 33.0

26.0 23.2

31.0 23.0

29.0 29.0

t considering QoS.

Maximum average

end-to-end delay when

QoS is not considered

Maximum average

end-to-end delay when

QoS is considered

19.0 16.0

17.4 15.0

27.0 15.0

25.2 19.2

25.0 19.2

26.4 20.0

33.0 33.0

25.0 22.0

33.0 23.0

29.0 29.0
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We use TGA and TMPGSAA to denote the total time consumption of
GA and MPGSAA, respectively. We have

TGA ¼
M �MAX GN

nG

� �
� TG: (17)

Since within each isolated evolution, the subpopulation which
has the maximum time consumption determines the ending time,
the average time of each isolated evolution is TMax

G in MPGSAA.
Therefore, we have

TMPGSAA ¼
MAX GN

nG

� �
� ðTMax

G þ TsyncÞ: (18)

The difference of the time consumption between GA and
MPGSAA is

DT ¼ TGA � TMPGSAA ¼
MAX GN

nG

� �
� ðM � TG � TMax

G � TsyncÞ: (19)

If we fix MAX_GN and take TG, TMax
G and Tsync as constants, we

can see that DT is mostly related to M and nG. It means that more
subpopulations and less individual generation number will lead to
more time savings in MPGSAA.

7. Conclusions

In this paper, we first analyze the actual optical networks to
abstract the network model, and then define the mathematical
model for the QoS multicast routing problem in optical networks.
Due to the problem complexity and network dynamics, the
network state information cannot be accurate inherently. Hence, it
is more practical for the user to propose the QoS requirements in a
flexible way, e.g., by the delay interval. So we define a new
concept—the user QoS satisfaction degree.

Based on the MPGSAA and the idea of wavelength graph, we
propose a QoS multicast routing algorithm for optical networks. By
the elaborate design of MPGSAA, the proposed algorithm can find a
cost suboptimal routing tree. Each time a feasible multicast tree is
found, we assign wavelengths to it with the goal of minimizing the
end-to-end delay. Thus, we integrate the wavelength pre-assigning
into the routing tree construction. A better tradeoff between the
cost and the end-to-end delay is achieved for evaluating the quality
of a multicast tree. By simulations, we evaluate the performance of
the proposed algorithm in terms of the multicast tree cost and the
multicast end-to-end delay, respectively. The results show that the
proposed algorithm has a better performance than a single
population GA.
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