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In recent years there is a growing interest in the research of evolutionary algorithms for dynamic optimization 
problems since real world problems are usually dynamic, which presents serious challenges to traditional 
evolutionary algorithms. In this paper, we investigate the application of Population-Based Incremental Learning 
(PBIL) algorithms, a class of evolutionary algorithms, for problem optimization under dynamic environments. 
Inspired by the complementarity mechanism in nature, we propose a Dual PBIL that operates on two probability 
vectors that are dual to each other with respect to the central point in the search space. Using a dynamic problem 
generating technique we generate a series of dynamic knapsack problems from a randomly generated stationary 
knapsack problem and carry out experimental study comparing the performance of investigated PBILs and one 
traditional genetic algorithm. Experimental results show that the introduction of dualism into PBIL improves its 
adaptability under dynamic environments, especially when the environment is subject to significant changes in 
the sense of genotype space. 
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1. Introduction 

As a class of meta-heuristic algorithms, evolutionary 
algorithms (EAs) make use of principles of natural selection 
and population genetics. Due to the robust capability of 
finding solutions to difficult problems, EAs have been 
widely applied for solving stationary optimization problems 
where the fitness landscape does not change during the 
course of computation [8]. However, the environments of 
real world optimization problems are usually dynamic, i.e., 
the problem fitness landscape changes over time. For 
example, in production scheduling problems available 
resources may change over time. The intrinsic dynamic 
nature of problems being solved presents serious challenge 
to traditional EAs since they cannot adapt well to the 
changed environment once converged.  

In recent years there is a growing interest in the research 
of applying EAs for dynamic optimization problems since 
many of the problems that EAs are being used to solve are 
known to vary over time [1], [11]. Over the past years, a 
number of researchers have developed many approaches into 
EAs to address this problem. Branke [6] has grouped them 
into four categories: 1) increasing diversity after a change 
[7], [12]; 2) maintaining diversity throughout the run [9]; 3) 
memory-based methods [10], [14]; and 4) multi-population 
approaches [5].  

In this paper we investigate the application of 
Population-Based Incremental Learning (PBIL) algorithms,  
a class of EAs, for solving dynamic optimization problems. 
We study the effect of introducing multi-population 
approach into PBIL to address dynamic optimization 
problems. Inspired by the complementarity mechanism that 
broadly exists in nature, we propose a Dual PBIL that 
operates on two probability vectors that are dual to each 
other with respect to the central point in the search space. 
Based on a dynamic problem generating technique [15] that 
can generate dynamic environments from any binary 
encoded stationary problem, we systematically construct a 
series of dynamic knapsack problems from a randomly 
generated stationary knapsack problem and carry out 
experimental study to compare the performance of 
investigated PBILs and one variant of traditional genetic 
algorithm.  

In the rest of this paper, we first detail several investigated 
PBILs including our proposed dual PBIL, next present the 
algorithmic test environments that consist of a stationary 
knapsack problem and relevant dynamic problems, then 
provide the experimental results with analysis, and finally 
give out our conclusions with discussions on future work. 

2. Population-Based Incremental Learning Algorithms 

2.1 Population-Based Incremental Learning (PBIL) 

The PBIL algorithm, first proposed by Baluja [3], is a 
combination of evolutionary optimization and competitive 
learning. It is an abstraction of the genetic algorithm (GA) 
that explicitly maintains the statistics contained in a GA’s 
population. PBIL has proved to be very successful when 
compared to standard GAs and hill-climbing algorithms on 
an amount of benchmark and  real-world problems [4]. PBIL 
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Fig.1  Pseudo-code of PBIL with one probability vector. 

aims to generate a real probability vector, which creates high 
quality solutions with high probability when sampled. PBIL 
starts from an initial probability vector with values of each 
entry set to 0.5. This means when sampling by this initial 
vector random solutions are created because the probability 
of generating a 1 or 0 on each locus is equal. However, as the 
search progresses, the values in the probability vector are 
gradually learnt towards those values that represent high 
evaluation solutions. The evolution process is as follows.  

During  each  iteration,   a  set  of  samples  (solutions)  is 
created according to the current probability vector as 
follows. For each bit position of a solution, assuming binary 
encoded, if a random created real number in the range of 
[0.0, 1.0] is less than the corresponding probability value in 
the probability vector, it is set to 1 (or 0); otherwise it is set to 
0 (or 1 respectively). The set of samples are evaluated 
according to the problem-specific fitness function. Then the 
probability vector is learnt (pushed) towards the solution(s) 
with the highest fitness. The distance the probability vector 
is pushed depends on the parameter of learning rate. After 
the probability vector is updated a new set of solutions is 
generated by sampling from the new probability vector and 
this cycle is repeated. As the search progresses, the entries in 
the probability vector move away from their initial settings 
of 0.5 towards either 0.0 or 1.0. The search progress stops 
when some termination condition is satisfied, e.g., the 
maximum allowable number of iterations maxt is reached or 

the probability vector is converged to either 0.0 or 1.0 for 
each bit position. 

The pseudo-code for the PBIL studied in this paper is 

shown in Fig. 1. Within this PBIL at iteration t a set tS of 
120=n  solutions  are  sampled  from  the  probability vector 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Pseudo-code of  the Parallel PBIL (PPBIL2). 

tP and only the best solution tB  from the set tS  is used to 

learn the probability vector tP . The learning rate α  is fixed 
at 0.05. 

2.2 Parallel Population-Based Incremental Learning 

Using multi-population instead of one population has 
proved to be a good approach for improving the performance 
of  EAs  for  dynamic  optimization  problems [5].  Similarly, 
we can introduce multi-population into PBIL by using 
multiple probability vectors. Each probability vector is 
sampled to generate solutions independently, and is learnt 
according to the best solution(s) generated by it. For the sake 
of simplicity, in this paper we investigate a Parallel PBIL 
with two  parallel  probability  vectors,  denoted  by  PPBIL2. 
The pseudo-code for PPBIL2 is shown in Fig. 2.  

Within PPBIL2 one probability vector 1P  is initialized to 

be 0.5 for each probability value (in order to compare its 

Procedure PBIL: 

begin 
;0:=t  

// initialize the probability vector 
for 1:=i  to L do  

;5.0:][0 =iP  

endfor; 
repeat 

);,(: nPbVectormplesFromgenerateSaS tt �����
=  

);( tSmplesevaluateSa  
);(: tt SomSolutionFrselectBestB =  

// learn the probability vector toward best solution
for 1:=i  to L do  

];[][)1(:][ iBiPiP ttt ∗+∗−= αα   

endfor; 
;1: += tt  

until terminated = true;   // e.g., maxtt >  

end; 

Procedure PPBIL2:  

begin 
;0:=t  

 // initialize probability vectors 
for 1:=i  to L do  

;5.0:][0
1 =iP  

];0.1,0.0[:][0
2 randiP =  

endfor; 
// initialize sample sizes for probability vectors 

;5.0:: 0
2

0
1 nnn ×==  

repeat 
);,(: 111

ttt nPbVectormplesFromgenerateSaS ���	�=

);,(: 222
ttt nPbVectormplesFromgenerateSaS 
��	�=

);,( 21
tt SSmplesevaluateSa  

);(: 11
tt SomSolutionFrselectBestB =  
);(: 22

tt SomSolutionFrselectBestB =  
// learn probability vectors toward best solutions 
for 1:=i  to L do  

];[][)1(:][ 111 iBiPiP ttt ×+×−= αα   

];[][)1(:][ 222 iBiPiP ttt ×+×−= αα  

endfor;  
 // adjust sample sizes for probability vectors 

if )()( 21
tt BfBf >  then } ;,min{: max11 nnn tt ∆+=  

if )()( 21
tt BfBf <  then } ;,max{: min11 nnn tt ∆−=  

;: 12
tt nnn −=  

;1: += tt  
until terminated = true;   // e.g., maxtt >  

end; 



performance with PBIL) and the other 2P  is randomly 

initialized. The probability vectors 1P  and 2P  are sampled 

and updated independently. Both 1P and 2P  have equal 

initial sample size, half of the total number of samples 
.120=n  However, in order to give the probability vector 

that performs better more chance to generate samples, the 
sample sizes are slightly adapted within the range of  

]72,48[]6.0,4.0[],[ maxmin =××= nnnn  according to their 

relative performance. If one probability vector outperforms 
the other, its sample size is increased by 

605.0 =×=∆ n while the other's sample size is decreased by 
∆ ; otherwise, if the two probability vectors tie, there is no 
change to their sample sizes. The learning rate for both 

1P and 2P  is the same as that for the PBIL. 

2.3 Dual Population-Based Incremental Learning 

Dualism or complementarity is quite common in nature. 
For example, in biology the DNA molecule consists of two 
complementary strands that are twisted together into a 
duplex chain. Inspired by the complementarity mechanism 
in nature, in this paper we propose a Dual PBIL, denoted by 
DPBIL2. For the convenience of description, here we first 
introduce the definition of dual probability vector. Given a 

probability vector LILPPP ]0.1,0.0[])[,],1[( =∈= �  of 
fixed length L, its dual probability vector is defined as:  

ILPPPdualP ∈== ])[',],1['()(' �  

where ][0.1:][' iPiP −=  ( Li ,,1�= ). That is, a probability 

vector's dual probability vector is the one that is symmetric 
to it with respect to the central point in the search space. 
With this definition, DPBIL2 consists of a pair of probability 
vectors that are dual to each other. The pseudo-code of 
DPBIL2 is given in Fig. 3. 

From Fig. 3 it can be seen that DPBIL2 differs from 
PPBIL2 only in the definition of the probability vector 

2P and the learning mechanism. The other aspects of 

DPBIL2, such as the sampling mechanism, the sample size 
updating mechanism, and relevant parameters, are the same 
as those of PPBIL2. Within DPBIL2 2P is now defined to be 

the dual probability vector of 1P . As the search progresses 

only 1P  is learnt from the best solution generated 

since 2P changes with 1P  automatically. If the best overall 

solution is sampled by tP1 , i.e. )()( 21
tt BfBf ≥ , then tP1  is 

updated towards tB1 ; otherwise, tP1  is updated away 

from tB2 , the best solution created by tP2 . The reason to tP1  

learning away from tB2  lies in that it is equivalent to tP2  

learning towards tB2 . 

The motivation of introducing dual probability vector into 
PBIL lies in two aspects: increasing diversity of samples and 
fighting significant environment changes. On the first 
aspect, usually with the progress of parallel PBILs the 
probability vectors will converge towards each other and the 
diversity of generated samples is reduced. This doesn't 
happen with dual probability vectors. On the second aspect, 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3  Pseudo-code of  the Dual PBIL (DPBIL2). 

when the environment is subject to significant changes the 
dual probability vector is expected to generate high 
evaluation solutions and hence improve PBIL's adaptability.  

3. Algorithm Test Environments 

In order to compare the performance of different PBILs, a 
stationary knapsack problem is randomly constructed as the 
test problem. A series of dynamic knapsack problems is then  
constructed from this stationary knapsack problem by a 
dynamic problem generating technique.  

3.1  Stationary Knapsack Problem 

The knapsack problem is a well-known NP-complete 
combinatorial optimization problem and has been well 
studied in EA's community. The problem is to select from a 
set of items with varying weights and profits those items that 

Procedure DPBIL2:  

begin 
;0:=t  

 // initialize probability vectors 
for 1:=i  to L do  

;5.0:][:][ 0
2

0
1 == iPiP   

endfor; 
// initialize sample sizes for probability vectors 

;5.0:: 0
2

0
1 nnn ×==  

repeat 
);,(: 111

ttt nPbVectormplesFromgenerateSaS �����=

);,(: 222
ttt nPbVectormplesFromgenerateSaS �����=

);,( 21
tt SSmplesevaluateSa  

);(: 11
tt SomSolutionFrselectBestB =  
);(: 22

tt SomSolutionFrselectBestB =  
// learn probability vectors    
 for 1:=i  to L do          

if )()( 21
tt BfBf ≥  then   // learn tP1  toward tB1

];[][)1(:][ 111 iBiPiP ttt ×+×−= αα  

else                           // learn tP1  away from tB2  

]);[0.1(][)1(:][ 211 iBiPiP ttt −×+×−= αα  

];[0.1:][ 12 iPiP tt −=  

endfor; 
 // adjust sample sizes for probability vectors 

if )()( 21
tt BfBf >  then } ;,min{: max11 nnn tt ∆+=  

if )()( 21
tt BfBf <  then } ;,max{: min11 nnn tt ∆−=  

;: 12
tt nnn −=  

;1: += tt  
until terminated = true;   // e.g., maxtt >  

end; 



will yield the maximal summed profit to fill in the knapsack 
without exceeding its limited weight capacity.  

Given a set of m items and a knapsack, the 0-1knapsack 
problem can be described as follows:  

i

mi

i i xpxp �
=

=
=

1
)(max    

subject to the weight constraint:  

Cxw i

mi

i i ≤�
=

=1
 

where ),,( 1 mxxx �= , ix  is 0 or 1, iw and ip are the weight 

and profit of item i respectively, and C is the weight capacity 
of the knapsack. If ,1=ix  the ith item is selected for the 

knapsack.  
In this paper we constructed a knapsack problem with 100 

items using strongly correlated sets of data, randomly 
generated as follows: 

]50,1[gerinterandomuniformlywi =  

]5,1[gerinterandomuniformlywp ii +=  

�
=

=
×=

100

1
6.0

i

i iwC  

And given a solution x, its fitness )(xf  is evaluated as 

follows. If the sum of the item weights is within the capacity 
of the knapsack the sum of the profits of the selected items is 
used as the fitness. If the solution selects too many items 
such that the summed weight exceeds the capacity of the 
knapsack, the solution is judged by how much it exceeds the 
knapsack capacity (the less, the better) and its fitness is 
evaluated to be the difference between the total weight of all 
items and the weight of selected items, multiplied by a small 

constant 1010−  to ensure that the solutions that overfill the 
knapsack are not competitive with those which do not. 
Together, the fitness of a solution x is evaluated as follows: 
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3.2  Constructing Dynamic Knapsack Problems 

In this paper, we construct dynamic test environments 
from above stationary knapsack problem using a dynamic 
problem generating technique proposed in [15]. This 
technique is characterized by two environmental dynamics 
parameters: the speed of change and the degree of change in 
the genotype space. The first parameter is referred to as the 
environmental change period, denoted by τ , and is defined 
as the number of EA generations between two changes. That 
is, every τ generations the fitness landscape is changed.  

The second parameter is measured by the ratio of ones in a 

binary template LkT }1,0{)( ∈  (where L is the chromosome 

length) created for each environmental change period, 
denoted by ρ . For each environmental change period k we 

first create a binary mask LkM }1,0{)( ∈  incrementally as:  

)()1()( kTkMkM ⊕−=  

where )(kT  is randomly created for period k with L×ρ  

ones and “ ⊕ ”  is a bitwise exclusive-or (XOR) operator (i.e., 
011 =⊕ , 101 =⊕ , 100 =⊕ ). For the first period, )1(M  is 

initialized to be a zero vector. When evaluating an individual 
Lx }1,0{∈  in the population, we first perform the operation 

)(kMx ⊕  on it. The XORed result is then evaluated to 

obtain a fitness value for the individual x. It can be seen that 
the parameter ρ  controls the degree of environmental 

change. The bigger the value of ρ , the more significant the 

environmental change.  
Putting things together, the environment dynamics can be 

formulated as follows:  

))((),( kMxftxf ⊕=  

where � �τ/tk =  is the period index, ],)1[( ττ kkt −=  is the 

generation counter.  
In this paper, we construct dynamic knapsack problems as 

follows. For each run of an algorithm on each knapsack 
problem the fitness landscape is periodically changed every 
τ generations. Based on our preliminary experimental 
results on the stationary knapsack problem (see Section 4.2), 
τ is set to 10, 50, 100, 150 and 200 generations respectively 
in order to test each algorithm's capability of adapting to 
dynamic environment under different degree of convergence 
(or searching stage). In order to test the effect of the degree 
of environmental change on the performance of 
algorithms ρ  is set to 0.05, 0.25, 0.5, 0.75, and 1.0 

respectively. These values represent different environmental 
change level, from light shifting ( 05.0=ρ ), to medium 

variation ( 5.0,25.0=ρ ), to heavy change ( 75.0=ρ ), and 

to the extreme case ( 0.1=ρ ) of oscillating between two 

reversed fitness landscapes.  
Totally, we systematically construct a series of 25 

dynamic problems, 5 values of τ combined with 5 values of 
ρ , from the stationary knapsack problem. 

4. Computer Experimental Study 

4.1 Design of Experiments 

Experiments were carried out to compare the performance 
of investigate PBILs. In order to compare PBILs as a whole 
with other evolutionary algorithms, we also included a 
standard genetic algorithm, denoted by SGA, as a peer 
algorithm in the experiments. SGA has following typical 
configuration: generational, uniform crossover with a 
crossover probability 6.0=cp , traditional bit mutation with 

a mutation probability ,001.0=mp  fitness proportionate 

selection with the Stochastic Universal Sampling (SUS) 
scheme [2] and without elitist model, and a population size 
of .120=n  

For each experiment of combining algorithm and problem 
(stationary or dynamic), 50 independent runs were executed 
with the same 50 random seeds. For each run of an algorithm 
on each problem, 10 periods of environmental changes were  



 
 

Fig.4  Experimental results on the stationary knapsack 
problem. 

allowed and the best-of-generation fitness was recorded 
every generation. The overall performance of an algorithm 
on a problem is measured by the mean best-of-generation 
fitness. It is defined as the best-of-generation fitness 
averaged across the number of runs and then averaged over 
the data gathering period. More formally this is:  

)
1

(
1

1 1� �
=

=

=

=
××=

Gi

i

Nj

j BGBG ij
F

NG
F  

where BGF  is the mean best-of-generation fitness, G is the 

number of generations which is equivalent to 10 periods of 
environmental changes (i.e., τ×= 10G ), 50=N is the total 
number of runs, and 

ijBGF is the best-of-generation fitness of 

generation i of run j of an algorithm on a problem. 

4.2 Experimental Results on the Stationary Knapsack 
Problem 

In order to help analyze the experimental results on 
dynamic problems, preliminary experiments were carried 
out on the stationary knapsack problem. For each run of 
different algorithm the maximum allowable number of 
generations was set to 200. The preliminary experimental 
results with respect to best-of-generation fitness against 
generations are shown in Fig. 4, where the data were 
averaged over 50 runs.  

From Fig. 4, it can be seen that in general all PBILs 
outperform SGA. This result is consistent with other 
researchers' study [4]. PBIL outperforms PPBIL2 and 
DPBIL2 while PPBIL2 performs as well as DPBIL2. This 
result shows that on the stationary knapsack problem 
introducing extra probability vector may not be beneficial 
since the existence of extra probability vector may slow 
down the learning speed of the other probability vector, 
whichever of the two vectors performs better. 

4.3 Experimental Results on Dynamic Knapsack 
Problems 

Table 1  Experimental results with respect to the overall 
mean best-of-generation fitness BGF of different algorithms 

on dynamic knapsack problems. 

Algorithms Param. 
Setting 
Index 

Parameter 
Settting 

),( ρτ  
SGA PBIL PPBIL2 DPBIL2 

1 (10, 0.05) 1416.6 1432.7 1429.1 1425.2 
2 (10, 0.25) 1406.7 1420.3 1418.9 1414.1 
3 (10, 0.50) 1402.4 1413.0 1412.4 1411.8 
4 (10, 0.75) 1396.9 1409.1 1408.4 1413.1 
5 (10, 1.00) 1372.5 1406.8 1404.7 1428.1 
6 (50, 0.05) 1424.9 1453.4 1450.8 1450.1 
7 (50, 0.25) 1415.8 1426.4 1427.3 1424.1 
8 (50, 0.50) 1397.7 1413.3 1416.5 1418.6 
9 (50, 0.75) 1377.2 1401.7 1405.4 1423.8 
10 (50, 1.00) 1337.3 1393.1 1390.8 1465.8 
11 (100, 0.05) 1429.5 1416.2 1442.3 1442.8 
12 (100, 0.25) 1421.4 1392.1 1410.7 1406.7 
13 (100, 0.50) 1412.1 1381.7 1392.2 1405.7 
14 (100, 0.75) 1387.8 1368.8 1383.4 1408.6 
15 (100, 1.00) 1338.4 1367.0 1365.0 1474.9 
16 (150, 0.05) 1432.1 1403.9 1434.6 1439.7 
17 (150, 0.25) 1424.6 1385.4 1401.5 1401.5 
18 (150, 0.50) 1418.0 1363.6 1373.9 1400.6 
19 (150, 0.75) 1400.7 1340.5 1367.2 1402.7 
20 (150, 1.00) 1348.2 1295.3 1311.3 1477.3 
21 (200, 0.05) 1433.6 1392.9 1420.6 1439.2 
22 (200, 0.25) 1426.7 1363.6 1393.4 1399.6 
23 (200, 0.50) 1420.3 1333.2 1362.0 1399.9 
24 (200, 0.75) 1407.4 1316.1 1342.5 1405.8 
25 (200, 1.00) 1362.1 1233.5 1253.4 1479.1 
 
 

 

Fig.5  Experimental results on dynamic knapsack problems. 

The experimental results on dynamic problems are 
summarized in Table 1 and plotted in Fig. 5 where the 
environmental dynamics parameter setting is indexed 
according to Table 1. From Table 1 and Fig. 5 several results 



  

(a)                                                                                             (b) 

  

(c)                                                                                             (d) 

Fig.6  Experimental results with respect to best-of-generation fitness against generations of investigated algorithms on dynamic 
knapsack problems. The environmental dynamics parameter 10=τ and ρ is set to (a) 0.05, (b) 0.25, (c) 0.75, and (d) 1.0. 

can be observed and are discussed as follows. 
First, an obvious result is that for each value of τ DPBIL2 

performs consistently with the increasing of the value of ρ . 

With each fixed τ , when ρ increases from 0.05 to 0.25, 

0.50, 0.75 to 1.0 the performance curve of DPBIL2 looks 
like a big “U”  while the other algorithms have a performance 
curve of “ falling stone” . This happens because increasing the 
value of ρ  increases the magnitude of environmental 

changes, which degrades the performance of SGA, PBIL and 
PPBIL2 persistently.  However,  in DPBIL2 the introduction 
of the dual probability  vector  stops  DPBIL2’s  performance 
from dropping when the value of ρ  reaches 0.5. Thereafter, 

DPBIL2’s performance rises with the increasing of the value 
of ρ . For each fixed value of τ  when 0.1=ρ  DPBIL2 

achieves the highest performance point. This result confirms 
our expectation of introducing the dual probability vector 
into DPBIL2. When the magnitude of environmental change 

is large, the dual probability vector takes effect quickly to 
adapt the DPBIL2 to the changed environment. 

Second, PBIL is now beaten by both PPBIL2 and DPBIL2 
on most situations except for when ρ is small. When ρ is 

small, the dynamic knapsack problems are closer to the 
stationary knapsack problem where introducing an extra 
probability vector may not work well. This is verified by 
above preliminary experimental results on the stationary 
knapsack problem as shown in Fig.4. However, when ρ  

increases the introduction of extra probability vector 
becomes more and more beneficial. This is because extra 
probability vector helps improving diversity in the samples. 

Third, as opposed to the stationary knapsack problem, 
SGA now outperforms PBILs on many dynamic knapsack 
problems, especially when the value of τ is large. When τ is 
large the algorithms are given more time to search before 
environment changes and hence they are more likely to 
converge. Convergence deprives PBILs of the adaptability to 



  

(a)                                                                                             (b) 

  

(c)                                                                                             (d) 

Fig.7  Experimental results with respect to best-of-generation fitness against generations of investigated algorithms on dynamic 
knapsack problems. The environmental dynamics parameter 200=τ and ρ is set to (a) 0.05, (b) 0.25, (c) 0.75, and (d) 1.0. 

changed environment. However, the mutation mechanism 
embedded in SGA gives SGA more diversity than PBILs and 
better adaptability to environment changes. Hence, SGA 
outperforms PBILs.  

In order to better understand the experimental results,  we 
give out the dynamic performance of tested algorithms with 
respect to best-of-generation fitness against generations on 
several dynamic problems in Fig. 6 and Fig. 7, where the 
data were averaged over 50 runs. In Fig. 6 and Fig. 7 the 
value of τ is set to 10 and 200 respectively, and within both 
figures the value of ρ is set to 0.05, 0.25, 0.75 and 1.0 

respectively. From Fig. 6 and Fig. 7, it can be seen that 
generally speaking, the performance of the algorithms  
(except for DPBIL2) drops heavier and heavier with the 
increasing of the value of ρ  as well as the value of τ .  With 

DPBIL2 when 0.1=ρ  its performance rises instead of 

drops with the growing of dynamic periods due to the effect 
of the dual probability vector. This results in the big “U”  
curve for DPBIL2's overall performance (see Fig. 5). 

5. Conclusions and Future Work 

In this paper we investigate the application of 
Population-Based Incremental Learning (PBIL) algorithms 
for solving optimization problems under dynamic 
environments. We study the effect of introducing extra 
probability vector into PBIL to improve its performance 
under dynamic environments. Inspired by the 
complementarity mechanism in nature, we propose a Dual 
PBIL that operates on a pair of probability vectors that are 
dual to each other with respect to the central point in the 
genotype space. 

Using a dynamic problem generating technique we 
systematically construct a set of dynamic knapsack problems 
from a randomly created stationary knapsack problem and 
based on these stationary and dynamic knapsack problems 
we carry out experimental study comparing investigated 
PBILs and one traditional GA. From the experimental results 
the following conclusions can be achieved.  



First, on stationary problems introducing extra probability 
vector into PBIL may not be beneficial. However, under 
dynamic environments introducing extra probability vector 
into PBIL improves its performance.  

Second, when the environment is subject to significant 
changes in the sense of genotype space, introducing the dual 
probability vector into PBIL can achieve very high 
performance improvement.  

Third, though the SGA is beaten by PBILs on the 
stationary problem, the mutation scheme embedded in SGA 
helps keeping the diversity in the population and hence 
improves SGA’s performance under dynamic environments. 

This paper investigated an interesting work of applying 
PBILs, especially the dual PBIL, for dynamic optimization 
problems. There are several relevant works to be carried out 
in the future. First, extending the results in this paper to other 
Estimation of Distribution Algorithms (EDAs) [13], of 
which PBILs are a sub-class, is an interesting work. Second, 
it is also worthy to introduce and develop more approaches, 
such as the hypermutation technique [7], [12], from EA's 
community to PBILs or EDAs for dynamic optimization 
problems. Finally, formally analyzing the performance of 
investigated PBILs for dynamic optimization problems is 
also an important future work. 
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