
�This research was supported by the National Nature Science Foundation (No. 69684005) and National High-Tech
Program of People's Republic of China (No. 863-511-9609-003) and was done when Shengxiang Yang was pursuing his
Ph.D. degree.

*Corresponding author. Tel.: #44-207 848 2009; fax: #44-207 848 2851.
E-mail address: yangs@dcs.kcl.ac.uk (S. Yang)

Computers & Operations Research 28 (2001) 955}971

A new adaptive neural network and heuristics hybrid approach
for job-shop scheduling�

Shengxiang Yang��*, Dingwei Wang�

�Department of Computer Science, King's College London, University of London, London, WC2R 2LS, UK
�Department of Systems Engineering, Northeastern University, Shenyang 110006, People's Republic of China

Received 1 May 1998; received in revised form 1 April 1999

Abstract

A new adaptive neural network and heuristics hybrid approach for job-shop scheduling is presented. The
neural network has the property of adapting its connection weights and biases of neural units while solving
the feasible solution. Two heuristics are presented, which can be combined with the neural network. One
heuristic is used to accelerate the solving process of the neural network and guarantee its convergence, the
other heuristic is used to obtain non-delay schedules from the feasible solutions gained by the neural
network. Computer simulations have shown that the proposed hybrid approach is of high speed and
e$ciency. The strategy for solving practical job-shop scheduling problems is provided. � 2001 Elsevier
Science Ltd. All rights reserved.

Scope and purpose

Job-shop scheduling is usually a strongly NP-complete problem of combinatorial optimization problems
and is the most typical one of the production scheduling problems. It is usually very hard to "nd its optimal
solution. Practically researchers turn to search its near-optimal solutions with all kind of heuristic algo-
rithms. The scope of this paper is to present a new hybrid approach in dealing with this job-shop scheduling
problem based on adaptive neural network and heuristics.
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1. Introduction

It is well known, the job-shop scheduling problem is the most complicated and typical problem
of all kinds of production scheduling problems, the allocation of resources over time to perform
a collection of tasks [1]. Job-shop scheduling can be stated as follows [2]: given n jobs that have to
be processed on m machines in a prescribed order under certain restrictive assumptions, the
objective is to decide how to arrange the processing orders and starting times of operations sharing
the same machine for each machine, in order to optimize certain criteria. Manufacturing systems
with di!erent objectives require di!erent optimization criteria [3], such as stock size, due-date
reliability, mean lead time and makespan.
Traditionally, there are three kinds of approaches to solve job-shop scheduling problems:

priority rules, combinatorial optimization and constraints analysis [4]. The "rst kind of method
has the merit of being computationally very e$cient and easy to be applied to real cases, but there
is no guarantee with respect to the quality of the obtained solution. Especially if some temporary
constraints should be respected [5]. The optimizationmethods are muchmore rigorous but are not
tractable in large size problems if the optimal solution is required [6]. The third method, originated
from Erschler et al. [7], looks for a set of feasible solutions that meet several technological
constraints for the user to choose the "nal solution.
It has been demonstrated [8] that job-shop scheduling is usually an NP-complete (nondetermin-

istic polynomial time complete) problem. Because of the NP-complete characteristics of job-shop
scheduling, it is usually very hard to "nd its optimal solution, and an optimal solution in the
mathematical sense is not always necessary in practices [6]. Researchers turned to search its
near-optimal solutions with all kind of heuristic algorithms [9]. Fortunately, the searched near-
optimal solutions usually meet requirements of practical problems very well. Recently, several
knowledge-based scheduling systems have been presented [10,11], which are much general than
the above traditional methods because of its using constraints systematically, its implementing
heuristic knowledge and its generality as a framework for stating and solving combinatorial
optimization problems.
Since Hop"eld [12] "rst used a neural network to solve an optimization problem, Hop"eld

networks have been successfully applied to solving a variety of problems, such as the analog-to-
digital conversation problem [13], the traveling-salesman problem [14], the combinatorial optim-
ization problem [15], the linear and non-linear programming problems [16]. However, Hop"eld
networks have the drawbacks of non-convergence to valid solutions, inability to locate the global
minimum and poor scaling properties due to the use of quadratic energy functions, as pointed out
by DARPA [17]. Since Foo and Takefuji [18,19] "rst used neural networks to solve job-shop
scheduling problems, several neural network architectures have been presented to solve job-shop
scheduling (see e.g., Foo and Takefuji [20], Foo et al. [21], Zhou et al. [22] and Willems and
Brandts [23]). All the above-mentioned neural networks are basicaly non-adaptive networks with
the connection weights and biases prescribed in advance before the networks begin to work.
In Yang and Wang [24] we have proposed an e$cient constraint satisfaction adaptive neural

network (CSANN) and heuristics combined approach for job-shop scheduling problems. CSANN
di!ers itself from the above-mentioned networks in its adaptivity. CSANN has the property of
adaptively adjusting its weights of connections and biases of neural units according to the actual
constraint violations during its processing to remove these violations for obtaining feasible
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solutions. In order to improve the performance of CSANN several heuristics are presented in Yang
and Wang [24].
In this paper we present a new heuristic based on the property of non-delay schedules. This new

heuristic together with one of the heuristics presented in Yang and Wang [24] can be combined
with CSANN to form a new hybrid approach for job-shop scheduling problems. In the hybrid
approach, CSANN is used to obtain feasible solutions, the heuristics from Yang and Wang [24] is
used to accelerate the solving process of CSANN and guarantee feasible solutions, the new
heuristic is used to obtain the non-delay solution from the feasible solution obtained by CSANN
with determined orders of operations. The new hybrid approach presented in this paper is simpler
and equivalently e$cient (see e.g. Yang and Wang [24]). The computational simulations have
shown that the proposed hybrid approach has good performance with respect to the quality of
solution and the speed of computation.
This paper is organized as follows. Section 2 presents a mathematical formulation of the

job-shop scheduling problem. The model of CSANN is presented in Section 3. In Section 4 the
heuristics used are described, the hybrid approach is also described in this section. Section
5 presents the computer simulation results with two examples to show the performance of the
proposed new hybrid approach for job-shop scheduling. Finally, the conclusions about the hybrid
approach are presented in Section 6.

2. Formulation of the job-shop scheduling problem

Generally for the job-shop scheduling problem there are two types of constraints: sequence
constraint and resource constraint. The "rst type states that two operations of a job cannot be
processed at the same time. The second type states that no more than one job can be handled on
a machine at the same time. Job-shop scheduling can be viewed as an optimization problem,
bounded by both sequence and resource constraints. For a job-shop scheduling problem, each job
may consist of di!erent number of operations, subjected to some precedence restrictions. Com-
monly the processing orders of each job by all machines and the processing time of each operation
are known and "xed. Once started operations cannot be interrupted (non-preemption). This kind
of scheduling is usually called deterministic and static scheduling. In this paper we consider the
deterministic and static job-shop scheduling problem.
Denote N"�1,2, n� and M"�1,2,m� as the job set and the machine set, where n and m are

the numbers of jobs and machines. Let n
�
be the operation number of job i. O

���
represents

operation k of job i to be processed on machine q, ¹
���

and P
���

represent the starting time and
processing time (which is known in advance) of O

���
, respectively, ¹

����
and P

��� �
represent the

starting time and processing time of the last operation of job i, respectively. Denote r
�
and d

�
as the

release date (earliest starting time) and due date (latest ending time) of job i. Let S
�
denote the set of

operation pairs [O
���

, O
���
] with precedence restriction of job i, where operation O

���
must precede

operationO
���
. Let R

�
be the set of operationsO

���
that will be processed on machine q. Commonly,

the starting time and the processing time of an operation are assumed to be integers.
We use the pure integer representation model to transfer the sequence constraints, resource

constraints, the release date and due date constraints of jobs into integer linear inequalities. Taking
minimizing the makespan as the optimization criterion, the mathematical formulation of the
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job-shop scheduling problem considered is presented as follows:

Minimize E"Max
���

(¹
��� �

#P
��� �

)

subject to

¹
���

!¹
���

*P
���

, [O
���

,O
���
]3S

�
, k, l3�1,2, n

�
�, i3N, (1)

¹
���

!¹
���

*P
���

or ¹
���

!¹
���

*P
���
, O

���
,O

���
3R

�
, i, j3N, q3M, (2)

r
�
)¹

���
)d

�
!P

���
, i3N, j3�1,2, n

�
�, q3M, (3)

where the cost function is the ending time of the latest operation, i.e., maximal complete time of the
job-shop scheduling problem. Minimizing the cost function means minimizing the makespan.
Eq. (1) represents the sequence constraint; Eq. (2), in a disjunctive type, represents resource
constraints; Eq. (3) represents the release date and due date constraints.
For an n/m/J/C

	
�
(notation system of Conway [2]) problem, there are at most n(m!1)

sequence constraint inequalities of Eq. (1) type, at most mn(n!1) resource constraint inequalities
of Eq. (2) type, at most mn starting time constraint inequalities of Eq. (3) type, resulting in a total
number of at most n(mn#m!1) constraint inequalities. There are also at most mn number of
variables ¹

���
s. The objective of job-shop scheduling is to solve these variables so that they satisfy

all the constraint inequalities while minimizing the makespan.

3. Model of CSANN

To solve the job-shop scheduling problem, the previous pure integer representation model has to
be mapped onto the CSANN. The proposed CSANN will be discussed in detail with respect to its
basic components of units and connections, its architecture and its solving process for job-shop
scheduling.

3.1. Neural units of CSANN

Generally a neural unit consists of a linear summator and a nonlinear activation function which
are serialized [25] (see e.g., Fig. 1). The summator of unit i receives all activations A

�
(j"1,2, n)

from connected units and sums the received activations, weighted with connection weight =
��
,

together with a bias B
�
. The output of summator is the net input N

�
, this net input N

�
is passed

through an activation function f (.), resulting in the activation A
�
of unit i. The summator and the

activation function are de"ned as follows:

A
�
"f (N

�
)"f �

�
�
���

(=
��
�A

�
)#B

��, (4)

where=
��
is the connection weight from unit j to unit i.

Usually, for neural units to perform di!erent functional behaviors, there are several types of
activation functions, such as linear threshold function, linear-segmented function and S-shaped
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Fig. 1. General neural unit model.

Fig. 2. Linear-segmented activation functions.

function [26]. In this paper two kinds of linear-segmented function A and B (see e.g., Fig. 2(a) and
(b)) are used as the activation functions of neural units.
Based on the general neural unit, CSANN contains three kinds of units: ST-units, SC-units and

RC-units. The "rst kind of units represent the starting times of all operations. Each ST-unit
represents one operation of job-shop scheduling problem with its activation representing the
starting time of the operation. The second represents whether the sequence constraints are violated.
The third represents whether the resource constraints are violated.
The net input of an ST-unit (e.g., S¹

�
) is calculated by

N
��

(t)"�
�

(=
��
�A

��
(t))#�

�

(=
��
�A

���
(t))#A

��
(t!1), (5)

where the net input of unit S¹
�
is summed from three parts. The "rst part comes from the weighted

activations of SC-units connected with S¹
�
, which implements feedback adjustments because of

sequence violations. The second part comes from the weighted activations of RC-units connected
with S¹

�
, implementing feedback adjustments because of resource violations. The third part comes

from the previous activation, with weight being #1, of unit S¹
�
itself.

The activation function of ST-units is deterministic linear-segmented function of type B (as
shown in Fig. 2(b)) and is de"ned as follows:

A
��

(t)"�
r
�
, N

��
(t)(r

�
,

N
��

(t), r
�
)N

��
(t))d

�
!P

��
,

d
�
!P

��
, N

��
(t)'d

�
!P

��
,

(6)
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where r
�
and d

�
are the release date and due date of job i to which the operation, corresponding to

unit S¹
�
, belongs. P

��
is the processing time of the operation relevant to unit S¹

�
. This activation

function implements the release date and due date constraints described by Eq. (3).
SC-units receive the incoming weighted activations from the connected ST-units, representing

operations of the same job. The RC-units receive the incoming weighted activations from the
connected ST-units, representing operations to be processed on the same machine. The net input of
an SC-unit or RC-unit has the same de"nition form as follows:

N
��
(t)"�

�

(=
��
�A

��
(t))#B

��
, (7)

where C
�
means SC

�
or RC

�
, and B

��
is the bias of the neural unit SC

�
or neural unit RC

�
. The bias

B
��

is added to the incoming weighted activations of the connected ST-units S¹
�
's and equals the

processing time of a relative operation, described in Eq. (7).
The activation function of an SC or RC-unit is a deterministic linear-segment function of type

A (as illustrated in Fig. 2(a)), de"ned as follows:

A
��
(t)"�

0, N
��
(t)*0,

!N
��
(t), N

��
(t)(0.

(8)

The activation of an SC-unit or RC-unit being greater than zero means that the corresponding
sequence constraint or resource constraint is violated. Hence there are feedback adjustments from
this SC-unit or RC-unit to connected ST-units through adaptive weighted connections.

3.2. Connections of adaptive weights and biases

Generally for neural networks performing constraint satisfaction, the determination of connec-
tion weights between the neural units is executed by the designer of the neural network and the
weights are set according to the constraint satisfaction problem in advance before the network
begins to work. In CSANN, the connection weights and biases are adaptive in accordance with the
actual activations of ST-units while the network is running, together with the sequence and
resource constraints of the speci"c problem.
All units of CSANN are connected according to the two kinds of sequence and resource

constraints of the speci"c job-shop scheduling problem, resulting in two blocks: SC-block (se-
quence constraints block) and RC-block (resource constraints block). Each unit of SC-block
contains two ST-units, responding to two operations of a job, and one SC-unit, representing
whether the sequence constraint between these two operations is satis"ed (see, e.g., Fig. 3). Each
unit of RC-block contains two ST-units, responding to two operations sharing the same machine,
and one RC-unit, representing whether the resource constraint between these two operations is
satis"ed (see, e.g., Fig. 4).
Fig. 3 presents an example of SC-block unit, representing the constraint equation

¹
���

!¹
���

*P
���

, denoted by SCB
���
. ST-units S¹

���
and S¹

���
represent two operations O

���
and

O
���

of job i. Their activations A
����

and A
����

represent the starting times ¹
���

and ¹
���

of O
���

and
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Fig. 3. A SC-block unit SCB
���
.

Fig. 4 . A RC-block unit RCB
�����

.

O
���
. The SC-unit SC

���
represents whether the sequence constraint of Eq. (1) between O

���
and

O
���

is violated, with B
����

being its bias. The weights and bias are valued as follows:

=
�
"!1, =

�
"1, =

�
"!=, =

�
"=, B

����
"!P

���
, (9)

where = is the positive feedback adjustment parameter (the same with subsequent equations
where= appears).
At time t during the processing of CSANN, when the sequence constraint between O

���
and

O
���

is satis"ed, the activation A
����

(t) of SC
���

equals zero. If the constraint is violated, the
activation of SC

���
becomes greater than zero and can be calculated by

A
����

(t)"!N
����

(t)"A
����

(t)#P
���

!A
����

(t)"¹
���

(t)#P
���

!¹
���
(t) (10)

and A
����

(t) should be applied as a corrective signal for S¹
���

and S¹
���
. The feedback adjustments

from SC
���

to S¹
���

and S¹
���

are shown as follows:

A
����

(t#1)"¹
���

(t#1)"¹
���

(t)!=�A
����

(t), (11)

A
����

(t#1)"¹
���
(t#1)"¹

���
(t)#=�A

����
(t). (12)
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From the above equations we can see the feedback adjustments from unit SC
���

puts back the
starting time ¹

���
of operation O

���
in time axis, while putting forward ¹

���
of O

���
. Thus, the

sequence violation between O
���

and O
���

can be removed.
Fig. 4 presents an example of RC-block unit, denoted by RCB

�����
, which embodies the resource

constraint Eq. (2), representing the resource constraint betweenO
���

and O
���

on machine q. At time
t during the processing of network, the weights and bias are adaptively valued as the following two
cases show.
Case 1: If A

����
(t))A

����
(t), that is, ¹

���
(t))¹

���
(t), Eq. (13) holds

=
�
"!1, =

	
"1, =



"!=, =

�
"=, B

�������
"!P

���
. (13)

In this case RCB
�����

represents a sequence constraint described by the "rst disjunctive equation
of Eq. (2). If violation exists, the activation of RC

�����
and the feedback adjustments from RC

�����
to

S¹
���

and S¹
���

are calculated by

A
�������

(t)"A
����

(t)#P
���

!A
����

(t)"¹
���
(t)#P

���
!¹

���
(t), (14)

A
����

(t#1)"¹
���
(t#1)"A

����
(t)#=



�A

�������
(t)"¹

���
(t)!=�A

�������
(t), (15)

A
����

(t#1)"¹
���
(t#1)"A

����
(t)#=

�
�A

�������
(t)"¹

���
(t)#=�A

�������
(t). (16)

Case 2: If A
����

(t)*A
����

(t), that is, ¹
���
(t)*¹

���
(t), Eq. (17) holds

=
�
"1, =

	
"#1, =



"=, =

�
"!=, B

�������
"!P

���
. (17)

In this case RCB
�����

represents a sequence constraint described by the second disjunctive
equation of Eq. (2). If there exists violation, the activation of RC

�����
and the feedback adjustments

are calculated by

A
�������

(t)"A
����

(t)#P
���

!A
����

(t)"¹
���
(t)#P

���
!¹

���
(t), (18)

A
����

(t#1)"¹
���
(t#1)"A

����
(t)#=



�A

�������
(t)"¹

���
(t)#=�A

�������
(t), (19)

A
����

(t#1)"¹
���
(t#1)"A

����
(t)#=

�
�A

�������
(t)"¹

���
(t)!=�A

�������
(t). (20)

3.3. Architecture and running mechanisms of CSANN

The architecture of CSANN consists of two layers. The bottom layer consists of only ST-units,
corresponding to the starting times of all operations. The top layer contains SC-units and
RC-units, which represent sequence and resource constraints respectively and provide feedback
information to adjust ST-units in order to satisfy sequence and resource constraints through
SC-block and RC-block respectively.
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For an n/m/J/C
	
�

problem, where n
�
"m for all i3N and each job passes through all machines

in a sequencing order there are mn ST-units representing mn number of operations, n(m!1)
SC-units representing n(m!1) sequence constraints described by Eq. (1), mn(n!1) RC-units
representing mn(n!1) resource constraints described by Eq. (2). There are a total number of
n(mn#m!1) units of the whole network.
To a speci"c job-shop scheduling problem, CSANN can be built up as follows: "rst calculate the

number of ST-units according to the speci"c problem, which equals ��
���

n
�
, then build up the two

sets of P
�
and R

�
according to the actual sequence and resource constraints, "nally form the

SC-block and RC-block, resulting in the problem-speci"c neural network.
There are three mechanisms of running CSANN (see e.g., Yang and Wang [24]). The "rst one is

an asynchronous processing mode which calculates the activation of units in a "xed order. The
second one is an asynchronous processing mode which calculates the activation of units in
a random order. The third mechanism is a synchronous parallel processing mode. In this paper the
"rst mechanism is used, under which from one given initial solution CSANN has to converge only
to a determined solution.

4. Description of heuristics and hybrid approach

This section "rst gives out the descriptions of two heuristics, which are used to improve
the performance of CSANN for job-shop scheduling problems. One is used to accelerate the
solving process of CSANN and guarantee feasible solutions, the other is used to obtain the
local optimal solution from feasible solution solved by CSANN with determined orders of
operations. Secondly the hybrid approach for job-shop scheduling problems is presented in this
section.

4.1. Heuristics

Heuristics 1: Exchange the orders of two adjacent operations. This heuristics has two aspects of
function: to accelerate the solving process and to guarantee feasible solution. The former is for two
adjacent operations coming from the same job, while the latter is for two adjacent operations
sharing the same machine.
On the one hand, assume [O

���
,O

���
]3S

�
. In order to accelerate the solving speed of CSANN, at

time t during its processing, if A
����

(t)*A
����

(t) (i.e., ¹
���

(t)*¹
���
(t)), exchange the orders of

O
���

and O
���

by exchanging their starting times as follows:

A
����

(t#1)"¹
���

(t#1)"¹
���
(t), (21)

A
����

(t#1)"¹
���
(t#1)"¹

���
(t). (22)

In fact, Eqs. (21) and (22) are a more direct method of removing sequence violation than that of
the feedback adjustment of CSANN. Thus the adjustment time from removing sequence violations
may be shortened and the solving process of CSANN for feasible solution is accelerated.
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On the other, hand, during the processing of CSANN there may appear the phenomenon of
`dead locka which can result in no feasible solution. In order to remove adead locka, we use the
following heuristic: exchange the orders of two near operations sharing the same machine by
exchanging their starting times.
Assuming O

���
and O

���
3R

�
, during the processing of CSANN, if ¹

�����
(t)*¹, the following

equations begin to work:

A
����

(t#1)"¹
���
(t#1)"¹

���
(t), (23)

A
����

(t#1)"¹
���
(t#1)"¹

���
(t), (24)

where the parameter ¹ is a prescribed positive integer, variable ¹
�����

(t) is the summed continuous
change times between the starting times of operation pairs O

���
and O

���
(sharing machine q)

because of their resource violation. That is, at time t, the starting times ofO
���

andO
���

have already
continuously changed ¹

�����
(t) times because of their resource violation on machine q, and the

changing e!ects are the same (e.g., always putting ¹
���

forwards and ¹
���

backwards). When ¹
�����

(t)
reaches ¹, Eqs. (23) and (24) begin to work.
The above heuristic can be used together with CSANN to guarantee the feasible solution. The

phenomenon of `dead locka results from the con#icts of feedback adjustments while removing
sequence and resource constraint violations. For example, assuming [O

���
, O

���
]3S

�
and

[O
���
, O

�	�
]3R

�
. During the processing of CSANN, the SC-unit SC

���
may put forward the starting

time ¹
���

of operation O
���

along the positive direction of time axis through feedback adjustment
because of sequence violation, while the RC-unit RC

����	
may put back ¹

���
through feedback

adjustment because of resource violation. Thus there may exist con#icts resulting from this two
kinds of adjustments which result in `dead locka. `Dead locka results in the nonconvergence of
CSANN to its stable station, which corresponds to the feasible solution of the speci"c job-shop
scheduling problem. By using the proposed heuristic, when the phenomenon of `dead locka
happens and ¹

���
has been continuously put back ¹ times because of resource violation between

O
���

and O
�	�

, that is, at time t ¹
�����

(t) reaches ¹, the starting time ¹
���

of O
���

may be exchanged
with ¹

�	�
of O

�	�
. Thus `dead locka can be e!ectively avoided and the feasible solution is

guaranteed.
Heuristics 2: Obtain a non-delay schedule from the feasible solution solved by CSANN.

A schedule is non-delay if no machine lies idle when there is at least one job waiting to be operated
on that machine [9]. A non-delay schedule is a local optimal schedule with orders of operations to
be operated on eachmachine already determined. A schedule is active if no operation can be started
earlier without delaying another operation or violating the sequence constraints. It is evident that
an optimal schedule is an active one. The set of non-delay schedules is a proper subset of the active
set. So when the obtained non-delay schedule falls in the active schedule optimal subset, the
optimal schedule is achieved, and this is the implicit theory base of heuristics 2. CSANN can obtain
feasible solutions quickly, but there may be many idle times for each machine with operations
available to be operated. Obvious, these idle times heavily degrade the quality of feasible schedule
and should be compacted away in order to shorten makespan or improve the quality of schedule.
The detailed heuristics is as follows.
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Assuming a feasible solution �¹
���

, i3N, k3�1,2, n
�
�, p3M� have been obtained by CSANN.

Sort them in non-decreasing order. Then from the minimal to the maximal, each ¹
���

is adjusted as
follows:

¹�
���

"�
¹

���
#P

���
, ¹

���
#P

���
*¹

������
#P

������
,

¹
������

#P
������

, ¹
���

#P
���

(¹
������

#P
������

,
(25)

where ¹�
���

is the starting time of O
���

in the obtained nondelay schedule after the heuristics is run.
O

������
is the precedence operation of O

���
from the same job i, and O

���
is the precedence

operation of O
���

sharing the same machine p. Eq. (25) means to shorten each starting time ¹
���

to
the completion time of O

������
or the completion time of O

���
, depending on whichever is smaller.

The adjustments of all starting times are dynamic, i.e., the starting time of the previous operation
that has been adjusted works while adjusting the latter operations. For example, supposing that
¹

���
has been adjusted into ¹�

���
, when computing ¹�

�������
of operation O

�������
which is just next

to O
���

of the same job i, ¹�
���

is used in Eq. (25) instead of ¹
���

. Thus each operation needs to be
adjusted only once to obtain a non-delay schedule.

4.2. Hybrid approach for job-shop scheduling

The hybrid approach for job-shop scheduling consists of CSANN and the two proposed
heuristics. The solving process of the hybrid approach is iterative. The main steps of the hybrid
approach are as follows:
Step 1: Build up CSANN model, set values for parameters ¹ and =, prescribe the maximal

runtime restriction M¹ and the initial expected makespan;
Step 2: Randomly initialize the starting time ¹

���
(0) for each operation O

���
, and take it as the

initial net input I
����

of each ST-unit S¹
���

;
Step 3: Run each SC-unit SC

���
of SC-block, calculate its activation with Eq. (10). A

����
(t)O0

means the dissatisfaction of sequence constraint, then adjust activations of relative ST-units with
Eqs. (11) and (12) or with Eqs. (21) and (22) under the condition of heuristic 1;
Step 4: Run each RC-unit RC

�����
of RC-block, calculate its activation with Eq. (14) or (18).

A
�������

(t)O0 means the dissatisfaction of resource constraint corresponding to Eq. (2). Then adjust
A

����
(t#1) and A

����
(t#1) with Eqs. (15) and (16) or Eqs. (19) and (20), or with Eqs. (23) and (24)

under the condition of heuristic 1;
Step 5: Repeat step 3 and step 4 until all units are in stable states without changes, which means

that all the sequence and resource constraints are satis"ed and the feasible solution is obtained;
Step 6: Use heuristics 2 to obtain a non-delay schedule solution from the feasible solution

obtained in Step 5;
Step 7: If the makespan of the obtained non-delay schedule is shortened, or continuously keeps

unchanged less than the prescribed times (e.g., X times) and the run time is less than M¹, take the
makespan of newly obtained non-delay solution as the new expected makespan and return to step
2; Otherwise, stop the program and output the best solution.
In the solving process of hybrid approach, expected makespan is usually used as the common

due date for all jobs. The initial expected makespan is prescribed to be big enough for obtaining
feasible solution, maybe greater than the sum of processing times of all operations. The solving
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Table 1
Original data of Example 2

Job no. Operation No.

1 2 3 4 5 6 7 8 9 10

1 3,1 1,3 2,5 4,8 6,3 5,7 7,5 8,8 9,8 10,4
2 2,8 3,5 5,10 6,9 7,10 8,4 1,5 4,3 10,5 9,7
3 3,5 4,4 7,8 8,9 2,1 5,8 6,3 10,7 9,10 1,3
4 7,5 8,5 2,5 1,4 3,8 4,10 10,7 9,4 5,7 6,10
5 3,8 7,4 8,5 2,4 5,1 10,1 9,7 6,7 1,8 4,7
6 2,3 4,3 7,8 9,10 10,4 6,1 8,7 1,9 5,7 3,5
7 5,7 6,7 3,7 10,5 9,1 4,10 7,10 8,4 2,3 1,9
8 4,5 9,7 10,10 6,4 3,4 5,8 1,5 2,10 8,4 7,5
9 5,3 10,8 9,4 6,7 4,7 1,5 2,9 3,5 7,10 8,10
10 6,8 2,1 1,5 5,7 8,9 3,3 4,7 7,5 10,9 9,4

process of hybrid approach is iterative, with the makespan of newly obtained non-delay solution
used as the new expected makespan of next iteration. During each iteration, CSANN is used to
obtain a feasible solution, which may have a shorter makespan than that of the previous iteration.
Thus, the obtained schedule is getting better and better. When the prescribed maximal runtime is
achieved, or the obtained makespan is kept continuously the same forX times, the iterating process
is stopped.
We take the aforementioned whole iteration process as a `runa. In practical application, we can

execute a batch of runs and take the best of all obtained best solutions as the "nal schedule.

5. Simulation study

5.1. Simulation examples

Example 1. We take the benchmark 6/6/J/C
	
�

problem from Muth and Thompson [27] as the
"rst experimental problem. This example has an optimum (i.e., minimal makespan) of 55.

Example 2. Table 1 presents a 10/10/J/C
	
�

problem measured from the feasible schedule given in
Zhou et al. [22], where (m, t) means that the relevant operation of some job will be processed on
machine m with its processing time being t. The sequence constraints of all jobs are the same: in
order from operation 1 to operation 10. The makespan of the feasible schedule given in Zhou et al.
[22] is 98.

5.2. Simulation results

The simulations are "nished on an Intel 586 PC running at 133 MHz under Microsoft Visual
C## 5.0 development environment.
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Table 2
Simulation results of Example 1 by hybrid approach

Prescribed Runtime for best Iteration times Makespan Percentage of
maximal runtime solution (s) per run (E) obtaining
(s) (ave/min/max) (ave/min/max) (ave/min/max) optimal solution (%)

15 8.4/3/14 6/3/12 55.40/55/57 66
30 10.6/3/27 8/3/13 55.25/55/56 75
60 20.5/3/55 9/3/15 55.01/55/56 99

For Example 1, the simulations are "nished with the maximal runtime prescribed to be 15, 30
and 60 s, respectively. For each maximal runtime, 100 experiments or runs are carried out. For all
experiments, the parameters are valued as follows: ¹"5, ="0.5 and X"5, and the initial
expected makespan is set to be 500, which is much greater than the sum of processing times of all
operations, being 197. And for each iteration of all experiments, the initial solution for CSANN is
randomly determined with the initial starting times of all operations valued in a randomly uniform
distribution between [0,100]. And the expected makespan is used as the common due date for all
jobs and the release dates for all jobs are set to zero. Table 2 shows the statistics of simulation
results with respect to average, minimum and maximum of runtime for obtaining the last feasible
solution or the best solution per run, iteration times per run, makespan of the obtained best
solution, and the percentage of obtaining optimal solution for each prescribed maximal runtime
respectively.
From Table 2 we can see: with di!erent maximal runtime restriction, the hybrid approach can

always quickly obtain good near-optimal or optimal solutions within several iterations. For the
given Example 1, when the maximal runtime is prescribed to 15, 30 and 60 s, the hybrid approach
obtains good near-optimal or optimal solutions within 6, 8 and 9 iteration times on average,
respectively. The percentages of obtaining optimal solutions are 66, 75 and 99%, respectively, all
being quite high. In fact, when the maximal runtime is prescribed to be 60 s, only one of the
executed 100 experiments obtained a best solution with the makespan being 56, all the other 99
runs resulted in optimal solutions. The average makespans of the obtained best solutions are 55.40,
55.25 and 55.01 respectively, all being very near the optimal value 55. For the three cases, the
longest makespan of the obtained best solutions is 57 when M¹ equals 15 s, which is only a little
longer than the optimal value. The solving speed of hybrid approach is very high. The average
runtimes of obtaining best solutions are 8.4, 10.6 and 20.5 s, respectively. For all the three cases, the
shortest runtime of obtaining best solutions, also optimal solutions, is only 3 s within the three
iterations.
Fig. 5 presents the iteration process of a run with M¹ prescribed to be 60 s. During this run

CSANN is used 8 times to obtain the feasible solutions, of which the best solution is also the
optimal solution. With the initial expected makespan being 500, the "rst feasible solution is
obtained with makespan being 76. Then 76 is used as the new expected makespan in the second
iteration of CSANN, resulting in the second feasible solution with the makespan being 68. And so
on, the iteration process continues. During the "fth to seventh iteration, makespans of obtained
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Fig. 5 . The iteration process of a run of Example 1.

Fig. 6. An optimal schedule of Example 1.

solutions keep the same of 57 for three times, less than X"5 times. In the 8th iteration when the
runtime reaches 9 s, the feasible solution with makespan being 55 is obtained, which is the optimal
solution of the example problem. For the nineth iteration, 55 is used as the expected makespan and
the program stopped when the runtime reaches 60 s before new feasible solution can be obtained.
Fig. 6 shows the relative Gantt chart of the best solution obtained in the run shown in Fig. 5. In

Fig. 6, a blockmeans an operation with the length of the block equivalent to its processing time, the
number pairs (i, j), inside or above the block, means that the relative operation is the jth operation
of job i.
For Example 2, the simulation is "nished with the maximal runtime prescribed to be 100 s, with

the parameters valued as follows: ¹"5,="0.5 and X"5. The initial expected makespan is set
to be 1000, which is much greater than the sum of processing times of all operations. Fig. 7 shows
a simulation result Gantt chart. From Fig. 7, we can see that the makespan of the obtained best
solution is 97, which is better than the schedule result given in Zhou et al. [22].
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Fig. 7 . A solution of Example 2.

6. Conclusions

In this paper we proposed a new hybrid approach, combining CSANN and two heuristics,
for job}shop scheduling. CSANN is used to obtain feasible solutions during the iterations
of hybrid approach, while the two heuristics are used to improve CSANN's property and
obtain better solutions. Simulations have shown that the proposed hybrid approach for job-shop
scheduling has excellent performance with respect to the quality of solutions and the speed of
calculation.
While the proposed hybrid approach is used for practical job-shop scheduling problems, we can

take the following strategy. Execute the hybrid approach to solve practical job-shop schedule
problem from an appropriate small maximal runtime restriction. Then gradually enlarge the value
of maximal runtime by an appropriate increment (e.g., 10 s) and run the hybrid approach. If the
makespans of the obtained best solutions are kept to be the same continuously for several runs,
usually they are the near-optimal or optimal solutions of the problem. Thus, we can stop the
program and use them as practical schedules.
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