Dual Population-Based Incremental Learning for Problem Optimizationin
Dynamic Environments

Shengxiang Yang®, XinYao®

In recent yearsthereisagrowing interest in the research of evolutionary algorithms for dynamic optimization
problems since real world problems are usualy dynamic, which presents serious challenges to traditional
evolutionary algorithms. In this paper, we investigate the application of Population-Based Incremental Learning
(PBIL) agorithms, a class of evolutionary agorithms, for problem optimization under dynamic environments.
Inspired by the complementarity mechanism in nature, we propose a Dual PBIL that operates on two probability
vectorsthat are dual to each other with respect to the central point in the search space. Using a dynamic problem
generating technique we generate a series of dynamic knapsack problems from a randomly generated stationary
knapsack problem and carry out experimental study comparing the performance of investigated PBILs and one
traditional genetic algorithm. Experimental results show that the introduction of dualism into PBIL improvesits
adaptability under dynamic environments, especially when the environment is subject to significant changesin

the sense of genotype space.

K ey words: dynamic optimization, population-based incremental learning, dualism, evolutionary algorithms

1. Introduction

As a class of meta-heuristic algorithms, evolutionary
algorithms (EAS) make use of principles of natural selection
and population genetics. Due to the robust capability of
finding solutions to difficult problems, EAs have been
widely applied for solving stationary optimization problems
where the fitness landscape does not change during the
course of computation [8]. However, the environments of
real world optimization problems are usually dynamic, i.e.,
the problem fitness landscape changes over time. For
example, in production scheduling problems available
resources may change over time. The intrinsic dynamic
nature of problems being solved presents serious challenge
to traditional EAs since they cannot adapt well to the
changed environment once converged.

In recent years there is a growing interest in the research
of applying EAs for dynamic optimization problems since
many of the problems that EAs are being used to solve are
known to vary over time [1], [11]. Over the past years, a
number of researchers have developed many approachesinto
EAs to address this problem. Branke [6] has grouped them
into four categories. 1) increasing diversity after a change
[7], [12]; 2) maintaining diversity throughout the run [9]; 3)
memory-based methods [10], [14]; and 4) multi-population
approaches [5].

1. Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, United Kingdom
syang@mcs.le.ac.uk

2. School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, United Kingdom
X.yao@cs.bham.ac.uk

In this paper we investigate the application of
Population-Based Incremental Learning (PBIL) algorithms,
aclass of EAs, for solving dynamic optimization problems.
We study the effect of introducing multi-population
approach into PBIL to address dynamic optimization
problems. Inspired by the complementarity mechanism that
broadly exists in nature, we propose a Dual PBIL that
operates on two probability vectors that are dua to each
other with respect to the central point in the search space.
Based on a dynamic problem generating technique [15] that
can generate dynamic environments from any binary
encoded stationary problem, we systematically construct a
series of dynamic knapsack problems from a randomly
generated stationary knapsack problem and carry out
experimental study to compare the performance of
investigated PBILs and one variant of traditional genetic
algorithm.

Intherest of this paper, wefirst detail several investigated
PBILs including our proposed dual PBIL, next present the
algorithmic test environments that consist of a stationary
knapsack problem and relevant dynamic problems, then
provide the experimental results with analysis, and finally
give out our conclusions with discussions on future work.

2. Population-Based Incremental L earning Algorithms

2.1 Population-Based Incremental Learning (PBIL)

The PBIL algorithm, first proposed by Baluja [3], is a
combination of evolutionary optimization and competitive
learning. It is an abstraction of the genetic algorithm (GA)
that explicitly maintains the statistics contained in a GA’s
population. PBIL has proved to be very successful when
compared to standard GAs and hill-climbing algorithms on
an amount of benchmark and real-world problems[4]. PBIL

Procedure PBIL:

begin
t:=0;
/I initialize the probability vector
for i:==1toL do
P°[i]:=0.5
endfor;
repeat

S' := generateSamplesFromProbVector (P*, n);
evaluateSamples(S');
B' := selectBestSolutionFrom(S');
/I learn the probability vector toward best solution
for i:=1toLdo
P'i]:==(@1-a)OP'[i]+a OB'[i];
endfor;
t=t+1;
until terminated = true; // eg., t >t
end;

Fig.1 Pseudo-code of PBIL with one probability vector.

aimsto generate areal probability vector, which creates high
quality solutions with high probability when sampled. PBIL
starts from an initial probability vector with values of each
entry set to 0.5. This means when sampling by this initial
vector random solutions are created because the probability
of generating a1 or 0 on each locusisequal. However, asthe
search progresses, the values in the probability vector are
gradually learnt towards those values that represent high
evaluation solutions. The evolution processis as follows.
During each iteration, a set of samples (solutions) is
created according to the current probability vector as
follows. For each bit position of a solution, assuming binary
encoded, if a random created real number in the range of
[0.0, 1.0] isless than the corresponding probability value in
the probability vector, itissetto 1 (or 0); otherwiseitisset to
0 (or 1 respectively). The set of samples are evaluated
according to the problem-specific fitness function. Then the
probability vector is learnt (pushed) towards the solution(s)
with the highest fitness. The distance the probability vector
is pushed depends on the parameter of learning rate. After
the probability vector is updated a new set of solutions is
generated by sampling from the new probability vector and
thiscycleisrepeated. Asthe search progresses, the entriesin
the probability vector move away from their initia settings
of 0.5 towards either 0.0 or 1.0. The search progress stops
when some termination condition is satisfied, e.g., the
maximum allowable number of iterations t,, is reached or

the probability vector is converged to either 0.0 or 1.0 for
each bit position.

The pseudo-code for the PBIL studied in this paper is
shown in Fig. 1. Within this PBIL at iteration t a set S' of
n =120 solutions are sampled from the probability vector

Procedure PPBIL2:

begin
t:=0;
/I initialize probability vectors
for i:==1toL do
P°[i]1:=0.5
P2[i]:= rand[0.0, 1.0];
endfor;

Il initialize sample sizes for probability vectors
nY:=nJ:=0.5xn;

repeat
S| := generateSamplesFromZo bVector (P, n;);
S, = generateSamplesFromZro bVector (P, , nj);
evaluateSamples(S;, S});
B, := selectBestSolutionFrom(S;);
B, := selectBestSolutionFrom(S});

/l'learn probability vectors toward best solutions
for i:=1toL do

P[il:=-a)xR[il+axBy[il;
P[il:= A-a)xR,[i] +a = By[il;

endfor;
/ adjust sample sizes for probability vectors
if f(B;)>f(B;) then nj:=min{n; +A,n__};
if f(B;)<f(B;) then n; :=max{n; =A,n.;.};
n, :=n-n;;
t=t+1;

until terminated = true; // eg., t >t

end;

Fig.2 Pseudo-code of the Parallel PBIL (PPBIL2).

P'and only the best solution B' from the set S' is used to

learn the probability vector P'. Thelearning rate o isfixed
at 0.05.

2.2 Parallel Population-Based Incremental Learning

Using multi-population instead of one population has
proved to be agood approach for improving the performance
of EAs for dynamic optimization problems[5]. Similarly,
we can introduce multi-population into PBIL by using
multiple probability vectors. Each probability vector is
sampled to generate solutions independently, and is learnt
according to the best solution(s) generated by it. For the sake
of simplicity, in this paper we investigate a Parallel PBIL
withtwo parallel probability vectors, denoted by PPBIL2.
The pseudo-code for PPBIL2 is shown in Fig. 2.

Within PPBIL2 one probability vector B, isinitialized to

be 0.5 for each probability value (in order to compare its

performance with PBIL) and the other P, is randomly
initialized. The probability vectors B, and P, are sampled
and updated independently. Both P, and P, have equal
initial sample size, half of the total number of samples
n =120. However, in order to give the probability vector
that performs better more chance to generate samples, the
sample sizes are dightly adapted within the range of
[Npin s N] =[0.4xN,0.6xn] =[48,72] according to their
relative performance. If one probability vector outperforms
the other, its sample sze is increased by
A =0.05xn =6 whilethe other's sample sizeis decreased by
A; otherwise, if the two probability vectors tie, there is no
change to their sample sizes. The learning rate for both
P,and P, isthe same asthat for the PBIL.

2.3 Dual Population-Based Incremental Learning

Dualism or complementarity is quite common in nature.
For example, in biology the DNA molecule consists of two
complementary strands that are twisted together into a
duplex chain. Inspired by the complementarity mechanism
in nature, in this paper we propose a Dual PBIL, denoted by
DPBIL2. For the convenience of description, here we first
introduce the definition of dual probability vector. Given a

probability vector P =(P[1],---,P[L])0I =[0.0,1.0]" of
fixed length L, its dual probability vector is defined as:

P'=dual(P) = (P'[1],---, P'[L]) O

where P'[i]:=1.0-PF[i] (i =1---,L). That is, a probability
vector's dual probability vector is the one that is symmetric
to it with respect to the centra point in the search space.
With this definition, DPBIL2 consists of apair of probability
vectors that are dual to each other. The pseudo-code of
DPBIL2isgiveninFig. 3.

From Fig. 3 it can be seen that DPBIL2 differs from
PPBIL2 only in the definition of the probability vector
P, and the learning mechanism. The other aspects of
DPBIL2, such as the sampling mechanism, the sample size
updating mechanism, and relevant parameters, are the same
as those of PPBIL2. Within DPBIL2 P, is now defined to be
the dual probability vector of B,. As the search progresses
only P, is learnt from the best solution generated

since P, changes with P, automatically. If the best overall
solution is sampled by P/, i.e. f(B;)> f(B;), then P is
updated towards B; ; otherwise, P! is updated away
from B, , the best solution created by P, . Thereasonto B/
learning away from B} lies in that it is equivalent to P,
learning towards B; .

The motivation of introducing dual probability vector into
PBIL liesin two aspects. increasing diversity of samplesand
fighting significant environment changes. On the first
aspect, usually with the progress of parallel PBILs the
probability vectors will converge towards each other and the
diversity of generated samples is reduced. This doesn't
happen with dual probability vectors. On the second aspect,

Procedure DPBIL2:

begin
t:=0;
[l initialize probability vectors
for i:=1toLdo

PC[i]:=P2[i] = 05;
endfor;
/' initialize sample sizes for probability vectors
nd :=ny :=0.5xn;
repeat
S, = generateSamplesFromZro bVector (P, n;);
S, := generateSamplesFromPro bVector (P, , nj);
evaluateSamples(S|, S,);
B, := selectBestSolutionFrom(S!);
B, = selectBestSolutionFrom(S;);
/I learn probability vectors
for i:=1toL do
if f(B;)= f(B}) then //learn P! toward B;
P [i1=(@-a)xP[i]+axB[il;
else /llearn P! away from B}
P[i]=(A-a)xP[i]+ax(1.0-B,[i]);
P;[i]:=1.0- P[il;
endfor;
I adjust sample sizes for probability vectors
if f(B;)> f(B;) then n; :=min{n; +A,n__};
if f(B})<f(B;) then nj :=max{n; -A,n,;.};
ny =n-n;;
t=t+1
until terminated = true; // eg., t >t
end;

Fig.3 Pseudo-code of the Dual PBIL (DPBIL2).

when the environment is subject to significant changes the
dual probability vector is expected to generate high
evaluation solutions and hence improve PBIL's adaptability.

3. Algorithm Test Environments

In order to compare the performance of different PBILs, a
stationary knapsack problem is randomly constructed as the
test problem. A series of dynamic knapsack problemsisthen
constructed from this stationary knapsack problem by a
dynamic problem generating technique.

3.1 Stationary Knapsack Problem

The knapsack problem is a well-known NP-complete
combinatorial optimization problem and has been well
studied in EA's community. The problem isto select from a
st of items with varying weights and profits those items that

will yield the maximal summed profit to fill in the knapsack
without exceeding its limited weight capacity.

Given a set of mitems and a knapsack, the 0-1knapsack
problem can be described as follows:

max p(x) :Z::ﬂ Pi i

subject to the weight constraint:

i=m

wherex =(x;,---, X,,), X, isOor1, wand p, aretheweight
and profit of itemi respectively, and C isthe weight capacity
of the knapsack. If x; =1, the ith item is selected for the
knapsack.

In this paper we constructed a knapsack problem with 100
items using strongly correlated sets of data, randomly
generated as follows:

w, = uniformly randominteger[1, 50]

p, =w, +uniformly randominteger[1, 5]

=100

C=06x) w

And given a solution X, its fitness f(x) is evaluated as

follows. If the sum of the item weightsis within the capacity
of the knapsack the sum of the profits of the selected itemsis
used as the fitness. If the solution selects too many items
such that the summed weight exceeds the capacity of the
knapsack, the solution isjudged by how much it exceeds the
knapsack capacity (the less, the better) and its fitness is
evaluated to be the difference between the total weight of all
items and the weight of selected items, multiplied by a small

constant 107%° to ensure that the solutions that overfill the

knapsack are not competitive with those which do not.
Together, the fitness of a solution x is evaluated as follows:

S, it Y w5

f(x) = _ .
107 x (Z::OO W, —2:00 W, X;), otherwise

3.2 Constructing Dynamic K napsack Problems

In this paper, we construct dynamic test environments
from above stationary knapsack problem using a dynamic
problem generating technique proposed in [15]. This
technique is characterized by two environmental dynamics
parameters: the speed of change and the degree of changein
the genotype space. The first parameter is referred to as the
environmental change period, denoted by 7, and is defined
asthe number of EA generations between two changes. That
is, every 1 generations the fitness landscape is changed.

The second parameter is measured by the ratio of onesina
binary template T (k) 0{0,} " (where L is the chromosome
length) created for each environmental change period,
denoted by o . For each environmental change period k we

first create a binary mask M (k) 0{0,5} - incrementally as:

M (k) = M (k-1) O T(k)

where T(k) is randomly created for period k with pxL
onesand“ [0 ” isabitwise exclusive-or (XOR) operator (i.e.,
101=0,100=1, 000=1). For thefirst period, M (1) is
initialized to be azero vector. When evaluating an individual
x0{0,54 - in the population, we first perform the operation
xOM(K) on it. The XORed result is then evaluated to

obtain afitness value for the individual x. It can be seen that
the parameter o controls the degree of environmental

change. The bigger the value of p , the more significant the

environmental change.
Putting things together, the environment dynamics can be
formulated as follows:

f(x,t) = f(xOM (k)

where k =[t/ 7] isthe period index, t =[(k—-1)7,k7] isthe
generation counter.

In this paper, we construct dynamic knapsack problems as
follows. For each run of an algorithm on each knapsack
problem the fitness landscape is periodically changed every
T generations. Based on our preliminary experimental
results on the stationary knapsack problem (see Section 4.2),
T isset to 10, 50, 100, 150 and 200 generations respectively
in order to test each algorithm's capability of adapting to
dynamic environment under different degree of convergence
(or searching stage). In order to test the effect of the degree
of environmental change on the performance of
agorithms p is set to 0.05, 0.25, 0.5, 0.75, and 1.0

respectively. These values represent different environmental
change level, from light shifting (0 =0.05), to medium

variation (p =0.25,0.5), to heavy change (o =0.75), and
to the extreme case (o =1.0) of oscillating between two
reversed fitness landscapes.

Totally, we systematically construct a series of 25
dynamic problems, 5 values of 7 combined with 5 values of
p , from the stationary knapsack problem.

4. Computer Experimental Study

4.1 Design of Experiments

Experiments were carried out to compare the performance
of investigate PBILSs. In order to compare PBILs as awhole
with other evolutionary algorithms, we also included a
standard genetic algorithm, denoted by SGA, as a peer
algorithm in the experiments. SGA has following typical
configuration: generational, uniform crossover with a
crossover probability p, =0.6, traditional bit mutation with

a mutation probability p,, =0.001, fitness proportionate

selection with the Stochastic Universal Sampling (SUS)
scheme [2] and without €litist model, and a population size
of n=120.

For each experiment of combining al gorithm and problem
(stationary or dynamic), 50 independent runs were executed
with the same 50 random seeds. For each run of an algorithm
on each problem, 10 periods of environmental changes were

1480

SGA '
1470 1 PBIL -
5 1460 | PPBIL2 -
2 DPBIL2 - P
5 1450 | W
g
5 1440
5
Q 1430 |
; ‘ S AN
1420 [St |
g SN
21410 ¥
1400 . | |
0 0 100 150 200
Generation

Fig4 Experimental results on the stationary knapsack
problem.

allowed and the best-of-generation fitness was recorded
every generation. The overall performance of an algorithm
on a problem is measured by the mean best-of-generation
fitness. It is defined as the best-of-generation fitness
averaged across the number of runs and then averaged over
the data gathering period. More formally thisis:

= _1 i=G , 1 j=N
Feo _EXZizl (ﬁxz,ﬂ FBGii)

where F is the mean best-of-generation fitness, G is the

number of generations which is equivalent to 10 periods of
environmental changes (i.e., G =10x7), N =50isthe total
number of runs, and Fec, is the best-of-generation fitness of

generation i of run j of an algorithm on a problem.

4.2 Experimental Results on the Stationary Knapsack
Problem

In order to help analyze the experimental results on
dynamic problems, preliminary experiments were carried
out on the stationary knapsack problem. For each run of
different algorithm the maximum allowable number of
generations was set to 200. The preliminary experimental
results with respect to best-of-generation fitness against
generations are shown in Fig. 4, where the data were
averaged over 50 runs.

From Fig. 4, it can be seen that in genera all PBILs
outperform SGA. This result is consistent with other
researchers study [4]. PBIL outperforms PPBIL2 and
DPBIL2 while PPBIL2 performs as well as DPBIL2. This
result shows that on the stationary knapsack problem
introducing extra probability vector may not be beneficial
since the existence of extra probability vector may slow
down the learning speed of the other probability vector,
whichever of the two vectors performs better.

4.3 Experimental Results on Dynamic Knapsack
Problems

Table 1 Experimental results with respect to the overall
mean best-of-generation fitness Fy, of different algorithms
on dynamic knapsack problems.

Param. | Parameter Algorithms

Setting | Settting

Index | (r,p) | SGA PBIL PPBIL2 DPBIL2
1 (10,0.05) | 1416.6 1432.7 14291 14252
2 (10,0.25) | 1406.7 1420.3 14189 14141
3 (10,0.50) | 1402.4 14130 14124 14118
4 (10,0.75) | 1396.9 1409.1 14084 14131
5 (10,1.00) | 13725 1406.8 1404.7 1428.1
6 | (50,0.05) | 14249 14534 14508 1450.1
7 (50,0.25) | 1415.8 1426.4 14273 1424.1
8 (50,0.50) | 1397.7 14133 14165 14186
9 (50,0.75) | 1377.2 1401.7 14054 14238
10 | (50,1.00) | 1337.3 13931 1390.8 1465.8
11 {(100,0.05) | 1429.5 1416.2 14423 14428
12 {(100,0.25)| 1421.4 13921 1410.7 1406.7
13 |(100,0.50) | 1412.1 1381.7 13922 1405.7
14 |(100,0.75)| 1387.8 1368.8 13834 1408.6
15 |(100,1.00)| 13384 1367.0 13650 14749
16 |(150,0.05)| 1432.1 14039 14346 1439.7
17 |(150,0.25)| 14246 13854 14015 14015
18 |[(150,0.50) | 14180 1363.6 13739 1400.6
19 |(150,0.75)| 1400.7 13405 1367.2 1402.7
20 |(150,1.00)| 1348.2 12953 1311.3 14773
21 |(200,0.05)| 14336 13929 14206 1439.2
22 |(200,0.25)| 1426.7 1363.6 13934 1399.6
23 |(200,0.50)| 1420.3 13332 1362.0 1399.9
24 |(200,0.75)| 1407.4 1316.1 13425 1405.8
25 [(200,1.00)| 1362.1 12335 12534 1479.1

1500 T L L T L T
1450 +
400 |5

1350 ¢

1250 ¢

Mean Best-Of-Generation Fitness

00—
I 56 101 1516 2021 25

Environmental Dynamics Parameter Setting Index

Fig.5 Experimental results on dynamic knapsack problems.

The experimental results on dynamic problems are
summarized in Table 1 and plotted in Fig. 5 where the
environmental dynamics parameter setting is indexed
according to Table 1. From Table 1 and Fig. 5 several results

1450 . . .

7))
17)]
(0] ,'}\
£ 1440 1 '
S5
g
= 1430 +
<
B Y
8 1420 I ‘\/‘\’/A/ML/J\\/“\/‘A/
< A SGA L
2 o PBIL -
7 \;“(PPBIL2 oo
o ! DPBIL2 -~
1400 ' : '
0 20 40 60 80 100
Generation
@
1420

1410

AL

1400 |

Best-Of-Generation Fitness

1390
SGA ——
PBIL -~
1380 || PPBIL2 e
DPBIL2 -------
1370 . , |
: 20 4060 80 100
Generation
(©

1430 T T T
7))
17)]
(0]
5 1420 ¢
S5
g
= 1410
<
5
=
8 1400
o
Q
2 1390 ¢
3 PPBIL2 -
DPBIL2 -
1380 ' ! ' ‘
0 20 40 60 80 100
Generation
(b)
) 1460 SGA T T
2 PBIL
2 1440 7 pppry o
B DPBIL2 ;
1420
[= s
A= S
21400 f
) ¢
5 1380 | |
Q . |
S 1360 f ‘/ |
7 1340 | /
m
1320 ' ' :
0 20 40 60 80 100
Generation
(d)

Fig.6 Experimental results with respect to best-of-generation fitness agai nst generations of investigated algorithms on dynamic
knapsack problems. The environmental dynamics parameter 7 =10and p is set to (a) 0.05, (b) 0.25, (c) 0.75, and (d) 1.0.

can be observed and are discussed as follows.
First, an obviousresult isthat for each value of 7 DPBIL2
performs consistently with the increasing of the value of p .

With each fixed 7, when p increases from 0.05 to 0.25,

0.50, 0.75 to 1.0 the performance curve of DPBIL2 looks
likeabig“U” while the other algorithms have a performance
curve of “falling stone”. This happens because increasing the
value of p increases the magnitude of environmental

changes, which degradesthe performance of SGA, PBIL and
PPBIL2 persistently. However, in DPBIL2 the introduction
of the dual probability vector stops DPBIL2's performance
from dropping when the value of o reaches0.5. Theresfter,
DPBIL2' s performance rises with the increasing of the value
of p. For each fixed value of r when p=1.0 DPBIL2
achieves the highest performance point. Thisresult confirms

our expectation of introducing the dual probability vector
into DPBIL2. When the magnitude of environmental change

is large, the dual probability vector takes effect quickly to
adapt the DPBIL2 to the changed environment.

Second, PBIL isnow beaten by both PPBIL2 and DPBIL2
on most situations except for when p is small. When p is

small, the dynamic knapsack problems are closer to the
stationary knapsack problem where introducing an extra
probability vector may not work well. This is verified by
above preliminary experimental results on the stationary
knapsack problem as shown in Fig.4. However, when p

increases the introduction of extra probability vector
becomes more and more beneficial. This is because extra
probability vector helpsimproving diversity in the samples.

Third, as opposed to the stationary knapsack problem,
SGA now outperforms PBILs on many dynamic knapsack
problems, especially whenthevalueof 7 islarge. When 7 is
large the algorithms are given more time to search before
environment changes and hence they are more likely to
converge. Convergence deprives PBILs of the adaptability to

1500

1400 £

1300 r

1200 r

1100 ¢

1000 I SGA ——

900 + PPBIL2 i

Best-Of-Generation Fitness

800 : :
0 400 800 1200 1600 2000

Generation
@
1500 - T . : .

1400 |
1300 |

1200 r

1100 |

Best-Of-Generation Fitness

1000 : : :
0 400 800 1200 1600 2000

Generation

©

1500 — . . :

1400 |

%))
n
[0}
g
2
g
2 1300
g
]
=
& 1200 |
o
Q
% 1100
]
@
1000 : : : :
0 400 800 1200 1600 2000
Generation
(b)
1500 :
S 1400 ¢ area /ﬁ /,, /f/ /
= 1300 | Fal
= | [c’ ‘ | "
g ,/ / 4/ \“‘ /
5 1200 | “ |
g f
51100 b
Q
S 1000 | SGA — |
2 PBIL - - S
8 900 | PPBIL2 = T e
= DPBIL2 -------
800 : :
0 400 800 1200 1600 2000
Generation
(d)

Fig.7 Experimental results with respect to best-of-generation fitness against generations of investigated al gorithms on dynamic
knapsack problems. The environmental dynamics parameter 7 = 200and p is set to (a) 0.05, (b) 0.25, (¢) 0.75, and (d) 1.0.

changed environment. However, the mutation mechanism
embedded in SGA gives SGA more diversity than PBILsand
better adaptability to environment changes. Hence, SGA
outperforms PBILs.

In order to better understand the experimental results, we
give out the dynamic performance of tested algorithms with
respect to best-of-generation fitness against generations on
several dynamic problems in Fig. 6 and Fig. 7, where the
data were averaged over 50 runs. In Fig. 6 and Fig. 7 the
value of 7 isset to 10 and 200 respectively, and within both
figures the value of pis set to 0.05, 0.25, 0.75 and 1.0

respectively. From Fig. 6 and Fig. 7, it can be seen that
generally speaking, the performance of the agorithms
(except for DPBIL2) drops heavier and heavier with the
increasing of thevalueof p aswell asthevalueof 7. With

DPBIL2 when p=1.0 its performance rises instead of

drops with the growing of dynamic periods due to the effect
of the dua probability vector. This results in the big “U”
curve for DPBIL2's overall performance (see Fig. 5).

5. Conclusionsand Future Work

In this paper we investigate the application of
Population-Based Incremental Learning (PBIL) algorithms
for solving optimization problems under dynamic
environments. We study the effect of introducing extra
probability vector into PBIL to improve its performance
under dynamic environments. Inspired by the
complementarity mechanism in nature, we propose a Dual
PBIL that operates on a pair of probability vectors that are
dual to each other with respect to the central point in the
genotype space.

Using a dynamic problem generating technique we
systematically construct a set of dynamic knapsack problems
from a randomly created stationary knapsack problem and
based on these stationary and dynamic knapsack problems
we carry out experimental study comparing investigated
PBILsand onetraditional GA. From the experimental results
the following conclusions can be achieved.

First, on stationary problemsintroducing extra probability
vector into PBIL may not be beneficial. However, under
dynamic environments introducing extra probability vector
into PBIL improvesits performance.

Second, when the environment is subject to significant
changes in the sense of genotype space, introducing the dual
probability vector into PBIL can achieve very high
performance improvement.

Third, though the SGA is beaten by PBILs on the
stationary problem, the mutation scheme embedded in SGA
helps keeping the diversity in the population and hence
improves SGA'’ s performance under dynamic environments.

This paper investigated an interesting work of applying
PBILs, especialy the dual PBIL, for dynamic optimization
problems. There are several relevant worksto be carried out
inthe future. First, extending the resultsin this paper to other
Estimation of Distribution Algorithms (EDAs) [13], of
which PBILs are a sub-class, is an interesting work. Second,
it is also worthy to introduce and develop more approaches,
such as the hypermutation technique [7], [12], from EA's
community to PBILs or EDAs for dynamic optimization
problems. Finaly, formaly analyzing the performance of
investigated PBILs for dynamic optimization problems is
also an important future work.

Refer ences:

[1] T. Béck (1998). On the Behavior of Evolutionary
Algorithms in Dynamic Fitness Landscape. Proc. of the
1998 IEEE Int. Conf. on Evolutionary Computation,
446-451. |EEE Press.

[2] J. E. Baker (1987). Reducing Bias and Inefficiency in the
Selection Algorithms. In J. J. Grefenstelle (ed.), Proc. of
the 2nd Int. Conf. on Genetic Algorithms, 14-21.
Lawrence Erlbaum Associates.

[3] S Bauja (1994). Population-Based Incremental
Learning: A Method for Integrating Genetic Search
Based Function Optimization and Competitive Learning.
Technical Report CMU-CS-94-163, Carnegie Mellon
University, USA.

[4] S. Balujaand R. Caruana (1995). Removing the Genetics
from the Standard Genetic Algorithm. Proc. of the 12th
Int. Conf. on Machine Learning, 38-46.

[5] J. Branke, T. Kaubler, C. Schmidt, and H. Schmeck
(2000). A Multi-Population Approach to Dynamic
Optimization Problems. In Proc. of the 4th Int. Conf. on
Adaptive Computing in Design and Manufacturing.

[6] J. Branke (2001). Evolutionary Approaches to Dynamic
Optimization Problems - Updated Survey. GECCO
Workshop on Evolutionary Algorithms for Dynamic
Optimization Problems, 134-137.

[7] H. G. Cobb (1990). An Investigation into the Use of
Hypermutation as an Adaptive Operator in Genetic
Algorithms Having Continuous, Time-Dependent
Nonstationary ~ Environments. Technical Report
AIC-90-001, Naval Research Laboratory, Washington,
USA.

[8] D. E. Goldberg (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wedley.

[9] J J CGrefenstette (1992). Genetic Algorithms for
Changing Environments. In R. Manner and B.
Manderick (eds.), Proc. of the 2nd Int. Conf. on Parallel
Problem Solving from Nature, 137-144.

[10] J. Lewis, E. Hart and G. Ritchie (1998). A Comparison
of Dominance Mechanisms and Simple Mutation on
Non-Stationary Problems. In A. E. Eiben, T. Back, M.
Schoenauer and H.-P. Schwefel (eds.), Proc. of the 5th
Int. Conf. on Paralel Problem Solving from Nature,
139-148.

[11] N. Mori, H. Kitaand Y. Nishikawa (1997). Adaptation
to Changing Environments by Means of the Memory
Based Thermodynamical Genetic Algorithm. In T. Back
(ed.), Proc. of the 7th Int. Conf. on Genetic Algorithms,
299-306. Morgan Kaufmann Publishers.

[12] R. W. Morrison and K. A. De Jong (2000). Triggered
Hypermutation Revisited. Proc. of the 1999 Congress on
Evolutionary Computation, 1025-1032.

[13] H. Miuihlenbein and G. Paal (1996). From
Recombination of Genes to the Estimation of
Distributions I. Binary Parameters. In H.-M. Voigt, W.
Ebeling, I. Rechenberg, and H.-P. Schwefel (eds.), Proc.
of the 4th Int. Conf. on Parallel Problem Solving from
Nature, 178-187.

[14] K. P. Ng and K. C. Wong (1995). A New Diploid
Scheme and Dominance Change Mechanism for
Non-Stationary Function Optimisation. In L. J.
Eshelman (ed.), Proc. of the 6th Int. Conf. on Genetic
Algorithms. Morgan Kaufmann Publishers.

[15] S. Yang (2003). Non-Stationary Problem Optimization
Using the Primal-Dual Genetic Algorithm. Proc. of the
2003 Congress on Evolutionary Computation.

